

Winbond's W681512 Single-Channel CODEC

The W681512 single channel voice CODEC is an analog-to-digital and digital-to-analog converter that complies with ITU-T G.712 specifications. The CODEC features complete $\mu\text{-Law}$ and A-Law companders (pin selectable) that are designed to comply with ITU-T G.711 specifications. The chip also offers a fully differential analog output.

In order to provide the cleanest possible signal, the W681512 CODEC complies with the ITU-T G.712 recommendation for analog-to-digital prefilters (also known as anti-aliasing filters) and Digital-to-Analog post filter (signal smoothing filter).

The W681512 CODEC contains an additional analog power amplifier that drives higher current output. The power amplifier gain levels can be adjusted via a set of external resistors to drive an output level of up to 6.3V, peak-to-peak, across a $300-\Omega$ load.

The PCM interface for the W681512 produces 8-bit digital data (μ -Law or A-Law) at a sampling rate of 8kHz. It can communicate in four different clock formats; short frame sync, long frame sync, IDL and CGI. The W681512 is available in 20-pin SOP and SSOP packaging.

For evaluation and prototyping purposes, a development kit, the W681512DK, is available to provide the system designer with a flexible method for developing and testing an application on a single, standalone platform.

Preliminary Product Bulletin

Features

- Single supply voltage: 4.5 5.5V
- Typical power dissipation: 30mW, power-down of 0.5μW
- Fully-differential analog circuit design
- Differential outputs
- On-chip precision reference voltage of 1.575V for a 0dBm TLP @ 600Ω
- Push-pull 300Ω power drivers with external gain adjust
- 8 kHz sample rate
- Master clock rates: 256 kHz, 512 kHz, 1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz and 4096 kHz
- Pin-selectable μ-Law and A-Law companding (full compliance with ITU-T G.711)
- CODEC A/D and D/A filter compliance with ITU-T G.712 specifications
- PCM interface: Short Frame Sync, Long Frame Sync, IDL and GCI timing environments
- Temperature range: Industrial grade (-40°C to 85°C)
- Packaging: 20-pin SOP

Benefits

- Low power competitive solution
- System level customization
- Cross references with the Motorola[®] MC145480 & MC14LC5480

CODEC Applications

- VoIP, Voice over Networks
- PBX systems (gateways, switches)
- PABX/SOHO systems
- Local loop card
- SOHO routers
- Fiber-to-curb equipment
- Enterprise phones
- Digital telephone systems
- ISDN equipment
- Modems/PC cards

Development System

- The W681512DK is a development kit that can be configured in one of the following two modes:
 - Stand alone capable of demo a loop back and prototype a design on a dedicated board space
 - Back-to-Back –enables full system test between two platforms

W681512 Block Diagram

Pin	Pin	Functionality	
#	Name	-	
1	RO+	Non-Inverting Receive output	
2	RO-	Inverting Receive output	
3	PAI	Power amplifier inverted input	$RO+ \square_1 \bullet \qquad \qquad 20 \square V_{AG}$
4	PAO-	Inverting Power Amplifier output	l
5	PAO+	Non-Inverting Power Amplifier output	RO- 2 19 AI+
6	V_{DD}	Positive power supply	PAI 🗀 3 18 AI-
7	FSR	Receive Frame Sync input	
8	PCMR	PCM input data receive	1110 7
9	BCLKR	Receive bit clock input	$PAO+ \square_5$ SINGLE μ /A-Law
10	PUI	Power up indicator	CHANNET
11	MCLK	System master clock input	$V_{DD} = 6$ CODEC 15 V_{SS}
12	BCLKT	Transmit bit clock input	FSR
13	PCMT	PCM output data transmit pin	
14	FST	Transmit Frame Sync input	
15	V _{SS}	Ground power supply	BCLKR = 9 12 BCLKT
16	μ/A-Law	μ-Law /A-Law companding select pin	
17	AO	Transmit gain output	PUI 10 11 MCLK
18	AI-	Inverting Transmit input	SOP/SSOP
19	AI+	Non-Inverting Transmit input	501/5501
20	V_{AG}	Analog signal reference ground output	

To order products or for more information:

Winbond Electronics Corporation America 2727 N. First Street San Jose, CA 95134

Tel: 1-800-677-0769 (U.S. Only), 408-943-6666

Fax: 408-544-1789

e-mail: <u>info@winbond-usa.com</u> Web: <u>www.winbond-usa.com</u> **Note:** For more details on Winbond's W681512 please refer to the product datasheet.

Winbond is a registered trademark of Winbond Electronics Corporation. All other trademarks and logos are the properties of their respective owners. Winbond CIDPB1-0901