OPB608A, OPB608B, OPB608R, OPB608V

Obsolete (OPB608C)

Features:

- Phototransistor output
- Unfocused for sensing diffuse surface
- Low cost plastic housing
- Enhanced signal to noise ratio
- Reduced ambient light sensitivity

TT Electronics

Description:

OPB608 reflective switches consist of an infrared emitting device (LED or VCSEL) and a NPN silicon phototransistor mounted "side-by-side" on a parallel axis in a black opaque plastic housing. All OPB608's (*except* **OPB608R**) have an emitting device and a phototransistor that are encapsulated in a visible filtering epoxy. The phototransistor responds to radiation from the emitter only when a reflective object passes within its field of view. The phototransistor has enhanced low current roll-off to improve the contrast ratio and immunity to background irradiance. LED versions are designed for near-field applications. The VCSEL version is designed for longer distances.

OPB608A and **OPB608B** devices are designed for applications with reflective distances between 0.050" (1.270 mm) and 0.375" (9.525 mm). **OPB608V** is designed for applications with reflective distances between 0.050" (1.270 mm) and 1.200" (30.480 mm). All of these are designed for light patterns not visible to the human eye. By utilizing the night enhancement function of a camera, the near infrared light pattern can be seen. This allows a user to see the pattern shining on the reflective object.

OPB608R is designed for applications with reflective distances between 0.050" (1.270 mm) and 0.300" (7.620 mm). It is designed for light patterns visible to the human eye. The efficiency of this sensor is lower for optical wavelengths in the visible range, thus reducing the distance that can be used.

Reflective distances are dependent upon the drive current for the light emitting device, the wavelength of the light source, and the type of reflective material; therefore, each application should be checked for the ability to meet each requirement.

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

Ordering Information								
Part Number	LED Peak Wavelength	Sensor	Reflection Distance Inch (mm)	Lead Length				
OPB608A		Rbe Transistor		0.18" (Min)				
OPB608B	890 nm							
OPB608C (Obsolete)			See Graph on Page 4					
OPB608R	660 nm							
OPB608V	850 nm							

Additional laser safety information can be found on the Optek website. See application #221.

Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may cause devices to exceed rated classification.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPB608A, OPB608B, OPB608R, OPB608V

Obsolete (OPB608C)

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature Range		-40° C to +85° C
Operating Temperature Range	OPB608 A, B, & R OPB608V	-40° C to +85° C 0° C to +70° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 sec. with soldering iron] $^{(1)}$		260° C
Total Power Dissipation	100 mW	
OPB608A, OPB608B (Infrared-LED — 890 nm)		
Forward DC Current	50 mA	
Peak Forward Current (1 μs pulse width, 300 pps)		3 A
Reverse DC Voltage	2 V	
OPB608R (Visible Red-LED — 660 nm)		
Forward DC Current		50 mA
Reverse DC Voltage	5 V	
OPB608V (Infrared-VCSEL — 850 nm)		
Forward DC Current	12 mA	
Reverse DC Voltage	5 V	
Phototransistor		
Collector-Emitter Voltage	30 V	
Emitter Reverse Current	10 mA	
Collector DC Current	25 mA	

Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
- Methanol or isopropanol are recommended as cleaning agents. The plastic housing is soluble in chlorinated hydrocarbons and keytones. (2)

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPB608A, OPB608B, OPB608R, OPB608V

Obsolete (OPB608C)

Electrical Specifications

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS	
Infrared-LE	D (890 nm)						
V _F	Forward Voltage	-	-	1.7	V	I _F = 20 mA	
I _R	Reverse Current	-	-	100	μA	V _R = 2 V	
Infrared-LE	D (660 nm)	•				·	
V _F	Forward Voltage	-	1.9	2.5	V	I _F = 20 mA	
V _R	Reverse Voltage	5	-	-	V	I _R = 10 μA	
Infrared VC	SEL (850 nm)						
V _F	Forward Voltage	-	-	2.2	V	I _F = 7 mA	
I _R	Reverse Current	-	-	30	nA	V _R = 5 V	
I _{TH}	Threshold Current	2	-	5.5	mA	-	
Θ	Beam Divergence	-	12	-	Deg.	I _F = 12 mA	
Phototrans	istor						
V _{(BR)CEO}	Collector Emitter Breakdown Voltage	30	-	-	V	$I_{c} = 100 \ \mu\text{A}, E_{E} = 0 \ \mu\text{W/cm}^{2}$	
V _{(BR)ECO}	Emitter Collector Breakdown Voltage	0.4	-	-	V	$I_{E} = 100 \ \mu\text{A}, E_{E} = 0 \ \mu\text{W/cm}^{2}$	
V _{CE(SAT)}	Saturation Voltage	-	-	.40	V	I_{c} = 100 µA, I_{F} = 20 mA, d = 0.053"	
I _{CEO}	Collector Emitter Dark Current	-	-	100	nA	$V_{CE} = 5 \text{ V}, \text{ E}_{E} = \le .10 \ \mu\text{W/cm}^{2}, \text{ I}_{F} = 0$	
Combined							
I _{C(ON)}	On-State Collector Current OPB608A OPB608B OPB608R	2 1 1	- - -	- 4 6	mA	$V_{CE} = 5 V$, $I_F = 20 mA$, $d = 0.053$ inch (1.3 mm) ⁽¹⁾⁽²⁾	
	OPB608V	5	-	-		V_{CE} = 5 V, I _F = 10 mA, d = 0.053 inch (1.35 mm) ⁽¹⁾⁽²⁾	
I _{C(OFF)}	Off-State Collector Current LED VCSEL	-	-	100 100	nA	No reflective surface, V_{CE} = 5 V I _F = 20 mA I _F = 10 mA	

• .•

Notes:

(1) Distance from the front of the lens to reflective surface.

(2) Measured using Eastman Kodak gray card. The white side of the card is used as a 90 % diffuse reflective surface. Reference Eastman Kodak catalog #E152 7795.

(3) All parameters are tested using pulse techniques.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPB608A, OPB608B, OPB608R, OPB608V

Obsolete (OPB608C)

Performance

Collector Current vs Diode Forward Current

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

General Note

OPB608A, OPB608B, OPB608R, OPB608V

Electronics

Obsolete (OPB608C)

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.