
June 2011 Doc ID 14614 Rev 3 1/27

PM0051
Programming manual

How to program STM8S and STM8A
Flash program memory and data EEPROM

Introduction
This manual describes how to program Flash program memory and data EEPROM on
STM8 microcontrollers. It applies to access and performance line STM8S and medium and
high density STM8A devices. It is intended to provide information to the programming tool
manufacturers and to the customers who want to implement programming by themselves on
their production line.

The in-circuit programming (ICP) method is used to update the content of Flash program
memory and data EEPROM while the user software is not running. It uses the Single wire
interface module (SWIM) to communicate between the programming tool and the device.

In contrast to the ICP method, in-application programming (IAP) can use any
communication interface supported by the microcontroller (I/Os, SPI, USART, I2C, USB,
CAN...). IAP has been implemented for users who want their application software to update
itself by re-programming the Flash program memory during program execution. The main
advantage of IAP is its ability to re-program Flash program memory and data EEPROM
when the chip has already been soldered on the application board and while the user
software is running. Nevertheless, part of the Flash program memory has to be previously
programmed using ICP.

Some devices also contain a bootloader embedded in a ROM memory. Through this
firmware the device memory can be re-programmed using a standard communication
interface. This programming method is not described in this document.

For details on memory implementation and features, registers or stack top addresses, refer
to the product datasheets.

Related documents
● STM8 SWIM communication protocol and debug module (UM0470)

● STM8 bootloader user manual (UM0560)l

● STM8S and STM8A microcontroller families reference manual (RM0016)

● Basic in-application programming example using the STM8 I2C and SPI peripherals
(AN2737)

● STM8 in-application programming example (AN2659)

● Performance line datasheet (high density Flash program and data EEPROM)

● Access line datasheets (low and medium density Flash program and data EEPROM)

● STM8A datasheets (up to 32 Kbytes and up to 128 Kbytes of Flash program memory)

www.st.com

http://www.st.com

Contents PM0051

2/27 Doc ID 14614 Rev 3

Contents

1 Glossary . 4

2 Memory organization . 6

2.1 Low density STM8S microcontrollers . 6

2.2 Medium density STM8S microcontrollers . 7

2.3 High density STM8S microcontrollers . 9

2.4 Medium density STM8A microcontrollers . 10

2.5 High density STM8A microcontrollers . 12

3 Memory protection strategy . 14

3.1 Readout protection . 14

3.2 User Boot Code area protection . 15

3.3 Unwanted memory access protection . 15

4 Programming STM8 Flash microcontrollers . 16

4.1 Unlocking the Memory Access Security System (MASS) 16

4.2 Block programming . 16

4.3 Word programming . 20

4.4 Byte programming . 21

4.5 Programming the option bytes . 22

4.5.1 Summary of memory dedicated option bytes . 22

4.5.2 How to program the option bytes . 22

4.6 Memory access versus programming method . 23

4.6.1 ICP methods . 24

4.6.2 IAP method . 25

5 Flash program memory and data EEPROM comparison 25

6 Revision history . 26

PM0051 List of tables

Doc ID 14614 Rev 3 3/27

List of tables

Table 1. Low density STM8S memory partition . 7
Table 2. Medium density STM8S memory partition . 8
Table 3. High density STM8S memory partition . 9
Table 4. Medium density STM8A memory partition . 11
Table 5. High density STM8A memory partition . 12
Table 6. Recommended minimum and maximum sizes of the UBC area . 15
Table 7. MASS . 16
Table 8. Memory access versus programming method . 23
Table 9. Comparison between STM8S and STM8A devices . 25
Table 10. Document revision history . 26

Glossary PM0051

4/27 Doc ID 14614 Rev 3

1 Glossary

This section gives a brief definition of acronyms and terms used in this document:

● Block

A block is a set of bytes that can be programmed or erased in one single programming
operation. Operations that are available on a block are fast programming, erase only,
and standard programming (which includes an erase operation). Refer to Section 2:
Memory organization for details on block size according to the device.

● Bootloader

The bootloader is an IAP application embedded in the system memory of the device. It
is used to erase and program the device using a standard serial communication port.
The bootloader is not available on small devices, and is not described in the present
document. Refer to STM8 bootloader user manual (UM0500) for more details.

● Driver

A driver is a control program defined by the application developer. It is used to manage
the allocation of system resources to start application programs. In this document two
drivers are described, ICP and IAP drivers.

● In-application programming (IAP)

IAP is the ability to re-program the Flash program memory and data EEPROM (DATA)
of a microcontroller while the device is already plugged-in to the application and the
application is running.

● In-circuit programming (ICP)

ICP is the ability to program the Flash program memory and data EEPROM of a
microcontroller using the SWIM protocol while the device is plugged-in to the
application.

● In-circuit debugging (ICD)

ICD is the ability to debug the user software using the SWIM protocol. The user has the
ability to connect the device to a debugger and insert breakpoints in his firmware.
Debugging may be intrusive (application patched to allow debugging) or non intrusive
(using a debug module).

● Memory access security system (MASS) keys

The Memory access security system (MASS) consists of a memory write protection
lock designed to prevent unwanted memory modifications due to EMS or program
counter loss. To unlock the memory protection, one or more keys must be written in a
dedicated register and in a specific order. When the operation (write or erase) is
completed, the MASS must be activated again to provide good memory security.

PM0051 Glossary

Doc ID 14614 Rev 3 5/27

● Page

A page is a set of blocks. The number of blocks in a page may differ from one device to
another. Refer to Section 2: Memory organization for details on page size according to
the device.

A dedicated option byte can be used to configure by increments of one page the size of
the user boot code. Refer to Section 5: Flash program memory and data EEPROM
comparison for a description of available areas and option bytes according to the
devices.

● Read-while-write (RWW)

The RWW feature provides the ability for the software to perform write operation on
data EEPROM while reading and executing the program memory. Execution time is
therefore optimized. The opposite operation is not allowed: the software cannot read
data memory while writing program memory.

The RWW feature is not available on all STM8 devices. Refer to Table 9 for information
on devices with RWW capability.

● Single wire interface module (SWIM)

The SWIM is a communication protocol managed by hardware in the STM8
microcontrollers. The SWIM main purpose is to provide non intrusive debug capability.
It can also be used to download programs into RAM and execute them. It can also write
(registers or RAM) or read any part of the memory space and jump to any memory
address. The SWIM protocol is used for ICP. It is accessed by providing a specific
sequence on the SWIM pin either during the reset phase or when the device is running
(if allowed by the application).

● System memory

The STM8 system memory is a small ROM accessible when the user software is
executed. It contains the bootloader. The system ROM and the bootloader are not
available on all STM8 devices.

● User boot code area (UBC)

The user boot code area is a write-protected area which contains reset vector, interrupt
vectors, and IAP routine for the device to be able to recover from interrupted or
erroneous IAP programming.

● User mode

The user mode is the standard user software running mode in the STM8. It is entered
either by performing a power-on-reset on the device or by issuing the SWIM SRST
command from a development tool.

● Word

A word is a set of 4 bytes and corresponds to the memory granularity.

Memory organization PM0051

6/27 Doc ID 14614 Rev 3

2 Memory organization

This section describes the memory organization corresponding to:

● Access line and performance line STM8S microcontrollers

● Medium and high density STM8A microcontrollers

STM8S microcontrollers offer low density (8 Kbytes), medium density (from 16 to
32 Kbytes) and high density (from 32 to 128 Kbytes) Flash program memory, plus data
EEPROM.

STM8A microcontrollers feature medium density (from 8 to 32 Kbytes) and high density
(from 32 to 128 Kbytes) Flash memory, plus data EEPROM.

The memory organization differs from one STM8 family to another. Refer to Section 2.1,
Section 2.2, Section 2.3, Section 2.4, and Section 2.3 for a description of the memory
organization according to microcontroller family and memory density.

A memory accelerator takes advantage of the parallel 4-byte storage, which corresponds to
a word. The Flash program memory and data EEPROM can be erased and programmed at
byte level, word level or block level. In word programming mode, 4 bytes can be
programmed/erased during the same cycle, while in block programming mode, a whole
block is programmed/erase during the same cycle. Refer to Section 2.1, Section 2.2,
Section 2.3, Section 2.4, and Section 2.3 for information on block size according to the
devices.

2.1 Low density STM8S microcontrollers
The memory array is divided into two areas:

● 8 Kbytes of Flash program memory organized in 128 pages or blocks of 64 bytes each.
The Flash program memory is divided into 2 areas, the user boot code area (UBC),
which size can be configured by option byte, and the main program memory area. The
Flash program memory is mapped in the upper part of the STM8S addressing space
and includes the reset and interrupt vectors.

● 640 bytes of data EEPROM (DATA) organized in 10 pages or blocks of 64 bytes each.
One block (64 bytes) contains the option bytes of which 11 are used to configure the
device hardware features. The options bytes can be programmed in user, IAP and
ICP/SWIM modes.

Refer to Table 1 for a detailed description of the memory partition for low density STM8S
microcontrollers.

PM0051 Memory organization

Doc ID 14614 Rev 3 7/27

2.2 Medium density STM8S microcontrollers
The memory is divided into two arrays:

● From 16 to 32 Kbytes of Flash program memory organized in up to 64 pages of 4
blocks of 128 bytes each. The Flash program memory is divided into 2 areas, the user
boot code area (UBC), which size can be configured by option byte, and the main
program memory area. The Flash program memory is mapped in the upper part of the
STM8S addressing space and includes the reset and interrupt vectors.

● 1 Kbytes of data EEPROM (DATA) organized in up to 2 pages of 4 blocks of 128 bytes
each. One block (128 bytes) contains the option bytes of which 13 are used to
configure the device hardware features. The options bytes can be programmed in user,
IAP and ICP/SWIM modes.

Refer to Table 2 for a detailed description of the memory partition for medium density
STM8S microcontrollers.

Table 1. Low density STM8S memory partition

Area Page number (1 page=1 block) Block number (1 block=64 bytes) Address

Data EEPROM

0 0
0x00 4000-
0x00 403F

1 1
0x00 4040-
0x00 407F

2 2
0x00 4080-
0x00 40BF

...

9 9
0x00 4240-
0x00 427F

Option bytes - 0 (one block only)
0x00 4800-
0x00 483F

Flash program
memory

0 0
0x00 8000-
0x00 803F

1 1
0x00 8040-
0x00 807F

2 2
0x00 8080-
0x00 80BF

...

127 127
0x00 9FC0-
0x00 9FFF

Memory organization PM0051

8/27 Doc ID 14614 Rev 3

Table 2. Medium density STM8S memory partition(1)

Area Page number (1 page=4 blocks) Block number (1 block=128 bytes) Address

Data EEPROM

0

0
0x00 4000-
0x00 407F

1
0x00 4080-
0x00 40FF

2
0x00 4100-
0x00 417F

3
0x00 4180-
0x00 41FF

1 4-7
0x00 4200-
0x00 43FF

Option bytes - 0 (one block only)
0x00 4800-
0x00 487F

Flash program
memory

0

0
0x00 8000-
0x00 807F

1
0x00 8080-
0x00 80FF

2
0x00 8100-
0x00 817F

3
0x00 8180-
0x00 81FF

1 4-7
0x00 8200-
0x00 83FF

...

63

252
0x00 FE00-
0x00 FE7F

253
0x00 FE80-
0x00 FEFF

254
0x00 FF00-
0x00 FF7F

255
0x00 FF80-
0x00 FFFF

1. The memory mapping is given for the devices featuring 32 Kbytes of Flash program memory.

PM0051 Memory organization

Doc ID 14614 Rev 3 9/27

2.3 High density STM8S microcontrollers
The memory is divided into two arrays:

● From 32 to 128 Kbytes of Flash program memory organized in up to 256 pages of 4
blocks of 128 bytes each. The Flash program memory is divided into 2 areas, the user
boot code area (UBC), which size can be configured by option byte, and the main
program memory area. The Flash program memory is mapped in the upper part of the
STM8S addressing space and includes the reset and interrupt vectors.

● From 1 to 2 Kbytes of data EEPROM (DATA) organized in up to 4 pages of 4 blocks of
128 bytes each. The size of the DATA area is fixed for a given microcontroller. One
block (128 bytes) contains the option bytes of which 15 are used to configure the
device hardware features. The options bytes can be programmed in user, IAP and
ICP/SWIM modes.

Refer to Table 3 for a detailed description of the memory partition for high density STM8S
microcontrollers.

Table 3. High density STM8S memory partition(1)

Area Page number (1 page=4 blocks) Block number (1 block=128 bytes) Address

Data EEPROM

0

0
0x00 4000-
0x00 407F

1
0x00 4080-
0x00 40FF

2
0x00 4100-
0x00 417F

3
0x00 4180-
0x00 41FF

1 4 to 7
0x00 4200-
0x00 43FF

2 8 to 11
0x00 4400-
0x00 45FF

3 12 to 15
0x00 4600-
0x00 47FF

Option bytes - 0 (one block only)
0x00 4800-
0x00 487F

Memory organization PM0051

10/27 Doc ID 14614 Rev 3

2.4 Medium density STM8A microcontrollers
The memory is divided into two arrays:

● From 8 to 32 Kbytes of Flash program memory organized in up to 64 pages of 4 blocks
of 128 bytes each. The Flash program memory is divided into 2 areas, the user boot
code area (UBC), which size can be configured by option byte, and the main program
memory area. The Flash program memory is mapped in the upper part of the STM8A
addressing space and includes the reset and interrupt vectors.

● From 384 bytes to 1 Kbytes of data EEPROM (DATA) organized in up to 2 pages of 4
blocks of 128 bytes each. One block (128 bytes) contains the option bytes of which 13
are used to configure the device hardware features. The options bytes can be
programmed in user, IAP and ICP/SWIM modes.

Refer to Table 4 for a detailed description of the memory partition for medium density
STM8A microcontrollers.

Flash program
memory

0

0
0x00 8000-
0x00 807F

1
0x00 8080-
0x00 80FF

2
0x00 8100-
0x00 817F

3
0x00 8180-
0x00 81FF

1 4 to 7
0x00 8200-

0x00 83FF

2 8 to 11
0x00 8400-

0x00 85FF

...

255

1020
0x00 27E00-
0x00 27E7F

1021
0x00 27E80-
0x00 27EFF

1022
0x00 27F00-
0x00 27F7F

1023
0x00 27F80-
0x00 27FFF

1. The memory mapping is given for the devices featuring 128 Kbytes of Flash program memory and 2 Kbytes of data
EEPROM.

Table 3. High density STM8S memory partition(1) (continued)

Area Page number (1 page=4 blocks) Block number (1 block=128 bytes) Address

PM0051 Memory organization

Doc ID 14614 Rev 3 11/27

Table 4. Medium density STM8A memory partition(1)

Area Page number (1 page=4 blocks) Block number (1 block=128 bytes) Address

Data EEPROM

0

0
0x00 4000-
0x00 407F

1
0x00 4080-
0x00 40FF

2
0x00 4100-
0x00 417F

3
0x00 4180-
0x00 41FF

1 4-7
0x00 4200-
0x00 43FF

Option bytes - 0 (one block only)
0x00 4800-
0x00 487F

Flash program
memory

0

0
0x00 8000-
0x00 807F

1
0x00 8080-
0x00 80FF

2
0x00 8100-
0x00 817F

3
0x00 8180-
0x00 81FF

1 4-7
0x00 8200-
0x00 83FF

...

63

252
0x00 FE00-
0x00 FE7F

253
0x00 FE80-
0x00 FEFF

254
0x00 FF00-
0x00 FF7F

255
0x00 FF80-
0x00 FFFF

1. The memory mapping is given for the devices featuring 32 Kbytes of Flash program memory.

Memory organization PM0051

12/27 Doc ID 14614 Rev 3

2.5 High density STM8A microcontrollers
The memory is divided into two arrays:

● From 32 to 128 Kbytes of Flash program memory organized in up to 256 pages of 4
blocks of 128 bytes each. The Flash program memory is divided into 2 areas, the user
boot code area (UBC), which size can be configured by option byte, and the main
program memory area. The Flash program memory is mapped in the upper part of the
STM8A addressing space and includes the reset and interrupt vectors.

● From 1 to 2 Kbytes of data EEPROM (DATA) organized in up to 4 pages of 4 blocks of
128 bytes each. The size of the DATA area is fixed for a given microcontroller. One
block (128 bytes) contains the option bytes of which 15 are used to configure the
device hardware features. The options bytes can be programmed in user, IAP and
ICP/SWIM modes.

Refer to Table 5 for a detailed description of the memory partition for high density STM8A
microcontrollers.

Table 5. High density STM8A memory partition(1)

Area Page number (1 page=4 blocks) Block number (1 block=128 bytes) Address

Data EEPROM

0

0
0x00 4000-
0x00 407F

1
0x00 4080-
0x00 40FF

2
0x00 4100-
0x00 417F

3
0x00 4180-
0x00 41FF

1 4 to 7
0x00 4200-
0x00 43FF

2 8 to 11
0x00 4400-
0x00 45FF

3 12 to 15
0x00 4600-
0x00 47FF

Option bytes - 0 (one block only)
0x00 4800-
0x00 487F

PM0051 Memory organization

Doc ID 14614 Rev 3 13/27

Flash program
memory

0

0
0x00 8000-
0x00 807F

1
0x00 8080-
0x00 80FF

2
0x00 8100-
0x00 817F

3
0x00 8180-
0x00 81FF

1 4 to 7
0x00 8200-

0x00 83FF

2 8 to 11
0x00 8400-

0x00 85FF

...

255

1020
0x00 27E00-
0x00 27E7F

1021
0x00 27E80-
0x00 27EFF

1022
0x00 27F00-
0x00 27F7F

1023
0x00 27F80-
0x00 27FFF

1. The memory mapping is given for the devices featuring 128 Kbytes of Flash program memory and 2 Kbytes of data
EEPROM.

Table 5. High density STM8A memory partition(1) (continued)

Area Page number (1 page=4 blocks) Block number (1 block=128 bytes) Address

Memory protection strategy PM0051

14/27 Doc ID 14614 Rev 3

3 Memory protection strategy

The STM8 devices feature several mechanisms allowing to protect the content of the Flash
program and data EEPROM areas:

● Readout protection

The software can prevent application code and data stored in the Flash program
memory and data EEPROM from being read and modified in ICP/SWIM mode. The
readout protection is enabled and disabled by programming an option byte in
ICP/SWIM mode. Refer to Section 3.1 for details.

● User boot code area (UBC)

In order to guaranty the capability to recover from an interrupted or erroneous IAP
programming, all STM8 devices provide a write-protected area called user boot code
(UBC). This area is a part of the Flash program memory which cannot be modified in
user mode (that is protected against modification by the user software). The content of
the UBC area can be modified only in ICP/SWIM mode after clearing the UBC option
byte.

The size of the user boot code area can be configured through an option byte by
increments of one page.

Refer to Section 3.2 for details on user boot code area.

● Unwanted memory access protection

All STM8 devices offer unwanted memory access protection, which purpose is to
prevent unintentional modification of program memory and data EEPROM (for example
due to a firmware bug or EMC disturbance).

This protection consists of authorizing write access to the memory only through a
specific software sequence which is unlikely to happen randomly or by mistake. Access
to Flash program and data EEPROM areas is enabled by writing MASS keys into key
registers.

Refer to Section 3.3 for details on unwanted memory access protection.

3.1 Readout protection
The readout protection is enabled by writing 0xAA in the ROP option byte. It is disabled by
reprogramming the ROP option byte with any value except for 0xAA and resetting the
device.

The readout protection can only be disabled in ICP/SWIM mode.

When the readout protection is selected, reading or modifying the Flash program memory in
ICP mode (using the SWIM interface) is forbidden. When available, the data EEPROM
memory is also protected against read and write access through ICP.

Erasing the ROP option byte to disable the readout protection causes the Flash program
memory, the DATA area and the option bytes to be erased.

Even though no protection can be considered as totally unbreakable, the readout protection
feature provides a very high level of protection for general purpose microcontrollers. Of
course, a software that allows the user to dump the Flash program memory content make
this readout protection useless. Table 8 describes possible accesses to each memory areas
versus the different modes and readout protection settings.

PM0051 Memory protection strategy

Doc ID 14614 Rev 3 15/27

3.2 User Boot Code area protection
Whatever the memory content, it is always possible to restart an ICP session after a critical
error by applying a reset and restarting the SWIM communication.

On the contrary, during IAP sessions, the programming software driver must always be write
protected to be able to recover from any critical failure that might happen during
programming (such as power failure).

The pages where the IAP driver is implemented must be located in the write-protected boot
code area (UBC). The application reset and interrupt vectors and the reset routine must also
be stored in the UBC. These conditions allow the user software to manage the recovery
from potential critical failure by applying a reset and restarting the IAP routine from the
protected boot area.

The UBC size is defined by the user boot code (UBC) area option byte. This option byte may
slightly differ from one product to another. See the following table for the minimum and
maximum size of the UBC area. Its maximum size is equal to the full memory size

3.3 Unwanted memory access protection
The unwanted memory access protection consists of writing two 8-bit keys in the right order
into dedicated MASS key registers.

Writing the correct sequence of keys in the program memory MASS key register
(FLASH_PUKR) enables the programming of the program memory area excluding the UBC.
If wrong keys are provided, a reset must to be generated to be able to reprogram the right
keys.

Once the write memory protection has been removed, it is possible to reactivate the
protection of the area by resetting the PUL bit in FLASH_IAPSR.

To enable write access to the data EEPROM area, another specific MASS key register
(FLASH_DUKR) and a different key sequence must be used. Once the data
EEPROM/option byte area is unlocked, it is possible to reactivate the protection of the area
by resetting the DUL bit in FLASH_IAPSR.

If wrong keys have been provided to the FLASH_PUKR register, the device must be reset
before performing a new key program sequence. However, when wrong keys are provided to
the FLASH_DUKR register, new keys can be entered without the device being previously
reset.

In order to be as effective as possible, the application software must lock again the
unwanted memory access protection as soon as the programming is completed. Otherwise,
the protection level of the MASS is significantly reduced. To activate the MASS protection
again, the user must reset the corresponding bits in the FLASH_IAPSR register (DUL bit for
data EEPROM or PUL bit for Flash program memory).

Table 6. Recommended minimum and maximum sizes of the UBC area

STM8 microcontroller family
Recommended minimum size

of the UBC area
Maximum size of the UBC area

Low density STM8S 2 pages = 128 bytes Full memory size

Medium density STM8S and STM8A
2 pages = 1 Kbyte Full memory size

High density STM8S and STM8A

Programming STM8 Flash microcontrollers PM0051

16/27 Doc ID 14614 Rev 3

Note: 1 The mechanism to lock and unlock unwanted memory access protection is identical for
option bytes and data EEPROM (see Table 7: MASS).

2 Before starting programming program memory or data EEPROM, the software must verify
that the area is not write protected by checking that the PUL or DUL bit is effectively set.

4 Programming STM8 Flash microcontrollers

This section describes how to program STM8 single-voltage Flash microcontrollers.

4.1 Unlocking the Memory Access Security System (MASS)
The memory must be unlocked before attempting to perform any erase or write operation.
To unlock it, follow the procedure described in Section 3.3: Unwanted memory access
protection, and Table 7.

The software must poll the PUL and DUL bit, before attempting to write to program memory
and data EEPROM, respectively.

4.2 Block programming
Block write operations allow to program an entire block in one shot, thus minimizing the
programming time.

There are three possible block programming modes: erase, write only (also called fast
programming) and combined erase/write cycle (also called standard block programming).

Table 7. MASS

Microcontroller
family

Data EEPROM and option bytes Program memory

Unlock Lock Unlock Lock

STM8S and
STM8A

Write 0xAE then
56h in

FLASH_DUKR
(0x00 5064)(1)(2)

1. The OPT and NOPT bits of FLASH_CR2 and FLASH_NCR2 registers must be set/cleared to enable
access to the option bytes.

2. If wrong keys have been entered, another key programming sequence can be issued without resetting the
device.

Reset bit 3 (DUL)
in FLASH_IAPSR

(0x00 505F)

Write 0x56 then
0xAE in

FLASH_PUKR
(0x00 5062)(3)

3. If wrong keys have been entered, the device must be reset, and a key program sequence issued.

Reset bit 1 (PUL)
in FLASH_IAPSR

(0x00 505F)

PM0051 Programming STM8 Flash microcontrollers

Doc ID 14614 Rev 3 17/27

The programming mode is selected through two complementary registers, FLASH_CR2 and
FLASH_NCR2.

The memory must be unlocked before performing any of these operations.

Block program operations can be performed both to main program memory and DATA area:

● Programming a block of main program memory:

The block program operation has to be executed totally from RAM.

The program execution continues from RAM. If the program goes back to main program
memory, it is stalled until the block program operation is complete.

● Programming a block of data EEPROM with RWW capability:

The block program operation can be executed from main program memory. However
the data loading phase has to be executed from RAM (see below).

Normal program execution can continue from main program memory, after checking
the HVOFF bit in the FLASH_IAPSR register.

● Programming a block of data EEPROM on devices without RWW capability:

The block program operation must be executed totally from RAM.

The programming can also be performed directly through the SWIM interface. In this case, it
is recommended to stall the device in order to prevent the core from accessing the Flash
program memory during the block program or erase operation. This can be done by setting
the STALL bit in the DM_CSR2 debug module register. Refer to the STM8 SWIM
communication protocol and debug module (UM0470) for more information.

Caution: During a block program or erase operation, it is recommended to avoid executing
instructions performing a read access to program memory.

Caution: If the number of written memory locations is higher than what is required in the block
program/erase sequence, the additional locations are handled as redundant byte write
operations.

If the number of written memory locations is lower than what is specified in the block
program/erase sequence, the block program/erase process does not start and the CPU
stalls waiting for the remaining operations to be performed.

Caution: EOP and WR_PG_DIS bits of FLASH_IAPSR register are automatically cleared when a
program/erase operation starts.

Caution: If a block program or erase sequence is interrupted by a reset, the data programmed in the
memory may be corrupted.

Programming STM8 Flash microcontrollers PM0051

18/27 Doc ID 14614 Rev 3

Standard block programming

The following sequence is required to perform a standard block program sequence (block
erased and programmed):

1. Unlock the memory if not already done.

The UBC option byte can be read to check if the block to program is not in the UBC
area. If necessary, reprogram it to allow erasing and programming the targeted block.

2. Write 0x01 in FLASH_CR2 (PRG bit active), and 0xFE in FLASH_NCR2 (NPRG bit
active).

3. Write all the data bytes of the block you want to program starting with the very first
address of the block. No read or write access to the program memory is allowed during
these load operations as they might corrupt the values to be programmed.

The programming cycle starts automatically when all the data in the block have been
written.

4. Check the WR_PG_DIS bit in FLASH_IAPSR to verify if the block you attempted to
program was not write protected (optional)

5. For devices with RWW capability, poll the HVOFF bit in FLASH_IAPSR register for the
start of program operation (high voltage mode). HVOFF is reset when the program
operation starts, thus indicating that the memory is ready for RWW.

6. To check if the program operation is complete, poll the EOP bit in FLASH_IAPSR from
program memory. EOP is set to ‘1’ when the standard block program operation has
completed. To avoid polling the EOP bit, an interrupt can be generated when EOP is
set.

Note: It is mandatory to execute steps 2 to 5 from RAM.

Caution: EOP and WR_PG_DIS bits are cleared by reading the FLASH_IAPSR register. It is
consequently strongly recommended to perform one single read operation to the
FLASH_IAPSR register to check the values of these bits.

Caution: FLASH_CR2 and FLASH_NCR2 must be written consecutively to be taken into account. If
only one register is set, both are forced to their reset values, causing the program operation
to be performed at byte level.

PM0051 Programming STM8 Flash microcontrollers

Doc ID 14614 Rev 3 19/27

Fast block programming operation

The following sequence is required to perform a fast block program sequence (block
programmed without previous erase):

1. Unlock the memory if not already done.

The UBC option byte can be read to check if the block to program is not in the UBC
area. If necessary, reprogram it to allow programming the targeted block.

2. Write 0x10 in FLASH_CR2 (FPRG bit active), and 0xEF in FLASH_NCR2 (NFPRG bit
active).

3. Write all the data bytes of the block you want to program starting with the very first
address of the block. No read or write access to the program memory is allowed during
these load operations as they might corrupt the values to be programmed.

The programming cycle starts automatically when the complete block has been written.

4. Check the WR_PG_DIS bit in FLASH_IAPSR to verify if the block you attempted to
program was not write protected (optional).

5. For devices with RWW capability, poll the HVOFF bit in FLASH_IAPSR register for the
start of program operation (high voltage mode). HVOFF is reset when the program
operation starts, thus indicating that the memory is ready for RWW.

6. To check if the program operation is complete, poll the EOP bit in FLASH_IAPSR from
program memory. EOP is set to ‘1’ when the block program operation has completed.
To avoid polling the EOP bit, an interrupt can be generated when EOP is set.

Note: It is mandatory to execute steps 2 to 5 from RAM.

Caution: FLASH_CR2 and FLASH_NCR2 must be written consecutively to be taken into account. If
only one register is set, both are forced to their reset values, causing the program operation
to be performed at byte level.

Caution: EOP and WR_PG_DIS bits are cleared by reading the FLASH_IAPSR register. It is
consequently strongly recommended to perform one single read operation to the
FLASH_IAPSR register to check the values of these bits.

Caution: The memory block must be empty when performing a fast block programming operation.

Programming STM8 Flash microcontrollers PM0051

20/27 Doc ID 14614 Rev 3

Block erase operation

The following sequence is required to perform a block erase sequence:

1. Unlock the memory if not already done.

The UBC option byte can be read to check if the block to erase is not in the UBC area.
If necessary, reprogram it to allow erasing the targeted block.

2. Write 0x20 in FLASH_CR2 (ERASE bit active), and 0xDF in FLASH_NCR2 (NERASE
bit active).

3. Write '0x00 00 00 00' to any word inside the block to be erased using a LOAD
instruction.

4. Check the WR_PG_DIS bit in FLASH_IAPSR to verify if the block you attempted to
erase was not write protected (optional).

5. For devices with RWW capability, poll the HVOFF bit in FLASH_IAPSR register for the
start of erase operation (high voltage mode). HVOFF is reset when the erase operation
starts, thus indicating that the memory is ready for RWW.

6. To check if the erase operation is complete, poll the EOP bit in FLASH_IAPSR from
program memory. EOP is set to ‘1’ when the block erase operation has completed. To
avoid polling the EOP bit, an interrupt can be generated when EOP is set.

Note: It is mandatory to execute steps 2 to 5 from RAM.

Caution: EOP and WR_PG_DIS bits are cleared by reading the FLASH_IAPSR register. It is
consequently strongly recommended to perform one single read operation to the
FLASH_IAPSR register to check the values of these bits.

Caution: FLASH_CR2 and FLASH_NCR2 must be written consecutively to be taken into account. If
only one register is set, both are forced to their reset values, causing the erase operation to
be performed at byte level.

4.3 Word programming
Both main program memory and data EEPROM can be programmed and erased at word
level. Word operations are performed in the same way as block operations. They can be
executed either from program memory or from RAM.

When a new word program operation starts, EOP and WR_PG_DIS bits of FLASH_IAPSR
register are automatically cleared.

Contrary to word programming of the Flash program memory, the word programming of data
EEPROM with RWW feature (when available) does not stop program execution. The EOP
bit can then be used to know if the previous operation has completed. This bit is
automatically reset when reading FLASH_IAPSR.

PM0051 Programming STM8 Flash microcontrollers

Doc ID 14614 Rev 3 21/27

The following sequence is required to perform a word program operation:

1. Unlock the memory if not already done.

The UBC option byte can be read to check if the word you want to program is not in the
UBC area. If necessary, reprogram it to allow programming the targeted word.

2. Write 0x40 in FLASH_CR2 (WP bit active), and 0xBF in FLASH_NCR2 (NWP bit
active).

3. Write the 4 data bytes to the memory starting with the very first address of the word to
be programmed.

The programming cycle starts automatically when the 4 bytes have been written.

4. Check the WR_PG_DIS bit in FLASH_IAPSR to verify if the word you attempted to
program was not write-protected (optional).

5. To check if the program operation is complete, poll the EOP bit in FLASH_IAPSR
register for the end of operations. EOP is set to ‘1’ when the word program operation
has completed. To avoid polling the EOP bit, an interrupt can be generated when EOP
is set.

Caution: FLASH_CR2 and FLASH_NCR2 must be written consecutively to be taken into account. If
only one register is set, both are forced to their reset values, causing the program operation
to be performed at byte level.

Caution: EOP and WR_PG_DIS bits are cleared by reading the FLASH_IAPSR register. It is
consequently strongly recommended to perform one single read operation to the
FLASH_IAPSR register to check the values of these bits.

Caution: If a word program operation is interrupted by a reset, the data programmed in the memory
may be corrupted.

4.4 Byte programming
Both main program memory and data EEPROM can be programmed and erased at byte
level.

Byte programming is performed by executing a write instruction (ld, mov...) to an address in
main program memory when the memory is unlocked. The write instruction initiates the
erase/program cycle and any core access to the memory is blocked until the cycle has
completed. This means that program execution from the Flash program memory is stopped
until the end of the erase/program cycle.

When a new byte program operation starts, EOP and WR_PG_DIS bits of FLASH_IAPSR
register are automatically cleared. At the end of the program operation, the EOP bit in the
FLASH_IAPSR register is set and the program execution restarts from the instruction
following the write/erase instruction.

Contrary to byte programming of the Flash program memory, the byte programming of data
EEPROM with RWW feature (when available) does not stop program execution. The EOP
bit can then be used in order to know if the previous operation has completed. To avoid
polling the EOP bit, an interrupt can be generated when EOP is set. This bit is automatically
reset when reading FLASH_IAPSR.

The erase/program cycle lasts longer if the whole word containing the byte to be
programmed is not empty because in this case an erase operation is performed
automatically. If the word is empty, the erase operation is not performed. However, if a
defined programming time is wanted, the FIX bit in the FLASH_CR1 register forces the

Programming STM8 Flash microcontrollers PM0051

22/27 Doc ID 14614 Rev 3

programming operation to always erase first whatever the contents of the memory.
Therefore a fixed programming time is guaranteed (erase time + write time).

To erase a byte location, just write ‘0x00’ to the byte location.

Caution: If a byte program operation is interrupted by a reset, the data programmed in the memory
may be corrupted.

4.5 Programming the option bytes
Option bytes are used to configure the device hardware features as well as the memory
protection. They are stored in a dedicated memory block.

4.5.1 Summary of memory dedicated option bytes

The Flash program memory includes several option bytes dedicated to memory protection:

● ROP

The ROP option byte is used to prevent the Flash program memory from being read
and modified in ICP/SWIM mode. Refer to Section 3.1: Readout protection for a
detailed description of readout protection.

● UBC

The UBC option byte is used to program the size of the write protected user boot code
area. The boot area always includes the reset and interrupt vectors and can go up to
the full program memory size. The boot area size granularity is of one page.

Refer to Section 3.2: User Boot Code area protection for a detailed description of the
UBC area.

4.5.2 How to program the option bytes

To enhance security on STM8 devices, option bytes must be programmed twice, once in a
regular form and once in a complemented form. If both values are not complementary, the
default value is forced, ensuring a safe configuration.

Option bytes can be modified both in user/IAP mode and ICP mode (using the SWIM),
except for the readout protection which can only be removed in ICP mode. In ICP mode, the
OPT and NOPT bits of the FLASH_CR2 and FLASH_NCR2 registers must be set to their
active state before attempting to modify the option bytes (OPT = 1 and NOPT = 0).

PM0051 Programming STM8 Flash microcontrollers

Doc ID 14614 Rev 3 23/27

4.6 Memory access versus programming method
Table 8 gives a description of possible accesses from the core to memory areas according
to the programming method.

Table 8. Memory access versus programming method(1)

Mode ROP Memory Area
STM8S and STM8A

Access from core

User, IAP, and
Bootloader (if
available)

Readout protection enabled

Interrupt vectors R/W(2)/E

User boot code area (UBC) R/E

Main program R/W/E(3)

Data EEPROM area (DATA) R/W(4)

Option bytes R

Readout protection disabled

Interrupt vectors R/W(2)/E

User boot code area (UBC) R/E(5)

Main program R/W/E(3)

Data EEPROM area (DATA) R/W(4)

Option bytes R/W(6)

SWIM active (ICP
mode)

Readout protection enabled

Interrupt vectors P

User boot code area (UBC) P

Main program P

Data EEPROM area (DATA) P

Option bytes P/WROP
(7)

Readout protection disabled

Interrupt vectors R/W(2)/E

User boot code area (UBC) R/E(5)

Main program R/W/E(3)

Data EEPROM area (DATA) R/W(4)

Option bytes R/W(6)

1. R/W/E = Read; Write and Execute;
R/E = Read and Execute (write operation forbidden);
R = Read (write and execute operations forbidden);
P = the area cannot be accessed (read, execute and write operations forbidden);
P/WROP = Protected, write forbidden except for ROP option byte.

2. When no UBC area has been defined, the interrupt vectors can be modified in user /IAP mode.

3. The Flash program memory is write protected (locked) until the correct MASS key is written in the FLASH_PUKR. It is
possible to lock the memory again by resetting the PUL bit in the FLASH_IAPSR register. If wrong keys are provided, the
device must be reset and new keys programmed.

4. The data memory is write protected (locked) until the correct MASS key is written in the FLASH_DUKR. It is possible to lock
the memory again by resetting the DUL bit in the FLASH_IAPSR register. If wrong keys are provided, another key program
sequence can be performed without resetting the device.

5. To program the UBC area the application must first clear the UBC option byte.

6. The option bytes are write protected (locked) until the correct MASS key is written in the FLASH_DUKR (with OPT set to
‘1’). It is possible to lock the memory again by resetting the DUL bit in the IAPSR register. If wrong keys are provided,
another key program sequence can be performed without resetting the device.

7. When ROP is removed, the whole memory is erased, including the option bytes.

Programming STM8 Flash microcontrollers PM0051

24/27 Doc ID 14614 Rev 3

4.6.1 ICP methods

The in-circuit programming (ICP) method is used to update the content of Flash program
memory and data EEPROM.

The programming interface for STM8 devices is the SWIM (Single Wire Interface Module). It
is used to communicate with an external programming device connected via a cable.

See STM8 SWIM communication protocol and debug module user manual (UM0470) for
more details on the SWIM mode entry and SWIM protocol.

When using the SWIM protocol, two methods can be used:

First method

The first method consists of writing directly into the Flash registers and memory locations
through the write memory command of the SWIM protocol. To make sure that the CPU is
not accessing the memory during block Flash programming, the core must be stalled by
setting the STALL bit in the DM_CSR2 debug module register.

The following sequence is required:

1. Apply a RESET

2. Activate the SWIM by sending the entry sequence on the SWIM pin

3. Activate the SWIM_CSR register by writing 1 to the DM bit in SWIM_CSR

4. Disable interrupts by setting the SAFE_MASK bit in SWIM_CSR

5. Release RESET

6. Verify the DeviceID by reading it using ROTF command

7. Send the SWIM SRST command

8. Unlock the memory by writing the MASS keys

9. Program the Flash program memory using the SWIM WOTF command

Second method

The second method uses the same sequence of operations as the first method except that
the ICP driver firmware must be downloaded in RAM before being launched:

1. Apply a RESET

2. Activate the SWIM by sending the entry sequence on the SWIM pin

3. Activate the SWIM_CSR register by writing 1 to the DM bit in SWIM_CSR

4. Disable interrupts by setting the SAFE_MASK bit in SWIM_CSR

5. Release RESET

6. Verify the DeviceID by reading it using ROTF command

7. Send the SWIM SRST command

8. Unlock the memory by writing the MASS keys

9. Download the ICP driver firmware into the device RAM using the SWIM WOTF
command

10. Execute the ICP driver:

a) Modify the CPU registers (new PC, X, Y, CC...) using the WOTF commands

b) Set the FLASH bit in the DM_CSR2 register

c) Clear the STALL bit in the DM_CSR2 register

PM0051 Flash program memory and data EEPROM comparison

Doc ID 14614 Rev 3 25/27

4.6.2 IAP method

Refer to application note AN2737- Basic in-application programming example using the
STM8 I2C and SPI peripherals.

5 Flash program memory and data EEPROM
comparison

Table 9 shows the comparison between STM8S and STM8A microcontroller devices.

Table 9. Comparison between STM8S and STM8A devices

Feature Low density STM8S
Medium density STM8S

and STM8A

High density
STM8S and

STM8A

Memory

Block size 64B 128B 128B

Page size 1 block (64B) 4 blocks (512B) 4 blocks (512B)

Flash program memory Up to 8 KB
 16 to 32 KB (STM8S)
8 to 32 KB (STM8A)

From 32 to 128 KB

Data EEPROM
Additional 640B located in the same memory

array as Flash program
Fixed size

1 KB (STM8S)
384B to 1 KB (STM8A)

located in separate memory
array

Fixed size

1 to 2 KB located in
separate memory

array

Fixed size

User boot code (UBC) YES - size configurable by option byte

Bootloader NO YES

Option bytes
Programmable in ICP/SWIM, user/IAP

Stored twice (normal+complemented value)
2 memory dedicated option bytes (ROP, UBC)

Programmable in ICP/SWIM, user/IAP/ Bootloader
Stored twice (normal+complemented value)

2 memory dedicated option bytes (ROP, UBC)

Programming/erasing features

Read-while-write
(RWW)

NO(1) YES

Block programming (fast
and standard)(2)

Word programming(2)

Byte programming(2)

Block Erase(2)(3)

YES

Flash control registers FLASH_NCR2, FLASH_CR2 containing complementary values

1. The read-while-write (RWW) feature is not available on the 4-8 Kbyte STM8S because data EEPROM and Flash program
memory are located in the same memory array.

2. Block program/erase sequence must be executed from RAM.

3. Any word in the block programmed to 0.

Revision history PM0051

26/27 Doc ID 14614 Rev 3

6 Revision history

Table 10. Document revision history

Date Revision Changes

16-Feb-2009 1 Initial release.

12-Jun-2009 2

Added caution note related to FLASH_IAPSR register in Section 4.2:
Block programming and Section 4.3: Word programming
Updated Section 4.2: Block programming.

Updated memory access table (Table 8) (STM8S):Access from core
specified

06-Jun-2011 3

Corrected readout protection enabling/disabling conditions in
Section 3.1: Readout protection.

Added RWW feature and updated last step of word programming
sequence in Section 4.3.

Added EOP interrupt Section 4.4: Byte programming.

Added STM8A microcontrollers.
Minor text modifications.

Added thefact that option bytes can be modified in user mode
Table 9: Comparison between STM8S and STM8A devices

PM0051

Doc ID 14614 Rev 3 27/27

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Glossary
	2 Memory organization
	2.1 Low density STM8S microcontrollers
	Table 1. Low density STM8S memory partition

	2.2 Medium density STM8S microcontrollers
	Table 2. Medium density STM8S memory partition

	2.3 High density STM8S microcontrollers
	Table 3. High density STM8S memory partition (continued)

	2.4 Medium density STM8A microcontrollers
	Table 4. Medium density STM8A memory partition

	2.5 High density STM8A microcontrollers
	Table 5. High density STM8A memory partition (continued)

	3 Memory protection strategy
	3.1 Readout protection
	3.2 User Boot Code area protection
	Table 6. Recommended minimum and maximum sizes of the UBC area

	3.3 Unwanted memory access protection

	4 Programming STM8 Flash microcontrollers
	4.1 Unlocking the Memory Access Security System (MASS)
	Table 7. MASS

	4.2 Block programming
	4.3 Word programming
	4.4 Byte programming
	4.5 Programming the option bytes
	4.5.1 Summary of memory dedicated option bytes
	4.5.2 How to program the option bytes

	4.6 Memory access versus programming method
	Table 8. Memory access versus programming method
	4.6.1 ICP methods
	4.6.2 IAP method

	5 Flash program memory and data EEPROM comparison
	Table 9. Comparison between STM8S and STM8A devices

	6 Revision history
	Table 10. Document revision history

