General Description

The MAX9386/MAX9387/MAX9388 are fully differential, high-speed, low-jitter ECL/PECL multiplexers (muxes) with output buffer(s). The devices are designed for clock-and-data distribution applications, and feature extremely low propagation delays (318ps, typ) and output-to-output skews (3.9ps, typ). The MAX9386 is a 5:1 mux with a single output buffer. The MAX9387 is a 5:1 mux with dual output buffers, and is intended for use in redundant systems. The MAX9388 is a 4:1 mux with a single output buffer, and is pin compatible with the MC100EP57.

Three single-ended select inputs, SEL0, SEL1, and SEL2, control the mux function on the MAX9386/MAX9387. The MAX9388 has two select inputs, SEL0 and SEL1. The mux select inputs are compatible with ECL/PECL logic, and are internally referenced to the on-chip output V_{BB}, nominally V_{CC} - 1.425V. The select inputs accept signals between V_{CC} and V_{EE}. Internal pulldowns to V_{EE} ensure a low-default condition if the select inputs are left open.

The differential inputs D_, \overline{D} can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference output V_{BB}. All the differential inputs have internal bias and clamping circuits that ensure low-default output states when the inputs are left open.

The MAX9386/MAX9387/MAX9388 operate with a wide supply range $|V_{CC} - V_{EE}|$ of 2.375V to 5.5V. The MAX9386/MAX9388 are offered in 20-pin TSSOP and QSOP packages. The MAX9387 is offered in 24-pin TSSOP and QSOP packages.

Applications

High-Speed Telecom and Datacom Applications Central Office Backplane Clock Distribution DSLAM/DLC

Features

- ♦ 318ps (typ) Propagation Delay
- >2.7GHz Toggle Frequency
- 0.3ps(RMS) Random Jitter
- <14ps (max) at +25°C Output-to-Output Skew (MAX9387)
- -2.375V to -5.5V Supplies for Differential LVECL/ECL
- +2.375V to +5.5V Supplies for Differential LVPECL/PECL
- Outputs Low for Open Inputs
- Dual Output Buffers (MAX9387)
- Pin Compatible with MC100EP57 (MAX9388EUP)
- >2kV ESD Protection (Human Body Model)

_Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	SELECTION
MAX9386EUP	-40°C to +85°C	20 TSSOP	5:1 mux with 1 output buffer
MAX9386EEP*	-40°C to +85°C	20 QSOP	5:1 mux with 1 output buffer

Ordering Information continued at end of data sheet. *Future product—contact factory for availability.

_Pin Configurations

M/IXI/M

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} - V _{EE} 0.3V to +6.0V Inputs (D_, D_, SEL_) to V _{EE} 0.3V to (V _{CC} + 0.3V) D_ to D+3.0V
Continuous Output Current
Surge Output Current100mA
V _{BB} _Sink/Source Current±600µA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
20-Lead TSSOP (derate 11.0mW/°C above +70°C)880mW
θ _{JA} in Still Air+91°C/W
θJC+20°C/W
24-Lead TSSOP (derate 12.2mW/°C above +70°C)976mW
θ _{JA} in Still Air+82°C/W
θ _{JC} +15°C/W

20-Lead QSOP (derate 9.1mW/°C above +70°C)727mW θ_{JA} in Still Air
Storage Temperature Range65°C to +150°C ESD Protection
Human Body Model (D, D, Q, Q, Q, SEL, VBB)≥2kV Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} - V_{EE} = 2.375V \text{ to } 5.5V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V. \text{ Typical values are at } V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1V,$ VILD = VCC - 1.5V, unless otherwise noted.) (Notes 1-4)

DADAMETED	CVMBOI	COND	ITIONS		-40°C			+25°C			+85°C		UNITS
PARAMETER	PARAMETER SYMBOL		TIONS	MIN	ТҮР	МАХ	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
INPUT (D_, D_, S	EL_)	-								-			
Single-Ended Input High Voltage	VIH	V _{BB} conne the unusec (Figure 1)		V _{CC} - 1.225		V _{CC} - 0.880	V _{CC} - 1.225		V _{CC} - 0.880	V _{CC} - 1.225		V _{CC} - 0.880	V
Single-Ended Input Low Voltage	VIL	V _{BB} conne the unused (Figure 1)		V _{CC} - 1.945		V _{CC} - 1.625	V _{CC} - 1.945		V _{CC} - 1.625	V _{CC} - 1.945		V _{CC} - 1.625	V
Differential Input High Voltage	Vihd	Figure 1		V _{EE} + 1.2		V _{CC}	V _{EE} + 1.2		V _{CC}	V _{EE} + 1.2		V _{CC}	V
Differential Input Low Voltage	V _{ILD}	Figure 1		V _{EE}		V _{CC} - 0.095	V _{EE}		V _{CC} - 0.095	V_{EE}		V _{CC} - 0.095	V
Differential Input		Figure 1	V _{CC} - V _{EE} < 3.0V	0.095		V _{CC} - V _{EE}	0.095		V _{CC} - V _{EE}	0.095		V _{CC} - V _{EE}	V
Voltage	Vihd - Vild		$V_{CC} - V_{EE}$ $\geq 3.0V$	0.095		3.000	0.095		3.000	0.095		3.000	v
Input Current	lin	V_{IH},V_{IL},V_{II}	hd, Vild	-100		+100	-100		+100	-100		+100	μA

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} - V_{EE} = 2.375V \text{ to } 5.5V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V. \text{ Typical values are at } V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, \text{ unless otherwise noted.}) (Notes 1–4)$

PARAMETER	SYMBOL	CONDITIONS		-40°C			+25°C			+85°C		UNITS
PARAMETER	FARAWEIER STWDUL		MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
OUTPUT ($Q_{,} \overline{Q}_{}$)		-						-			
Single-Ended Output High Voltage	Voh	Figure 2	V _{CC} - 1.145		V _{CC} - 0.895	V _{CC} - 1.145		V _{CC} - 0.895	V _{CC} - 1.145		V _{CC} - 0.895	V
Single-Ended Output Low Voltage	V _{OL}	Figure 2	V _{CC} - 1.945		V _{CC} - 1.695	V _{CC} - 1.945		V _{CC} - 1.695	V _{CC} - 1.945		V _{CC} - 1.695	V
Differential Output Voltage	V _{OH} - V _{OL}	Figure 2	650	830		650	840		650	840		mV
REFERENCE OU	TPUT (VBB_	_)										
Reference Voltage Output	V _{BB1} , V _{BB2}	$I_{BB1} + I_{BB2} = \pm 0.5 \text{mA}$ (Note 5)	V _{CC} - 1.525	V _{CC} - 1.425	V _{CC} - 1.325	V _{CC} - 1.525	V _{CC} - 1.425	V _{CC} - 1.325	V _{CC} - 1.525	V _{CC} - 1.425	V _{CC} - 1.325	V
POWER SUPPLY												
		MAX9386		34	50		36	50		38	50	
Supply Current (Note 6)	IEE	MAX9387		40	60		42	60		45	60	mA
		MAX9388		31	47		33	47		35	47	

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} - V_{EE} = 2.375V \text{ to } 5.5V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, V_{IHD} - V_{ILD} = 0.15V \text{ to } 1V, f_{IN} \le 2.5GHz \text{ input duty cycle} = 50\%, \text{ input transition time} = 125ps (20\% \text{ to } 80\%).$ Typical values are at $V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 622MHz, \text{ input duty cycle} = 50\%, \text{ input transition time} = 125ps (20\% \text{ to } 80\%), unless otherwise noted.} (Note 7)$

PARAMETER	OVMBOL	CONDITIONS		-40°C			+25°C			+85°C		
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	MIN	ΤΥΡ	MAX	MIN	ТҮР	MAX	
Differential Input-to-Output Delay	tplhd, tphld	Figure 2	222	309	377	238	318	395	254	333	431	ps
SELto-Output Delay	tpLH2, tpHL2	Figure 4, input transition time = 500ps (20% to 80%) (Note 8)			1.64			1.4			1.6	ns
Output-to- Output Skew	tskoo	MAX9387 only, Figure 5 (Note 9)		3.9	26		3.9	14		8.0	26	ps
Input-to-Output Skew	^t skio	Figure 6 (Note 10)		7.3	53		7.7	50		8.3	50	ps
Part-to-Part Skew	^t SKPP	(Note 11)			111			130			133	ps

AC ELECTRICAL CHARACTERISTICS (continued)

 V_{CC} - V_{EE} = 2.375V to 5.5V, outputs loaded with 50 Ω ±1% to V_{CC} - 2V, V_{IHD} - V_{ILD} = 0.15V to 1V, $f_{IN} \le 2.5$ GHz input duty cycle = 50%, input transition time = 125ps (20% to 80%). Typical values are at V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 622MHz, input duty cycle = 50%, input transition time = 125ps (20% to 80%), unless otherwise noted.) (Note 7)

PARAMETER	SYMBOL	CONDITIONS			-40°C			+25°C			+85°C		UNITS
FARAMETER STMBUL		0	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
			$f_{IN} = 156MHz$		0.3	1.15		0.3	1.15		0.3	1.15	
Added Random Jitter (Note 12)	t _{RJ}	Clock pattern	$f_{IN} = 622MHz$		0.3	1.15		0.3	1.15		0.3	1.15	ps(RMS)
		patient	$f_{IN} = 2.5 GHz$		0.3	1.15		0.3	1.15		0.3	1.15	
Added	Dotorministic To J	PRBS	$f_{\text{IN}} = 156 \text{Mbps}$		33	95		33	95		33	95	
		2 ²³ - 1	$f_{IN} = 622Mbps$		21	61		21	61		21	61	psp-p
Switching Frequency	fMAX	V _{OH} - V _C Figure 2	oL ≥ 300mV,	2.7			2.7			2.7			GHz
Select Toggle Frequency	fSEL			100			100			100			MHz
Output Rise and Fall Time (20% to 80%)	t _R , t _F	Figure 2		67	105	138	74	117	155	81	128	165	ps

Note 1: Measurements are made with the device in thermal equilibrium.

Note 2: Current into an I/O pin is defined as positive. Current out of an I/O pin is defined as negative.

Note 3: DC parameters production tested at $T_A = +25^{\circ}C$ and guaranteed by design over the full operating temperature range.

Note 4: Single-ended data input operation using $V_{BB_{-}}$ is limited to $(V_{CC} - V_{EE}) \ge 3.0V$.

Note 5: Use V_{BB} only for inputs that are on the same device as the V_{BB} reference.

Note 6: All pins open except V_{CC} and V_{EE}.

Note 7: Guaranteed by design and characterization. Limits are set at ±6 sigma.

Note 8: Measured from the 50% point of the input signal with the 50% point equal to V_{BB}, to the 50% point of the output signal.

Note 9: Measured between outputs of the same part at the signal crossing points for a same-edge transition.

Note 10: Measured between input-to-output paths of the same part at the signal crossing points for a same-edge transition of the differential input signal.

Note 11: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.

Note 12: Device jitter added to the differential input signal.

Typical Operating Characteristics

 $(V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V$, outputs loaded with 50 Ω ±1% to V_{CC} - 2V, f_{IN} = 1.5GHz, input duty cycle = 50%, input transition time = 125ps (20% to 80%), unless otherwise noted.)

MAX9386/MAX9388 Pin Description

PIN			
MAX9386	MAX9388	NAME	FUNCTION
1	2	D0	Noninverting Differential Input 0. Internal 250k Ω to V_{CC} and 150k Ω to V_{EE}.
2	3	DO	Inverting Differential Input 0. Internal 150k Ω to V_{CC} and 150k Ω to V_{EE}.
3	4	D1	Noninverting Differential Input 1. Internal 250k Ω to V_{CC} and 150k Ω to V_{EE}.
4	5	D1	Inverting Differential Input 1. Internal 150k Ω to V_{CC} and 150k Ω to V_{EE}.
5	6	D2	Noninverting Differential Input 2. Internal 250k Ω to V_{CC} and 150k Ω to V_{EE}.
6	7	D2	Inverting Differential Input 2. Internal 150k Ω to V_{CC} and 150k Ω to V_{EE}.
7	8	D3	Noninverting Differential Input 3. Internal 250k Ω to V_{CC} and 150k Ω to V_{EE}.
8	9	D3	Inverting Differential Input 3. Internal 150k Ω to V_{CC} and 150k Ω to V_{EE}.
9	_	D4	Noninverting Differential Input 4. Internal 250k Ω to V_{CC} and 150k Ω to V_{EE}.
10	—	D4	Inverting Differential Input 4. Internal 150k Ω to V_{CC} and 150k Ω to V_{EE}.
11	10, 11	VEE	Negative Supply
12	12	V_{BB2}	Reference Output Voltage 2. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass V_{BB2} to V_{CC} with a 0.01µF ceramic capacitor. Otherwise leave open.
13	13	V _{BB1}	Reference Output Voltage 1. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass V_{BB1} to V_{CC} with a 0.01µF ceramic capacitor. Otherwise leave open.
14, 20	1, 14 17, 20	V _{CC}	Positive Supply. Bypass each V _{CC} to V _{EE} with 0.1μ F and 0.01μ F ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
15	15	Q	Inverting Output. Typically terminate with 50 Ω resistor to V_CC - 2V.
16	16	Q	Noninverting Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
17	18	SEL0	Select Logic Input 0. Internal 120k Ω pulldown to V _{EE} .
18	19	SEL1	Select Logic Input 1. Internal 120k Ω pulldown to VEE.
19	_	SEL2	Select Logic Input 2. Internal 120k Ω pulldown to VEE.

MAX9387 Pin Description

PIN		TUNOTION
MAX9387	NAME	FUNCTION
1, 18, 24	Vcc	Positive Supply. Bypass each V _{CC} to V _{EE} with 0.1 μ F and 0.01 μ F ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	DO	Noninverting Differential Input 0. Internal 250k Ω to V_{CC} and 150k Ω to V_{EE}.
3	DO	Inverting Differential Input 0. Internal 150k Ω to V _{CC} and 150k Ω to V _{EE} .
4	D1	Noninverting Differential Input 1. Internal 250k Ω to V_{CC} and 150k Ω to V_{EE}.
5	D1	Inverting Differential Input 1. Internal 150k Ω to V _{CC} and 150k Ω to V _{EE} .
6	D2	Noninverting Differential Input 2. Internal 250k Ω to V_{CC} and 150k Ω to V_{EE}.
7	D2	Inverting Differential Input 2. Internal 150k Ω to V _{CC} and 150k Ω to V _{EE} .
8	D3	Noninverting Differential Input 3. Internal 250k Ω to V_{CC} and 150k Ω to V_{EE}.
9	D3	Inverting Differential Input 3. Internal 150k Ω to V _{CC} and 150k Ω to V _{EE} .
10	D4	Noninverting Differential Input 4. Internal 250k Ω to V _{CC} and 150k Ω to V _{EE} .
11	D4	Inverting Differential Input 4. Internal 150k Ω to V _{CC} and 150k Ω to V _{EE} .
12, 13	V _{EE}	Negative Supply
14	V _{BB2}	Reference Output Voltage 2. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass V_{BB2} to V_{CC} with a 0.01µF ceramic capacitor. Otherwise leave open.
15	V _{BB1}	Reference Output Voltage 1. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass V_{BB1} to V_{CC} with a 0.01µF ceramic capacitor. Otherwise leave open.
16	Q1	Inverting Output 1. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
17	Q1	Noninverting Output 1. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
19	QO	Inverting Output 0. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
20	Q0	Noninverting Output 0. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
21	SEL0	Select Logic Input 0. Internal 120k Ω pulldown to V _{EE} .
22	SEL1	Select Logic Input 1. Internal 120k Ω pulldown to V _{EE} .
23	SEL2	Select Logic Input 2. Internal 120k Ω pulldown to V _{EE} .

Figure 1. Input Definitions

Figure 2. Differential Input-to-Output Propagation Delay Timing Diagram

Figure 3. Single-Ended Input-to-Output Propagation Delay Timing Diagram

Figure 4. Select Input (SEL0)-to-Output (Q_, \overline{Q}) Delay Timing Diagram

Figure 5. Output-to-Output Skew (t_{SKOO}) Definition (MAX9387 Only)

Figure 6. Input-to-Output Skew (t_{SKIO)} Definition

Detailed Description

The MAX9386/MAX9387/MAX9388 are fully differential, high-speed, and low-jitter ECL/PECL muxes with output buffer(s). The devices are designed for clock-and-data distribution applications, and feature extremely low propagation delays (318ps, typ) and output-to-output skews (3.9ps, typ). The MAX9386 is a 5:1 mux with a single output buffer. The MAX9387 is a 5:1 mux with dual output buffers, and is intended for use in redundant systems. The MAX9388 is a 4:1 mux with a single output buffer, and is pin compatible with the MC100EP57.

Three single-ended select inputs, SEL0, SEL1, and SEL2, control the mux function on the MAX9386/MAX9387. The MAX9388 has two select inputs, SEL0 and SEL1 (see Tables 1 and 2). The mux select inputs are compatible with ECL/PECL logic, and are internally referenced to the on-chip output V_{BB}, nominally V_{CC} - 1.425V. The select inputs accept signals between V_{CC} and V_{EE}. Internal 120k Ω pulldowns to V_{EE} ensure a low default condition if the select inputs are left open, selecting the D0, D0 input.

The differential inputs D, \overline{D} can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference voltage

Table 1. Mux Select Input Truth Table forMAX9386/MAX9387

SEL1	SEL0	DATA OUTPUT
L or open	L or open	D0*
L or open	Н	D1
Н	L or open	D2
Н	Н	D3
Х	Х	D4
	L or open	L or open L or open L or open H

*Default output when SEL0, SEL1, and SEL2 are left open.

Table 2. Mux Select Input Truth Table forMAX9388

SEL1	SEL0	DATA OUTPUT			
L or open	L or open	D0*			
L or open	Н	D1			
Н	L or open	D2			
Н	Н	D3			

*Default output when SEL0 and SEL1 are left open.

VBB. The reference output voltages, VBB1 and VBB2, provide the reference voltage for single-ended operation for each mux. A single-ended input of at least VBB_ \pm 100mV or a differential input of at least 100mV switches the outputs to the V_{OH} and V_{OL} levels specified in the *DC Electrical Characteristics*. The maximum magnitude of the differential input from D to \overline{D} is \pm 3.0V. This limit also applies to the difference between a single-ended input and any reference voltage input.

Specifications for the high and low voltages of a differential input (V_{IHD} and V_{ILD}) and the differential input voltage (V_{IHD} - V_{ILD}) apply simultaneously.

Single-Ended Operation

The recommended supply voltage for single-ended operation is 3.0V to 5.5V. The differential inputs (D, \overline{D}) can be configured to accept single-ended inputs when operating at supply voltages greater than 2.725V. In single-ended mode operation, the unused complementary input needs to be connected to the on-chip reference voltage, V_{BB}, as a reference. For example, the differential D, \overline{D} input is converted to a noninverting, single-ended input by connecting V_{BB} to \overline{D} and connecting the single-ended input to D. Similarly, an inverting input is obtained by connecting V_{BB} to D and connecting the single-ended input to \overline{D} . With a differential input configured as single ended (using V_{BB}), the single-ended input can be driven to V_{CC} or V_{EE} or with a single-ended LVPECL/LVECL signal.

In single-ended mode operation, a user must ensure that the supply voltage (V_{CC} - V_{EE}) is greater than 2.725V. This is because the input high minimum level must be at (V_{EE} + 1.2V) or higher for proper operation. The reference voltage, V_{BB}, must be at least (V_{EE} + 1.2V) for the same reason because it becomes the highlevel input when a single-ended input swings below it. The minimum V_{BB} output for the MAX9386/MAX9387/MAX9388 is (V_{CC} - 1.38V). Substituting the minimum V_{BB} output for (V_{BB} = V_{EE} + 1.2V) results in a minimum supply (V_{CC} - V_{EE}) of 2.725V. Rounding up to standard supplies gives the recommended single-ended operating supply ranges (V_{CC} - V_{EE}) of 3.0V to 5.5V.

When using the V_{BB} reference output, bypass it with a 0.01μ F ceramic capacitor to V_{CC}. If not used, leave it open. The V_{BB} reference can source or sink a total of 0.5mA (shared between V_{BB1} and V_{BB2}), which is sufficient to drive five inputs.

Applications Information

Output Termination

Terminate the outputs through 50Ω to V_{CC} - 2V or use equivalent Thevenin terminations. Terminate each Q and \overline{Q} output with identical termination on each for minimal distortion. When a single-ended signal is taken from the differential output, terminate both Q and \overline{Q} .

Ensure that output currents do not exceed the current limits as specified in the *Absolute Maximum Ratings* table. Under all operating conditions, the device's total thermal limits should be observed.

Supply Bypassing

Bypass V_{CC} to V_{EE} with high-frequency surface-mount ceramic 0.1µF and 0.01µF capacitors. For PECL, bypass each V_{CC} to V_{EE}. For ECL, bypass each V_{EE} to V_{CC}. Place the capacitors as close to the device as possible with the 0.01µF capacitor closest to the device pins.

Use multiple vias when connecting the bypass capacitors to ground. When using the V_BB1 or V_BB2 reference outputs, bypass each one with a $0.01 \mu F$ ceramic capacitor to V_CC. If the V_BB1 or V_BB2 reference outputs are not used, they can be left open.

Traces

Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing common-mode noise immunity.

Signal reflections are caused by discontinuities in the 50 Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, not using sharp corners or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.

Chip Information

TRANSISTOR COUNT: 583 PROCESS: Bipolar

Functional Block Diagram

_Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	SELECTION
MAX9387EUG	-40°C to +85°C	24 TSSOP	5:1 mux with 2 output buffers
MAX9387EEG*	-40°C to +85°C	24 QSOP	5:1 mux with 2 output buffers
MAX9388EUP	-40°C to +85°C	20 TSSOP	4:1 mux with 1 output buffer
MAX9388EEP*	-40°C to +85°C	20 QSOP	4:1 mux with 1 output buffer

*Future product—contact factory for availability.

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

14

Printed USA **MAXIM** is a regi

MAXIM is a registered trademark of Maxim Integrated Products.