

Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ASNT6114-KMC DC-25*GHz* 1-to-2 Analog Signal Splitter

- DC to 25*GHz* broadband linear signal splitter
- One differential CML-type input port and two phase-matched differential CML-type output ports
- Differential input linearity range up to 800mV p-p
- Differential gain of approximately 0dB
- Low jitter and limited temperature variation over industrial temperature range
- Single +3.3V or -3.3V power supply
- Power consumption: 660*mW*
- Fabricated in SiGe for high performance, yield, and reliability
- Custom CQFP 24-pin package

DESCRIPTION

Fig. 1. Functional Block Diagram

The temperature stable ASNT6114-KMC 1-to-2 analog signal splitter is intended for use in high-speed interleaved ADCs or similar systems. The IC shown in Fig. 1 can receive a broad-band analog signal at its differential input dp/dn and effectively distribute it to two separate phase matched differential outputs q1p/q1n, q2p/q2n with a nominal gain of 0*dB*.

The part's I/O's support the CML logic interface with on chip 50*Ohm* termination to vCC and may be used differentially, AC/DC coupled, single-ended, or in any combination (also see POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the AC-coupling mode, the input termination provides the required common mode voltage automatically. The differential DC signaling mode is recommended for optimal performance. In particular, the specified output common-mode voltage level is guaranteed only in case of external single-ended 50*Ohm* DC termination to vCC.

POWER SUPPLY CONFIGURATION

The part can operate with either negative supply (vcc = 0.0V = ground and vee = -3.3V), or positive supply (vcc = +3.3V and vee = 0.0V = ground). In case of the positive supply, all I/Os need AC termination when connected to any devices with 50*Ohm* termination to ground. In any case, the input common mode voltage level is shifted down from vcc by a certain voltage ΔV_{ICM} as specified in

ELECTRICAL CHARACTERISTICS. To have the input common mode voltage equal to ground, a floating negative supply scheme detailed in Fig. 2 should be used.

Fig. 2. Floating Negative Supply Scheme: Potential Diagram (a) and Schematic (b)

For the best performance, the external 50*Ohm* terminations of the outputs should be connected to **vcc**, but not to ground!

Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume vcc = 0.0V and vee = -3.3V.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 1 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed vcc).

Parameter	Min	Max	Units
Supply Voltage (vee)		-3.6	V
Power Consumption		0.75	W
DC Input Voltage	vcc-0.55	vcc-0.35	V
RF Input Voltage Swing (SE)		0.4	V
Case Temperature		+90	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

Table 1. Absolute Maximum Ratings

TERMINAL FUNCTION

TERMINAL		AL	DESCRIPTION		
Name	No.	Туре			
dp	21	CML	Differential high speed data inputs with internal SE 500hm		
dn	23	input	termination to VCC		
q1p	17	CML	Differential high speed data outputs with internal SE 500hm		
q1n	15	output	termination to vcc. Require external SE 500hm termination to vcc		
q2p	5	CML			
q2n	3	output			
Supply and Termination Voltages					
Name	e Description		Description	Pin Number	
vcc	Positive power supply $(+3.3V \text{ or } 0)$		ter supply $(+3.3V \text{ or } 0)$	2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24	
vee	Negative power supply $(0V \text{ or } -3.3V)$		er supply $(0V \text{ or } -3.3V)$	1, 7, 13, 19	
n/c	Not connected pins		connected pins	9, 11	

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS	
General Parameters						
vee	-3.1	-3.3	-3.5	V	$\pm 6\%$	
VCC		0.0		V	External ground	
Ivee		200		mA		
Power consumption		660		mW		
Junction temperature	-25	50	125	$^{\circ}C$		
	Input Analog (dp/dn)					
Bandwidth	DC		25	GHz	-3 <i>dB</i>	
Common mode voltage level	vcc-0.55	vcc-0.5	vcc-0.4	mV		
Voltage swing, pk-pk			400	mV	Single ended	
Input Noise Density		1.5		nV/sqrt(Hz)		
S11		-17		dB	at 3GHz	
		-15		dB	at 10 <i>GHz</i>	
		-10		dB	at 20GHz	
	Output An	alog (q1p)/q1n, q2p	/q2n)		
Common mode level		vcc-0.55		V	With external 500hm	
					DC termination	
S22		-8		dB	DC to 30GHz	
Small Signal Differential Gain		0		dB	at 10 <i>GHz</i>	
Output referred 1dB		2.1		dBm	Single-Ended, 20GHz	
Compression Point		2.1		uDin	Single-Ellucu, 200112	
THD		0.2		%		

PACKAGE INFORMATION

The chip die is housed in a custom 24-pin CQFP package shown in Fig. 3. The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the **vcc** plain, which is ground for a negative supply, or power for a positive supply.

The part's identification label is ASNT6114-KMC. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 digits after the underscore represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

Fig. 3. CQFP 24-Pin Package Drawing (All Dimensions in mm)

REVISION HISTORY

Revision	Date	Changes	
1.6.2	05-2020	Updated Package Information	
1.5.2	08-2019	Corrected pinout diagram	
		Corrected Terminal Functions table	
1.4.2	07-2019	Updated Letterhead	
1.4.1	11-2017	Corrected Absolute Maximum RF input voltage swing	
		Added Absolute Maximum DC input voltage	
		Corrected specifications for input common mode voltage level	
		Added specifications for input voltage swing	
		Corrected 1dB compression point	
1.3.1	05-2015	Revised Package Information section	
1.2.1	01-2015	Corrected Power Supply Configuration section	
		Expanded S11 information	
1.1.1	03-2013	Corrected description	
		Corrected absolute maximum ratings	
		Updated electrical characteristics table	
		Added package mechanical drawing	
		Corrected format	
1.0	03-2012	First release	