



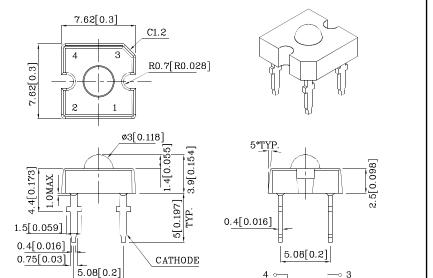
SUPER FLUX LED LAMP

# **Features**

- High current operation for greater luminous output
- Low power consumption and thermal resistance
- Can be used with automatic insertion equipment
- RoHS Compliant






### **Benefits:**

- •Rugged design allows for easy maintenance
- •Robust package for optimum reliability

# **Typical Applications:**

- •Automotive side markers
- •Gaming and entertainment lighting
- •Signs and road hazard indicators

# Package Schematics



### Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is  $\pm 0.25(0.01")$  unless otherwise noted.
- 3. Specifications are subject to change without notice.

| Absolute Maximum Rating (T <sub>A</sub> =25°C)       | M2MOK<br>(AlGaInP)  | Unit      |    |  |
|------------------------------------------------------|---------------------|-----------|----|--|
| Reverse Voltage                                      | $V_{\mathrm{R}}$    | 5         | V  |  |
| DC Forward Current                                   | $I_{\mathrm{F}}$    | 70        | mA |  |
| Power Dissipation                                    | $P_D$               | 210       | mW |  |
| Operating Temperature                                | $T_{\rm A}$         | -40 ~ +85 | °C |  |
| Storage Temperature                                  | Tstg                | -55 ~ +85 |    |  |
| Lead Solder Temperature [1.5mm Below Seating Plane.] | 260°C For 5 Seconds |           |    |  |

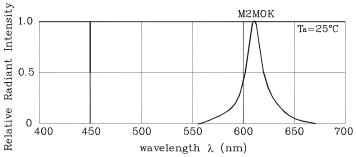
| Operating Characteristics $(T_A=25^{\circ}C)$                                | M2MOK<br>(AlGaInP)  | Unit |      |
|------------------------------------------------------------------------------|---------------------|------|------|
| Forward Voltage (Min.) (I <sub>F</sub> =70mA)                                | $V_{\mathrm{F}}$    | 2.0  | V    |
| Forward Voltage (Typ.) (I <sub>F</sub> =70mA)                                | $V_{\mathrm{F}}$    | 2.4  | V    |
| Forward Voltage (Max.) (I <sub>F</sub> =70mA)                                | $V_{\mathrm{F}}$    | 3.0  | V    |
| Reverse Current (Max.) (V <sub>R</sub> =5V)                                  | $I_{\mathrm{R}}$    | 10   | uA   |
| Wavelength of Peak Emission<br>CIE127-2007*(Typ.) (I <sub>F</sub> =70mA)     | λР                  | 611* | nm   |
| Wavelength of Dominant Emission<br>CIE127-2007*(Typ.) (I <sub>F</sub> =70mA) | λD                  | 605* | nm   |
| Spectral Line Full Width At Half<br>Maximum (Typ.) (I <sub>F</sub> =70mA)    | $\triangle \lambda$ | 17   | nm   |
| Capacitance (Typ.) (V <sub>F</sub> =0V, f=1MHz)                              | C                   | 27   | pF   |
| Thermal Resistance (Typ.)                                                    | Rθj-pin             | 125  | °C/W |

| Part<br>Number | Emitting<br>Color | Emitting<br>Material | Lens-color  | CIE12'    | s Intensity<br>7-2007*<br>mA) cd | Luminous Flux<br>CIE127-2007*<br>(I <sub>F</sub> =70mA) lm | Wavelength<br>CIE127-2007*<br>λP nm | Viewing<br>Angle<br>20 1/2 |
|----------------|-------------------|----------------------|-------------|-----------|----------------------------------|------------------------------------------------------------|-------------------------------------|----------------------------|
|                |                   |                      |             | min.      | typ.                             | typ.                                                       |                                     |                            |
| XSM2MOK983W    | Orange            | AlGaInP              | Water Clear | 6<br>3.2* | 8.99<br>4.79*                    | 8.5*                                                       | 611*                                | 70°                        |

<sup>1.</sup>Luminous intensity is measured with an integrating sphere after the device has stabilized.

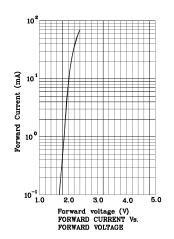
 $<sup>2.0 \</sup>text{ } 1/2 \text{ is the angle from optical centerline where the luminous intensity is } 1/2 \text{ of the optical peak value.}$ 

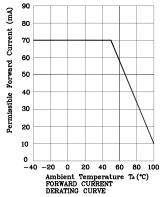
<sup>3.</sup>LEDs are binned according to their Luminous intensity.


<sup>\*</sup> Luminous intensity / luminous flux value and wavelength are in accordance with CIE127-2007 standards.

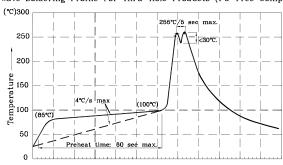


# Part Number: XSM2MOK983W

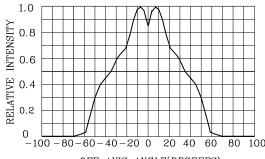

SUPER FLUX LED LAMP



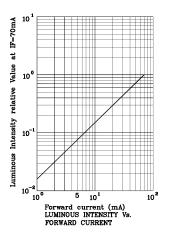




RELATIVE INTENSITY Vs. CIE WAVELENGTH

# **❖** M2MOK







Wave Soldering Profile For Thru-Hole Products (Pb-Free Components)




- 1.Recommend pre-heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C 2.Peak wave soldering temperature between 245°C ~ 255°C for 3 sec
- (5 sec max). 3.Do not apply stress to the epoxy resin while the temperature is above 85°C. 4. Fixtures should not incur stress on the component when mounting and during soldering process.
  5.SAC 305 solder alloy is recommended.
  6.No more than one wave soldering pass.



OFF AXIS ANGLE(DEGREES) RELATIVE INTENSITY VS OFF AXIS ANGLE

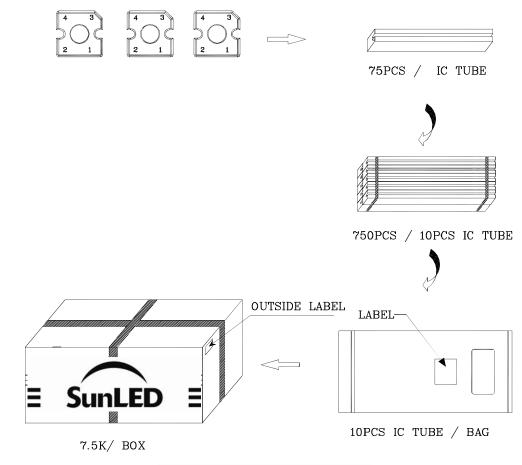


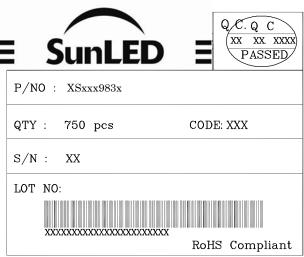


### Remarks:

If special sorting is required (e.g. binning based on forward voltage, luminous intensity / luminous flux, or wavelength),

the typical accuracy of the sorting process is as follows:


- 1. Wavelength: +/-1nm
- 2. Luminous Intensity / Luminous Flux: +/-15%
- 3. Forward Voltage: +/-0.1V


Note: Accuracy may depend on the sorting parameters.



SUPER FLUX LED LAMP

## PACKING & LABEL SPECIFICATIONS





### TERMS OF USE

- 1. Data presented in this document reflect statistical figures and should be treated as technical reference only.
- 2. Contents within this document are subject to improvement and enhancement changes without notice.
- 3. The product(s) in this document are designed to be operated within the electrical and environmental specifications indicated on the datasheet. User accepts full risk and responsibility when operating the product(s) beyond their intended specifications.
- 4. The product(s) described in this document are intended for electronic applications in which a person's life is not reliant upon the LED. Please consult with a SunLED representative for special applications where the LED may have a direct impact on a person's life.
- 5. The contents within this document may not be altered without prior consent by SunLED.
- 6. Additional technical notes are available at <a href="http://www.SunLEDusa.com/TechnicalNotes.asp">http://www.SunLEDusa.com/TechnicalNotes.asp</a>