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SECTION 1: OVERVIEW

The MAXQM family of 16-bit reduced instruction set computing (RISC) microcontrollers is targeted towards low-cost, 
low-power embedded application designs . The flexible, modular architecture design used in these microcontrollers 
allows development of targeted designs for specific applications with minimal effort .

1.1 Instruction Set
The MAXQ610 microcontroller uses an instruction set where all instructions are fixed in length (16 bits) . A register-
based, transport-triggered architecture allows all instructions to be coded as simple transfer operations . All instruc-
tions reduce to either writing an immediate value to a destination register or memory location or moving data between 
registers and/or memory locations .

This simple top-level instruction decoding allows all instructions to be executed in a single cycle . Because all CPU 
operations are performed on registers only, any new functionality can be added by simply adding new register mod-
ules . The simple instruction set also provides maximum flexibility for code optimization by a compiler .

1.2 Harvard Memory Architecture
Program memory, data memory, and register space on the MAXQ610 are separate from one another and are each 
accessed by a separate bus . This type of memory architecture (known as Harvard architecture) has some advantages .

First, the word lengths can be different for different types of memory . Program memory must be 16 bits wide to accom-
modate the instruction word size, but system and peripheral registers can be 8 bits wide or 16 bits wide as needed . 
Because data memory is not required to store program code, its width can also vary and could conceivably be targeted 
for a specific application .

Also, because data memory is accessed by the CPU only through appropriate registers, it is possible for register 
modules to access memory entirely independent from the main processor, providing the framework for direct memory 
access operations . It is also possible to have more than one type of data memory, each accessed through a different 
register set .

1.3 Register Set
Because all functions in the MAXQ610 family are accessed through registers, common functionality is provided through 
a common register set . Many of these registers provide the equivalent of higher level op codes, by directly accessing 
the ALU, the loop counter registers, and the data pointer registers . Others, such as the interrupt registers, provide 
common control and configuration functions that are equivalent across the MAXQ610 family of microcontrollers .

The common register set, also known as the system registers, includes the following:

•   Arithmetic logic unit (ALU) access and control registers, including working accumulator registers and the processor 
status flags

•  Two data pointers and a frame pointer for data memory access

•  Autodecrementing loop counters for fast, compact looping

•  Instruction pointer and other branching control access points

•  Stack pointer and an access point to the 16-bit-wide soft stack

•  Interrupt vector table and priority registers

•  One code pointer for quick program memory access as data

MAXQ is a registered trademark of Maxim Integrated Products, Inc.
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Peripheral registers (module 0 to module 5) on the MAXQ610 contain registers that are used to access the peripher-
als, including:

•  General-purpose I/O ports

•  External interrupts

•  Timers/counters

•  USART ports

•  Serial peripheral interface (SPI™) port

SPI is a trademark of Motorola, Inc.
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This section contains the following information:
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SECTION 2: ARCHITECTURE
The MAXQ610 is designed to be modular and expandable . Top-level instruction decoding is extremely simple and 
based on transfers to and from registers . The registers are organized into functional modules, which are in turn divided 
into the system register and peripheral register groups . Figure 2-1 illustrates the modular architecture and the basic 
transport possibilities .

Figure 2-1. MAXQ610 Transport-Triggered Architecture
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Memory access from the MAXQ610 is based on a Harvard architecture with separate address spaces for program 
and data memory . The simple instruction set and transport-triggered architecture allow the MAXQ610 to decode and 
execute nearly all instructions in a single clock cycle . Data memory is accessed through one of three data pointer 
registers . Two of these data pointers, DP[0] and DP[1], are stand-alone 16-bit pointers . The third data pointer, FP, is 
composed of a 16-bit base pointer (BP) and an offset register (OFFS) . All three pointers support postincrement/decre-
ment functionality for read operations and preincrement/decrement for write operations . For the frame pointer (FP = 
BP[OFFS]), the increment/decrement operation is executed on the OFFS register and does not affect the base pointer 
(BP) . Stack functionality is accessible through the stack pointer (SP) . Program memory is read accessible through the 
code pointer (CP), which supports postincrement/decrement functionality .

2.1 Instruction Decoding
Every MAXQ instruction is encoded as a single 16-bit word according to the format shown in Figure 2-2 .

Bit 15 (f) indicates the format for the source field of the instruction as follows:

•   If f equals 0, the instruction is an immediate source instruction, and the source field represents an immediate 8-bit 
value .

•   If f equals 1, the instruction is a register source instruction, and the source field represents the register from which 
the source value is read .

Bits 0 to 7 (ssssssss) represent the source for the transfer . Depending on the value of the format field, this can either 
be an immediate value or a source register . If this field represents a register, the lower 4 bits contain the module speci-
fier and the upper 4 bits contain the register index in that module .

Bits 8 to 14 (ddddddd) represent the destination for the transfer . This value always represents a destination register, 
with the lower 4 bits containing the module specifier and the upper 3 bits containing the register subindex within that 
module .

Because the source field is 8 bits wide and 4 bits are required to specify the module, any one of 16 registers in that 
module can be specified as a source . However, the destination field has one less bit, which means that only eight 
registers in a module can be specified as a destination in a single-cycle instruction .

While the asymmetry between source and destination fields of the op code can initially be considered a limitation, 
this space can be used effectively . First, since read-only registers can never be specified as destinations, they can 
be placed in the second eight locations in a module to give single-cycle read access . Second, there are often critical 
control or configuration bits associated with system and certain peripheral modules where limited write access is ben-
eficial (e .g ., watchdog timer enable and reset bits) . By placing such bits in one of the upper 24 registers of a module, 
this write protection is added in a way that is virtually transparent to the assembly source code . Anytime that it is nec-
essary to directly select one of the upper 24 registers as a destination, the prefix register, PFX, is used to supply the 
extra destination bits . This prefix register write is inserted automatically by the assembler/compiler and requires 
one additional execution cycle.

The MAXQ architecture is transport-triggered . This means that writing to or reading from certain register locations also 
causes side effects . These side effects form the basis for the higher level op codes defined by the assembler, such 
as ADDC, OR, JUMP, and so on . These op codes are actually implemented as MOVE instructions between certain 
register locations, while the encoding is handled by the assembler/compiler and need not be a concern to the 
programmer. The registers defined in the system register and peripheral register maps operate as described in the 
documentation; the unused empty locations are the ones used for these special cases .

Figure 2-2. Instruction Word Format

format Destination source

f d d d d d d d s s s s s s s s
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The MAXQ instruction set is designed to be highly orthogonal . All arithmetic and logical operations that use two reg-
isters can use any register along with the accumulator . Data can be transferred between any two registers in a single 
instruction .

2.2 Register Space
The MAXQ610 provides a total of 16 register modules . Each of these modules contains 32 registers . The first eight 
registers in each module can be read from or written to in a single cycle; the second eight registers can be read from 
in a single cycle and written to in two cycles (by using the prefix register, PFX); the last 16 registers can be read or 
written in two cycles (always requiring use of the prefix register, PFX) .

Registers can be either 8 or 16 bits in length . Within a register, any number of bits can be implemented; bits not 
implemented are fixed at zero . Data transfers between registers of different sizes are handled as shown in Table 2-1 .

•  If the source and destination registers are both 8 bits wide, data is transferred bit to bit accordingly.

•   If the source register is 8 bits wide and the destination register is 16 bits wide, the data from the source register is 
transferred into the lower 8 bits of the destination register . The upper 8 bits of the destination register are set to the 
current value of the prefix register; this value is normally zero, but it can be set to a different value by the previous 
instruction if needed . The prefix register reverts back to zero after one cycle, so this must be done by the instruction 
immediately before the one that would be using the value .

•   If the source register is 16 bits wide and the destination register is 8 bits wide, the lower 8 bits of the source are 
transferred to the destination register .

•  If both registers are 16 bits wide, data is copied bit to bit.

The above rules apply to all data movements between defined registers . Data transfer to/from undefined register loca-
tions has the following behavior:

•   If the destination is an undefined register, the MOVE is a dummy operation, but can trigger an underlying operation 
according to the source register (e .g ., @DP[n]--) .

•   If the destination is a defined register and the source is undefined, the source data for the transfer depends upon the 
source module width . If the source is from a module containing 8-bit or 8-bit and 16-bit source registers, the source 
data is equal to the prefix data concatenated with 00h . If the source is from a module containing only 16-bit source 
registers, 0000h source data is used for the transfer .

The 16 available register modules are broken up into two different groups . The low six modules (specifiers 0h to5h) are 
known as the peripheral register modules, while the high 10 modules (specifiers 6h to 0Fh) are known as the system 
register modules . These groupings are descriptive only, as there is no difference between accessing the two register 
groups from a programming perspective .

The system registers define basic functionality that remains the same across all products based on the MAXQ610 
architecture . This includes all register locations that are used to implement higher level op codes as well as the follow-
ing common system features:

•  ALU (16 bits) and associated status flags (zero, equals, carry, sign, overflow)

•  16 working accumulator registers (16-bit width), along with associated control registers

•  Instruction pointer

•  Registers for interrupt control and handling

•  Autodecrementing loop counters for fast, compact looping

•  Two data pointer registers, a frame pointer, and a stack pointer for data memory/stack access 

•  One code pointer register for program memory access

The peripheral registers define additional functionality included in the MAXQ610 . This functionality is broken up into 
discrete modules so that only the features that are required for a given product need to be included . Because the 
peripheral registers add functionality outside the common MAXQ system architecture, they are not used to implement 
op codes .
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2.3 Memory Organization
Beyond the internal register space, memory on the MAXQ610 microcontroller is organized according to a Harvard 
architecture, with a separate address space and bus for program memory and data memory .

To provide additional memory map flexibility, program memory space can be made accessible as data space, allowing 
access to constant data stored in program memory .

2.3.1 Program Memory
Program memory begins at address 0000h and is contiguous through 7FFFh (64KB) . Program memory is accessed 
directly by the program fetching unit and is addressed by the instruction pointer register . From an implementation 
perspective, system interrupts and branching instructions simply change the contents of the instruction pointer and 
force the op code fetch from a new program location . The instruction pointer is direct read/write accessible by the user 
software; write access to the instruction pointer forces program flow to the new address on the next cycle following 
the write . The content of the instruction pointer is incremented by one automatically after each fetch operation . The 
instruction pointer defaults to 8000h, which is the starting address of the utility ROM . The default IP setting of 8000h is 
assigned to allow initial in-system programming to be accomplished with utility ROM code assistance . The utility ROM 
code interrogates a specific register bit in order to decide whether to execute in-system programming or jump imme-
diately to user code starting at 0000h . The user code reset vector is stored in the lowest bytes of the program memory .

ROM-only versions of the MAXQ610 require program code to be masked into the program ROM during chip fabrica-
tion; no write access to program memory is available . Program flash memory provides in-system programming capa-
bility, but requires that the memory targeted for the write operation be programmed (erased) . The utility ROM provides 
routines to carry out the necessary operations (erase, write, verify) on flash memory .

2.3.2 Utility ROM
A utility ROM is placed in the start of the upper half of the program memory space starting at address 8000h . This utility 
ROM provides the following system utility functions:

•  Reset vector

•  Bootstrap function for system initialization

•   Utility functions to match/query customer specific secrets to prevent loading and/or operation on generic MAXQ610 
parts

•  In-application programming (flash versions only)

•  In-circuit debug (flash versions only)

Table 2-1. Register-to-Register Transfer Operations

SOURCE REGISTER 
SIZE (BITS)

DESTINATION 
REGISTER SIZE 

(BITS)
PREFIX SET?

DESTINATION SET TO VALUE

HIGH 8 BITS LOW 8 BITS

8 8 — Source[7:0]

8 16 No 00h Source[7:0]

8 16 Yes Prefix[7:0] Source[7:0]

16 8 — Source[7:0]

16 16 No Source[15:8] Source[7:0]
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Following each reset, the processor automatically starts execution at address 8000h in the utility ROM, allowing utility 
ROM code to perform any necessary system support functions . Next, the SPE bit is examined to determine whether 
system programming should commence or whether that code should be bypassed, instead forcing execution to vector 
to the start of user program code . When the SPE bit is set to 1, the processor executes the prescribed bootstrap-loader 
mode program that resides in utility ROM . The SPE bit defaults to 0 . To enter the bootstrap loader mode, the SPE bit 
can be set to 1 during reset by the JTAG interface . When in-system programming is complete, the bootstrap loader 
can clear the SPE bit and reset the device such that the in-system programming routine is subsequently bypassed .

2.3.3 Data Memory
On-chip SRAM data memory begins at address 0000h and is contiguous through 03FFh (2KB) in word mode . Data 
memory is accessed by indirect register addressing through a data pointer (@DP), frame pointer (@BP[OFFS]), or 
stack pointer (PUSH/POP) . The data pointer is used as one of the operands in a MOVE instruction . If the data pointer is 
used as source, the CPU performs a load operation that reads data from the data memory location addressed by the 
data pointer . If the data pointer is used as destination, the CPU executes a store operation that writes data to the data 
memory location addressed by the data pointer . The data pointer itself can be directly accessed by the user software .

The MAXQ610 incorporates two 16-bit data pointers (DP[0] and DP[1]) to support data block transfers . All data point-
ers support indirect addressing mode and indirect addressing with autoincrement or autodecrement . Data pointers 
DP[0] and DP[1] can be used as postincrement/decrement source pointers by a MOVE instruction or preincrement/
decrement destination pointers by a MOVE instruction . Using a data pointer indirectly with “++” automatically increases 
the content of the active data pointer by 1 immediately following the execution of read data transfer (@DP[n]++) or 
immediately preceding the execution of a write operation (@++DP[n]) . Using data pointer indirectly with “--” decreases 
the content of the active data pointer by 1 immediately following the execution of read data transfer (@DP[n]--) or 
immediately preceding the execution of a write operation (@--DP[n]) .

The frame pointer (BP[OFFS]) is formed by 16-bit unsigned addition of frame pointer base register (BP) and frame 
pointer offset register (OFFS) . Frame pointer can be used as a postincrement/decrement source pointer by a MOVE 
instruction or as a preincrement/decrement destination pointer . Using the frame pointer indirectly with “++” (@
BP[++OFFS] for a write or @BP[OFFS++] for a read) automatically increases the content of the frame pointer offset 
by 1 immediately before or after the execution of data transfer depending upon whether it is used as a destination or 
source pointer respectively . Using frame pointer indirectly with “--” (@BP[--OFFS] for a write or @BP[OFFS--] for a read) 
decreases the content of the frame pointer offset by 1 immediately before/after execution of data transfer depending 
upon whether it is used as a destination or source pointer, respectively . Note that the increment/decrement function 
affects the content of the OFFS register only, while the contents of the BP register remain unaffected by the borrow/
carryout from the OFFS register .

In addition, the MAXQ610 has a code pointer (CP) to support data block transfer from flash memory (or masked ROM 
on a ROM-only part) . This allows the user to access the program flash memory as data, even when executing from the 
flash . In addition, there are some restrictions on use of the code pointer due to memory access protection . See Section 
2.6.3: Memory Access Protection Impact on Data Pointers (and Code Pointer) for details . The code pointer, like the 
normal data pointers, supports indirect addressing mode and indirect addressing with autoincrement or autodecre-
ment . The code pointer can be used as postincrement/decrement source pointer by MOVE instructions . Using the code 
pointer indirectly with “++” automatically increases the content of the active code pointer by 1 immediately following the 
execution of the read operation (e .g ., MOVE dst, @CP++) . Using code pointer indirectly with “--” decreases the content 
of the active code pointer by 1 immediately following the execution of the read operation (e .g ., MOVE dst, @CP--) .

A normal data memory cycle using DP[0], DP[1], and FP to access SRAM takes only one system clock period to sup-
port fast internal execution . This allows read or write operations on SRAM to be completed in one clock cycle . To read 
program memory as data using CP requires two system clocks . Data memory mapping and access control are handled 
by the memory management unit (MMU) . Read/write access to the data memory can be in word or in byte .
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2.3.4 Stack Memory
The MAXQ610 implements a soft stack that uses the on-chip data memory (SRAM) for storage of program return 
addresses and general-purpose use . The stack is used automatically by the processor when the CALL, RET, and RETI 
instructions are executed and when an interrupt is serviced; it can also be used explicitly to store and retrieve data by 
using the PUSH, POP, and POPI instructions . The POPI instruction acts identically to the POP instruction, except that 
it additionally set the IPS bits .

The width of the stack is 16 bits to accommodate the instruction pointer size . As the stack pointer register, SP, is used 
to hold the index of the top of the stack, the maximum size of the stack allowed for a MAXQ610 is the SRAM data 
memory size .

On reset, the stack pointer SP initializes to the top of the stack (03F0h) . The CALL, PUSH, and interrupt vectoring 
operations increase the stack depth (decrement SP) and then store a value at the memory location pointed to by SP . 
The RET, RETI, POP, and POPI operations retrieve the value at @SP and then decrease the stack depth (increment SP) .

2.4 Memory Management Unit
Memory allocation and access control for program and data memory is managed by the MMU .

The MAXQ610 MMU supports the following:

•   Flash or masked ROM code memory of up to 64KB; utility ROM of 4KB and data memory SRAM of 2KB.

•  In-system and in-application programming of embedded flash (flash versions only).

•   Access to any of the three memory areas (SRAM, code memory, utility ROM) using the data memory pointers and 
the code pointer .

•   Execution from any of the program memory areas (code memory, factory written and tested utility ROM routines) 
and from data memory .

Given the above capabilities, the following rules apply to the memory map:

•  Program memory:

  Physical program memory pages (P0, P1) are logically mapped into data space based upon selection of byte/word 
access mode and CDA[1:0] bit settings .

•  Data memory:

 Access can be either word or byte .

 All 16 data pointer address bits are significant in either access mode (word or byte) .

The MAXQ610 can merge program and data into a linear memory map . This is accomplished by mapping the data 
memory into the program space or mapping program memory segment into the data space .

2.5 Memory Mapping
Figure 2-3 summarizes the MAXQ610 default memory maps .
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2.5.1 Memory Mapping Into Data Space
The MAXQ610 maps program memory into data space from 0000h to 7FFFh . The selection of physical program 
memory page or pages to be logically mapped to data space is determined by the CDA1 and CDA0 bits, as shown in 
Table 2-2 . Note that CDA1 is fixed at 0 .

Figure 2-3 summarize the default memory maps for this memory structure . The WBSn bits of the MAXQ610 default to 
word access mode (WBSn = 1) .

The upper half of the data memory map (8000h to FFFFh) is the logical area for the utility ROM when accessed as 
data . Executing code from the utility ROM allows the user to map the program memory to 8000h to FFFFh by properly 
selecting the CDA bits .

Figure 2-4 and 2-5 illustrate the effects of the CDA bits .

Figure 2-3. MAXQ610 Memory Map (64KB Program Space)

Table 2-2. CDA Bits to Access Program Space as Data

PROGRAM
SPACE

87FFh

7FFFh

0000h

8000h

2K x 16
UTILITY ROM

2K x 8
DATA SRAM

1K x 16
DATA SRAM

32K x 16
PROGRAM FLASH

OR
MASKED ROM

DATA SPACE
(BYTE MODE)

DATA SPACE
(WORD MODE)

0000h

07FFh

0000h

03FFh

CDA[1:0] SELECTED PAGE IN BYTE MODE SELECTED PAGE IN WORD MODE

00 P0 P0 and P1

01 P1 P0 and P1
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Figure 2-4. CDA Functions in Word Mode
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Figure 2-5. CDA Functions in Byte Mode
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2.5.2 Memory Mapping into Code Space
The effective program address can be anywhere in the full 64KB memory space . Program memory from 0000h to 
7FFFh is the normal user code segment, followed by the utility ROM . The top of the memory is the logical area for data 
memory when accessed as a code segment .

2.5.3 Memory Mapping Rules
When executing program code in a particular memory segment, the same memory segment cannot be simultaneously 
accessed as data .

The following is a summary of the memory mapping rules .

•  When executing from the normal user code segment:

 The lower 32KWords program space (P0 and P1) is always executable as program .

 The utility ROM is an extension of the program space if the UPA bit is 0 .

 The physical data memory is available for access as a code segment with offset at 0A000h if the UPA bit is 0 .

 Load and store operations to data memory are executed normally when addressed to the physical data memory .

 The utility ROM can be read as data, starting at 08000h of the data space .

•  When executing from the utility ROM (only when UPA bit is 0):

 The lower 32KWords program space (P0 and P1) functions as normal program memory .

  Data memory is available for access as a code segment at the upper half of the program memory map, immediately 
following the utility ROM segment .

 Load and store operations to data memory are executed normally when addressed to the physical data memory .

 P0 can be accessed as data with offset at 08000h when CDA[1:0] = 00b in byte mode or CDA1 = 0 in word mode .

  P1 can be accessed as data with offset at 08000h when CDA[1:0] = 01b in byte mode or at offset 0C000h when 
CDA1 = 0 in word mode .

Figure 2-6. MAXQ610 Memory Map and UPA
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 •  When executing from the data memory (only when UPA is 0):

 Program flows freely between the lower 32KWords user code (P0 and P1) and the utility ROM segment .

 The utility ROM can be accessed as data with offset at 08000h .

 P0 can be accessed as data with offset at 0000h when CDA[1:0] = 00b in byte mode or CDA1 = 0 in word mode .

  P1 can be accessed as data with offset at 0000h when CDA[1:0] = 01b in byte mode or at offset 04000h when CDA1 
= 0 in word mode .

2.6 Memory Protection
The MAXQ610 supports privilege levels for code . When enabled, code memory is separated into three areas . Each 
area has an associated privilege level . RAM/utility ROM are assigned privilege levels as well:

•   Code in the system area can be confidential. Code in the user areas can be prevented from reading and writing 
system code .

•  The user loader can be protected from user application code.

The PRIV register reflects the current execution privilege . Hardware guarantees that the contents of PRIV are never 
higher than the maximum privilege level of the memory area the code is running from . For example, if user code were 
trying to set PRIV to high, this would be prevented by hardware . However, any code can decide to lower the privilege 
level at any time (see Equation 1) .

PRIV = min(maxprivilege(IP), PRIV) (Equation 1)

The bit contents of the PRIV register are shown in Table 2-4 . The convenient constants high/medium/low are defined 
in Table 2-5, but all values from 00b to 11b can be used .

In addition to the PRIV register, the privilege level can also be set by writing to PRIVT0 and PRIVT1 in sequence . Again, 
hardware guarantees that the contents of PRIVT0 are never higher than the maximum privilege level of the memory 
area the code is running from .

When writing to PRIVT1, hardware modifies the PRIV register based on Equation 2 .

PRIV = min(PRIVT0, argument, maxprivilege(IP)) (Equation 2)

This means that, when using PRIVT[1:0], the privilege level cannot be raised unless all code between the writes to 
PRIVT0 and PRIVT1 executes . Writing to PRIV automatically resets PRIVT0 to low .

Table 2-3. Memory Areas and Associated Maximum Privilege Levels

Table 2-4. PRIV Register Bit Definitions

Table 2-5. Privilege Level Constants

AREA PAGE ADDRESS MAXIMUM PRIVILEGE LEVEL

System 0 to ULDR-1 High

User Loader ULDR to UAPP-1 Medium

User Application UAPP to top Low

Utility ROM N/A High

Other (RAM) N/A Low

BIT 3 2 1 0

MEANING System Write System Read User Loader Write User Loader Read

BIT 3 2 1 0

HIGH 1 1 1 1

MEDIUM 0 0 1 1

LOW 0 0 0 0
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2.6.1 Rules for System Software
While privilege levels are implemented in hardware, there are two ways user code could try to circumvent the memory 
access protection:

•  Manipulation of shared, common stack or registers

•  Jumping or calling to code in system memory that is not an official entry point

To ensure a safe system and prevent these attacks, the system code programmer must follow the following rules:

•   System code must not save and restore the privilege level. Instead, every interrupt and every system library func-
tion that raises the privilege must also unconditionally lower the privilege before exiting . If there are interrupts 
that lower the privilege level, or interrupt code running outside of system space, any code that raises the privilege 
must disable interrupts for the duration of the privileged operation .

 Example:

 interrupt:

  move IGE, #0

  move PRIV, #HIGH

  … ; action

  move PRIV, #LOW

  move IGE, #1

  reti

 system_code:

  move IGE, #0

  move PRIV, #HIGH

  ... ; action

  move PRIV, #LOW

  move IGE, #1

  ret

•  An operation that requires high privilege levels must not call subroutines to raise the privilege level .

 Example:

 incorrect:

  call raise_priv

  … ; action

  move PRIV, #LOW

 correct:

  move PRIV, #HIGH

  … ; action

  move PRIV, #LOW
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•   A system library function that checks arguments before raising the privilege level must do so in an atomic fash-
ion using PRIVT0 and PRIVT1 to prevent short-circuiting the check (the rule about disabling interrupts also applies).

 Example:

 system_library:

  move IGE, #0

  move PRIVT0, #HIGH

  … ; check

  jump ne, exit   move PRIVT1, #HIGH

  ; … action

 exit: 

  move PRIV, #LOW

  move IGE, #1

  ret

2.6.2 Privilege Exception Interrupt
Any attempt to exceed the current privilege level causes a privilege exception interrupt that can be handled by system 
code . Examples that cause an interrupt are writing high to PRIV from user code, or trying to read system code while 
PRIV is low . The intent of the interrupt is to notify low priority code when an operation was denied by hardware .

2.6.3 Memory Access Protection Impact on Data Pointers (and Code Pointer)
Memory access protection complicates the use of the data and code pointers . In the MAXQ architecture, code pointers 
must be activated before use in order for memory data to be available on the same cycle it is needed using synchro-
nous RAMs . This means that data is essentially prefetched into the physical data pointer when the pointer is activated 
(e .g ., by loading an address to DP[0]) . This can have some unintended consequences with respect to the memory 
protection function .

Specifically, when MPE is enabled, and when executing from RAM, any write to the traditional MAXQ data pointers, 
DP[0], DP[1], and BP, OFFS, or DPC, has the potential to generate a memory fault .

For example, a scenario in which code is executed from RAM is presented . In this particular case, the code is stored in 
a serial EEPROM . The code is loaded dynamically into RAM when needed . It is assumed this code has to have access 
to RAM variables, and remember we are executing from RAM .

To accomplish this without memory access protection, the customer would configure DPC and load DP[0] and then 
call the utility ROM function UROM_moveDP0 . The code would look like the following:

 MOVE  DPC, #REQUIRED_DP0_MODE  ; (1)

 MOVE  DP[0], #REQUESTED_RAM_ADDRESS ; (2)

 LCALL UROM_MOVEDP0   ; (3)

  ; actual ROM function

  MOVE DP[0], DP[0]   ; (3a)

  MOVE GR, @DP[0]   ; (3b)

  RET     ; (3c)

In the above example, (1) and (2) are both considered valid pointer activation instructions . In the MAXQ transfer-
triggered architecture every standard instruction represents a MOVE from a source (SRC) to a destination (DST) . The 
POP ACC instruction is equivalent to MOVE ACC, @SP--, JUMP LABEL is equivalent to MOVE IP, #LABEL, and so on . 
With the exception of a handful of arithmetic and logical instructions, every instruction is interpreted as a MOVE DST, 
SRC operation .
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This is no different for instructions that operate on data pointers . For example, a pointer to pointer move such as MOVE 
@DP[1], @DP[0] first requires the read pointer to be activated . Architecturally, this strobes the chip enable and read 
signals on the memory mapped to the location in DP[0] . This value is latched internally so that it is available when @
DP[0] is used as the source operand . At that time, the internally latched data is transferred to the destination register .

This functions normally when memory protection is not enabled . However if MPE is set the same code can cause a 
memory protection fault . For this example let us assume the following:

1) The code is executing from RAM

2) REQUESTED_RAM_ADDRESS is defined as #0000h

3) Flash memory is located from 0000h–7FFFh

MOVE  DPC, #REQUIRED_DP0_MODE  ; Activates DP[0]

      ; In this MMU mapping,

      ; addresses 0-7FFFh are in Flash

      ; and *if* the previous contents

      ; of DP[0], modified by DPC, are

      ; in System space, we will generate

      ; a memory fault

MOVE  DP[0], #REQUESTED_RAM_ADDRESS ; Again, activates DP[0]

      ; Now we know that DP[0]

      ; points to address 0000h

      ; and in the current MMU

      ; mapping, we are

      ; definitely pointing to

      ; *and reading from*

      ; System space in flash.

      ; MEMORY FAULT GUARANTEED

LCALL UROM_MOVEDP0    ; Changes MMU mapping. In

      ; this case, addresses

      ; 0-7FFFh point to RAM

   ; actual ROM function

   MOVE DP[0], DP[0]   ; ACTIVATE DP[0] in RAM

      ; space. If we studied

      ; the above discussion

      ; carefully, we know that

      ; *activate* means *read*

   MOVE GR, @DP[0]    ; Transfer the latched

      ; DP[0] value to GR

   RET     ;

So, if MPE is enabled and the memory fault interrupt is enabled, the first two instructions generate a memory fault and 
the corresponding interrupt is executed . To avoid a memory fault under these circumstances, a function must be writ-
ten in flash . This function has to take as an input, the address to be accessed, but it must be passed using a nonpointer 
register (such as an accumulator register) . The RAM code routine would write the address into this register (e .g ., A[0]) . 
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Next, the RAM routine calls into the flash function . Once we are executing out of flash, we can activate the DP[0] pointer 
without causing a memory fault because the MMU now maps RAM into address range 0–7FFFh and ROM to higher 
addresses . None of this space is MPE protected . That flash routine would look similar to this:

  // this routine must be implemented in flash

ReadRAM:

   push DPC

   move DPC, #18h

   move DP[0], A[0]

   move A[0] @DP[0]

   pop  DPC

   ret

The corresponding RAM routine looks like:

;

; No pointer activation from RAM code

;

MOVE  A[0], #REQUESTED_RAM_ADDRESS

LCALL ReadRAM

2.6.4 Debugging
Note that debugging system code (including trace, break, memory dump, etc .) is disabled once memory protection 
is enabled .

2.6.5 Enabling Memory Protection
Memory protection is always enabled unless the system password is empty . Utility ROM initialization code is respon-
sible for checking the password and clearing the memory protection enable (MPE) bit .

2.6.6 Reset Procedure and Setup of Memory Protection
Utility ROM code as well as system and user loader code is responsible for setting up the memory protection boundaries .

Both passwords and memory area boundary definitions are loaded from code memory . These values are part of the sys-
tem, user loader, and user application image files, and are defined when assembling or compiling the code image files .

Example for the System Image:
org 0000h

 ; Reset

 move CP, #usr_ldr_page

 move ULDR, @CP

 jump sys_init

org 000Fh

user_ldr_page:

 ; Starting page address of user loader

 dw 0020h ; Page 32

org 0010h

 ; System password

 dw …, …, …, …

org 0020h

interrupt0:
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Figure 2-7 shows the code memory with passwords and the location of the values that are programmed into the ULDR/
UAPP registers .

The user loader starting page address is located at 0Fh, one word before the system password . The user application 
starting page address is stored one word before the user loader password (i .e ., ULDR*Flash page size + 0Fh) .

The startup sequence is as follows:

1)   The system resets at 8000h and starts running utility ROM code . On a 64KB part with flash pages of 512 bytes, 
ULDR and UAPP are at their reset values of 80h (end of flash memory) . The PRIV register is at its reset value of 
high . The MPE (memory protection enable bit) is at its reset value of 1 (enable) .

2)  Utility ROM initialization code checks the system password and disables MPE if the password is empty .

3)   After utility ROM initialization is complete, the utility ROM passes execution to system code memory at address 
0000h .

4)   System code starts executing and uses a CP of 0Fh to read the user loader starting page address and writes it into 
the ULDR register .

5)   After system initialization is complete, system code jumps to address ULDR*Flash page size + 0000h . This jump 
automatically drops PRIV to medium .

6)   The user-loader code starts executing and uses a CP of ULDR*Flash page size + 0Fh to read the user application 
starting page address and writes it into the UAPP register .

7)   After user loader initialization is complete, user-loader code jumps to address UAPP*Flash page size + 0000h . This 
jump automatically drops PRIV to low .

2.6.7 Loader Access Control
As stated previously, the MAXQ610 has three memory regions: system, user loader, and application . The loader main-
tains a context register to determine which of the regions is to be the target of the loader commands . Family 0 and 
Family F commands have no context . They are global in scope . For details on the nonparty-specific loader commands, 
refer to Application Note 4012: Implementing a JTAG Bootloader Master for the MAXQ2000 Microcontroller .

Figure 2-7. Overview of Memory Regions
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There are two Family F loader commands specific to the MAXQ610:

 Command 0xF0: GetContext

 Input : None

 Output : Context Byte – 00x00, SystemContext; 0x01, LoaderContext; 0x2, ApplicationContext

 Command 0xF1” SetContext

 Input : Context Byte – 0x00, SystemContext; 0x01, LoaderContext; 0x02, ApplicationContext

 Output : Sets Error Code (retrieved using Getstatus bootloader command)

The bootloader sets a default context based on the lowest privileged region that exists (see Figure 2-8) . The default 
context is selected according to the following rules:

 If all three regions exist:

  The user application context (UAPP_CONTEXT) .

 If only system and user application regions exist:

  The user application context .

 If only system and user loader regions exist:

  The user loader context (ULDR_CONTEXT) .

 If only the system region exists:

  The system context (SYSTEM)CONTEXT) .

Only the default context will have its password tested and corresponding PWL bit cleared . The context can be changed 
through the Family F commands shown above, but the password for the new region is not tested after a context change 
and, therefore, a password match loader command must be sent to clear the password lock bit of the associated 
region even if the password for that region is clear .

If the system password has not been set, memory protection is disabled by the ROM . If word address 000Eh in the 
system code region is programmed (any value other than 0xFFFF), the debug lockout condition is set by setting 
SC .DBGLCK to 1 (all debug functions are disabled) .

The “current context” is used by the loader to determine how to apply master erase and password-protected loader 
commands . The master erase command erases pages starting at the base address of the current context and all 
pages with addresses greater than the base address . Password-protected commands check the password lock bit of 
the current region . The unlock password command uses the password from the current region (indicated by the current 
context) to determine the state of the current region password lock .

The loader provides several commands that require a password and a master erase command that does not .

All password-protected commands check the following:

•  System password match: Access to full memory

•  Loader password match: Access to user memory

•  Application password match: Access to user application memory

•  No match: No access

Three PWL bits allow the loader to find out whether a password match was successful . The PWL bits for system and 
user loader can only be written by utility ROM code (see Section 13.2: Password-Protected Access) .

Master erase does not require a password and defaults to erasing the user application only . Two Family F commands 
are added that allow master erase of user loader and system code:

•  Master erase system: Complete system erase .

•  Master erase user loader: Erases user loader and user application.
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2.6.8 Disabling MAXQ610-Specific Memory Access Features
The MAXQ610 memory-protection features are specific to the MAXQ610/69 family of parts and can cause some con-
fusion in the way that they impact debugging and bootloader commands when compared to MAXQ parts . To enable 
users to develop initial firmware as quickly as possible, the following code can be added to your application code to 
disable the memory protection features and allow code loading and debugging in the same manner as previous parts:
 ORG 0

  Jump Start

 ORG 000eh

 Debug_Lockout:

  DW 0ffffh ; disable debug lockout

 ORG 000fh

 ULDR_PageNumber:

  DW 0ffffh ; do not define a user loader page

 ORG 0010h

 System_PassworD:

  DW offffh,offffh, offffh,offffh, offffh,offffh, offffh,offffh

  DW offffh,offffh, offffh,offffh, offffh,offffh, offffh,offffh

 ORG 0020h

 ; interrupt vectors go here

 ORG 0100h

 Start:

 ; Your application code here

 ;…

 END

Once the memory-protection features are fully understood, this code can be removed from the user’s application code 
to enable memory access control .

For ROM-only versions, the customer provides ULDR and UAPP with the ROM contents. This information is 
stored during manufacture.
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2.6.9 No User-Loader Segment
For devices with only two memory segments, the user-loader memory region is excluded, leaving only the system 
memory region and the user-application memory region . To support the two-segment memory configuration, the flash 
word at address 000Fh that is normally used to supply the value of the starting page for the user loader (for writing to 
ULDR) is used instead to supply a value for the starting page of the user application . For the utility ROM to contextually 
know that the aforementioned flash word is meant to supply information about the UAPP starting page instead of the 
ULDR starting page, the most significant bit in this word must be set to 1 . Thus, if system code is to exclude the user 
loader, the following code would be used and the program memory segmentation map would change accordingly .

 org 0000h

 ; Reset

 move CP, #usr_app_page

 move UAPP, @CP

 move ULDR, UAPP ; set ULDR=UAPP

 jump sys_init

 org 000Fh

 user_app_page:

 ; Starting page address of user application (no user loader)

 dw 8020h ; Page 32, msbit=1

 org 0010h

 ; System password

Figure 2-8. Program Memory Segmentation (Only Two Segments)
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2.7 Clock Generation
All functional modules in the MAXQ610 are synchronized to a single system clock with the exception of the wakeup 
timer . The internal clock circuitry generates the system clock from one of two possible sources:

•  Internal oscillator, using an external crystal or resonator

•  External clock signal

The external clock and crystal are mutually exclusive since they are input through the same clock pin . Each time code 
execution must start or restart (as can be the case when exiting stop mode) using the external clock source, the fol-
lowing sequence occurs:

•  Reset the crystal warmup counter.

•  Allow the required warmup delay: 8192 external clock cycles if exiting from stop mode.

•  Code execution starts after the crystal warmup sequence.

Figure 2-9. MAXQ610 Clock Sources
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2.7.1 External Clock (Crystal/Resonator)
An external quartz crystal or a ceramic resonator can be connected from HFXIN to HFXOUT determining the frequency, 
as illustrated in Figure 2-10. The fundamental mode of the crystal operates as inductive reactance in parallel resonance 
with external capacitance to the crystal.

Crystal specifications, operating temperature, operating voltage, and parasitic capacitance must be considered when 
designing the internal oscillator. The MAXQ610 is designed to operate at a 12MHz maximum frequency. To further 
reduce the effects of external noise, a guard ring can be placed around the oscillator circuitry.

Pins HFXIN and HFXOUT are protected by clamping devices against on-chip electrostatic discharge. These clamping 
devices are diodes parasitic to the feedback resistor RF in the oscillator’s inverter circuit. The inverter circuit is pre-
sented as a NAND gate that can disable clock generation in stop mode.

Noise at HFXIN and HFXOUT can adversely affect on-chip clock timing. It is good design practice to place the crystal 
and capacitors near the oscillator circuitry and connect to HFXIN, HFXOUT, and ground with a direct shot trace. The 
typical values of external capacitors vary with the type of crystal used and should be initially selected based on the 
load capacitance as suggested by the crystal manufacturer.

For cost-sensitive applications, a ceramic resonator can be used instead of a crystal. Using the ceramic resonator can 
require a different circuit configuration and capacitance value.

2.7.2 External Clock (Direct Input)
The MAXQ610 CPU can also obtain the system clock signal directly from an external clock source. In this configuration, 
the clock generation circuitry is driven directly by an external clock.

To operate the MAXQ610 from an external clock, connect the clock source to HFXIN and leave HFXOUT unconnected. 
The clock source should be driven through a CMOS driver. If the clock driver is a TTL gate, its output must be con-
nected to VDD through a pullup resistor to ensure a satisfactory logic level for active clock pulses. To minimize system 
noise on the clock circuitry, the external clock source must meet the maximum rise and fall times and the minimum high 
and low times specified for the clock source. The external noise can affect clock generation circuit if these parameters 
do not meet the specification.

Figure 2-10. On-Chip Crystal Oscillator
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2.7.3 Internal System Clock Generation
The internal system clock is derived from the currently selected oscillator input . By default, one system clock cycle is 
generated per oscillator cycle, but the number of oscillator cycles per system clock can also be increased by setting 
the power-management mode enable (PMME) bit and the clock-divide control (CD[1:0]) register bits according to 
Table 2-6 .

2.8 Wake-Up Timer
The MAXQ610 provides a simple wake-up timer that can trigger an interrupt after a user-definable number of internal 
8kHz ring cycles . Since the wake-up timer is running off the internal ring and keeps running even during stop mode, it 
can be used to wake the MAXQ610 up from stop mode at periodic intervals .

To use the wake-up timer, the WUT register should be written first (before the wake-up timer is started) to define the 
countdown interval . Once the time interval has been defined, the wake-up timer can be started by setting the WTE bit 
to 1 . The time interval until the wake-up timer counts down to zero is defined by:

fNANO x WUT[15:0]

With the maximum possible time interval being:

fNANO x (216 - 1)

2.8.1 Using the Wake-Up Timer to Exit Stop Mode
To use the wake-up timer to exit stop mode after a predefined period of time, the following conditions must be met 
before entering stop mode:

•  The WUT register must be written to define the countdown interval value.

•  The WTE bit must be written to 1 to start the wake-up timer.

•   The IGE (IC.0) bit must be set to 1 to enable global interrupts. The wake-up timer cannot wake the MAXQ610 up 
from stop mode if its interrupt does not fire .

2.9 Interrupts
The MAXQ610 provides a hardware interrupt handler with interrupt vector (IV) table base address register and the 
interrupt control (IC) register . The IV register is fixed at 0020h and acts as the vector table base location . Interrupts 
can be generated from system level sources (e .g ., watchdog timer) or by sources associated the peripheral modules . 
The interrupt vectors are preset at eight fixed memory address offsets from IV with hardware priority control that can 
be programmed through the interrupt priority register zero (IPR0) .

2.9.1 Servicing Interrupts
For the MAXQ610 to service an interrupt, interrupt handling must be enabled globally and locally . The IGE bit located 
in the IC register acts as a global interrupt mask that affects all interrupts, with the exception of the power-fail warning 
interrupt . This bit defaults to 0, and it must be set to 1 before any interrupt handling takes place .

The local interrupt-enable bit for a particular source is in one of the peripheral registers associated with that peripheral 
module or in a system register for any system interrupt source . When an interrupt condition occurs, its individual flag 

Table 2-6. System Clock Rate Control Settings
PMME CD[1:0] CYCLES PER CLOCK

0 00 1 (default)

0 01 2

0 10 4

0 11 8

1 xx 256
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is set, even if the interrupt source is disabled at the local or global level . Interrupt flags must be cleared within the user 
interrupt routine to avoid repeated interrupts from the same source .

The handler uses three levels of interrupt priorities that allow the user software to select a suitable priority for an inter-
rupt vector source . The interrupt handler (hardware) modifies the interrupt priority status bits (IPSn) when it is servicing 
an interrupt . These bits are set to 11b by the interrupt handler when executing a RETI instruction .

2.9.2 Interrupt System Operation
The interrupt handler responds to any interrupt event when it is enabled . An interrupt event occurs when an interrupt 
flag is set . All interrupt requests are sampled at the rising edge of the clock, and can be served by the processor one 
clock cycle later, assuming the request does not hit the interrupt exception window . The one cycle stall between detec-
tion and acknowledgement/servicing is due to the fact that the current instruction could also be accessing the stack, 
or that the current instruction could be a prefix (PFX) write . For this reason, the CPU must allow the current instruction 
to complete before pushing the stack and vectoring to the proper interrupt vector table address . If an interrupt excep-
tion window is generated by the currently executing instruction, the following instruction must be executed, thus the 
interrupt service routine is delayed an additional cycle .

Interrupt operation in the MAXQ610 CPU is essentially a state-machine-generated long CALL instruction . When the 
interrupt handler services an interrupt, it temporarily takes control of the CPU to perform the following sequence of 
actions:

1)  The next instruction fetch from program memory is cancelled .

2)  The return address is pushed on to the stack .

3)  The IPS bits are set to the current interrupt level to prevent recursive interrupt calls from interrupts of lower priority .

4)  The instruction pointer is set to the location of the interrupt service routine as defined by the interrupt source .

5)  The CPU begins executing the interrupt service routine .

Once the interrupt service routine completes, it should use the RETI instruction to return to the main program . Execution 
of RETI involves the following sequence of actions:

1)  The return address is popped off the stack .

2)  The IPS bits are set to 11b to re-enable interrupt handling .

3)  The instruction pointer is set to the return address that was popped off the stack .

4)  The CPU continues execution of the main program .

Pending interrupt requests do not interrupt a RETI instruction; a new interrupt is serviced after first being acknowledged 
in the execution cycle that follows the RETI instruction and then after the standard one stall cycle of interrupt latency . 
This means there are at least two cycles between back-to-back interrupts .

2.9.3 Synchronous vs. Asynchronous Interrupt Sources
Interrupt sources can be classified as either asynchronous or synchronous . All internal interrupts are synchronous inter-
rupts . An internal interrupt is directly routed to the interrupt handler that can be recognized in one cycle . All external 
interrupts are asynchronous interrupts by nature . Asynchronous interrupt sources are passed through a three-clock 
sampling/glitch filter circuit before being routed to the interrupt handler . The sampling/glitch filter circuit is running on 
the undivided source clock (i .e ., before PMME, CD[1:0] controlled clock divide) such that the number of system clocks 
required to recognize an asynchronous interrupt request depend upon the system clock divide ratio:

•  If the system clock-divide ratio is 1, the interrupt request is recognized after three system clocks.

•  If the system clock-divide ratio is 2, the interrupt request is recognized after two system clocks.

•  If the system clock divide ratio is 4 or greater, the interrupt request is recognized after one system clock.

An interrupt request with pulse width less than three undivided clock cycles is not recognized .

Note that the granularity of interrupt source is at module level . Synchronous interrupts and sampled asynchronous 
interrupts assigned to the same module product a single interrupt to the interrupt handler .
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External interrupts, when enabled, can be used as switchback sources from power-management mode . There is no 
latency associated with the switchback because the circuit is being clocked by an undivided clock source vs . the 
divide-by-256 system clock . For the same reason, there is no latency for other switchback sources that do not qualify 
as interrupt sources .

2.9.4 Interrupt Prioritization by Software
There are three levels of interrupt priorities: level 0 to 2 . Level 0 is the highest priority and level 2 is the lowest . All 
interrupts have individual priority bits in the IPR0 register to allow each interrupt to be assigned a priority level . All inter-
rupts have a natural priority or hierarchy . In this manner, when a set of interrupts has been assigned the same prior-
ity, this natural priority hierarchy determines which interrupt is allowed to take precedence if multiple interrupts occur 
simultaneously . The natural hierarchy is determined by analyzing potential interrupts in a sequential manner with the 
preferred order as listed in Table 2-7 . Once an interrupt is being processed, only an interrupt with higher priority level 
can preempt it . Therefore, the MAXQ610 supports a maximum of two levels of interrupt nesting .

For example, suppose three interrupts occur simultaneously and the assigned priorities (IPV bits) for each of the inter-
rupt sources are as follows:

•  IR Timer: assigned priority level 1

Table 2-7. Interrupt Priority

*With the exception of the power-fail interrupt, all interrupts require that the IGE bit be set to 1 to generate an interrupt request, 
regardless of the individual interrupt enable listed. The power-fail interrupt is not governed by IGE (i.e., interrupt request genera-
tion is controlled solely by the PFIE enable bit).

INTERRUPT
VECTOR 

ADDRESS 
(hex)

NATURAL 
PRIORITY

FLAG ENABLE* PRIORITY CONTROL

Power Fail 20h 0 PFI (PWCN .2) PFIE (PWCN .1) IPV0[1:0] (IPR0[1:0])

Memory Fault 28h 1

PULRF (IC .4), 
PULWF (IC .5), 
PSYRF (IC .6), 
PSYWF (IC .7)

MPE (SC .10) IPV1[1:0] (IPR0[3:2])

External INT[7:0] 30h 2 IE[7:0] (EIF0) EX[7:0] (EIE0) IPV2[1:0] (IPR0[5:4])

IR Timer 38h 3
IROV (IRCNB .0),
IRIF (IRCNB .1)

IRIE (IRCNB .2) IPV3[1:0] (IPR0[7:6])

Serial Port 0

40h 4

RI (SCON0 .0),  
TI (SCON0 .1)

ESI (SMD0 .2)

IPV4[1:0] (IPR0[9:8])

Serial Port 1
RI (SCON1 .0),  
TI (SCON1 .1)

ESI (SMD1 .2)

SPI
48h 5

MODF (SPICN .3), 
WCOL (SPICN .4), 
ROVR (SPICN .5), 
SPIC (SPICN .6)

ESPII (SPICF .7)
IPV5[1:0] (IPR0[11:10])

External INT[15:8] IE[15:8] (EIF1) EX15[7:8] (EIE1)

Timer B0

50h 6

TFB (TBOCN .7), 
EXFB (TB0CN .6)

ETB (TB0CN .1)

IPV6[1:0] (IPR0[13:12])

Timer B1
TFB (TB1CN .7), 
EXFB (TB1CN .6)

ETB (TB1CN .1)

Wake-Up Timer
58h 7

WTF (WUTC .1) WTE (WUTC .0)
IPV7[1:0] (IPR0[15:14])

Watchdog Timer WDIF (WDCN .3) EWDI (WDCN .6)

Unhandled Interrupt 98h 8 None None None
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•  Serial Port 0: assigned priority level 2

•  Timer B0: assigned priority level 2

Because simultaneous interrupts are first evaluated according to assigned priority level, the IR timer interrupt is ser-
viced first . Once the IR timer interrupt source has been cleared, the serial port 0 and timer B0 interrupt sources are 
evaluated . Both of these interrupt sources have been assigned to the same priority level (level 2), so the natural prior-
ity of each source is used to determine which is serviced first . The serial port 0 interrupt is serviced first as its natural 
priority is 4, whereas timer B0 has natural priority 6 . If two interrupts that are grouped under the same natural priority 
occur simultaneously, the order in which handling of the interrupts occurs is left to the discretion of user code (i .e ., user 
code must decide what order to check the associated interrupt flags) .

For an unhandled interrupt, the interrupt handler vectors to flash address 0x98 if the user disables any of the inter-
rupts when an interrupt is triggered or when a medium priority interrupt occurs while in stop mode . A simple “RETI” is 
required to be placed at 0x98 .

2.9.5 Interrupt Exception Window
An interrupt exception window is a noninterruptible execution cycle . During this cycle, the interrupt handler does not 
respond to any interrupt requests . All interrupts that would normally be serviced during an interrupt exception window 
are delayed until the next execution cycle .

Interrupt exception windows are used when two or more instructions must be executed consecutively without any 
delays in between . There are two conditions in the MAXQ610 microcontroller that cause an interrupt exception window:

•  Activation of the prefix register (PFX)

•  Code memory access using the code pointer (CP)

When the prefix register (PFX) is activated by writing a value to it, it retains that value only for the next clock cycle . For 
the prefix value to be used properly by the next instruction, the instruction that sets the prefix value and the instruction 
that uses it must always be executed back to back . Therefore, writing to the PFX register causes an interrupt exception 
window on the next cycle .

The one-cycle stall when using the code pointer is due to the fact that the current instruction could also be accessing 
the stack .

If an interrupt occurs during an interrupt exception window, an additional latency of one cycle in the interrupt handling 
is caused as the interrupt is not serviced until the next cycle .

2.10 Operating Modes
In addition to the standard program execution mode, the MAXQ610 can also be in three other operating modes . During 
reset mode, the processor is temporarily halted by an external or internal reset source . During power-management 
mode, the processor executes instructions at a reduced clock rate in order to decrease power consumption . Finally, 
stop mode halts execution and all internal clocks (with the exception of the wake-up timer if enabled) to save power 
until an external stimulus indicates that processing should be resumed .

2.11 Reset Mode
When the MAXQ610 microcontroller is in reset mode, no instruction execution or other system or peripheral operations 
occur, and all input/output pins return to default states . Once the condition that caused the reset (whether internal or 
external) is removed, the processor begins executing code from utility ROM at address 8000h .

There are four different sources that can cause the MAXQ610 to enter reset mode:

•  Power-on/power-fail reset

•  External reset

•  Watchdog timer reset

•  Internal system reset
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2.11.1 Power-On/Power-Fail Reset
An on-chip power-on reset (POR) circuit is provided to ensure proper initialization on internal device states . The POR 
circuit provides a minimum POR delay sufficient to accomplish this initialization . For fast VDD supply rise times, the 
MAXQ610 is, at a minimum, held in reset for the POR delay when initially powered up . For slow VDD supply rise times, 
the MAXQ610 is held in reset until VDD is above the POR voltage threshold .

The MAXQ610 supports power-fail detection where an on-chip bandgap and reference comparator constantly monitor 
the supply voltage VDD to ensure that it is within acceptable limits . If VDD is below the power-fail level warning level, 
an interrupt is generated to the CPU if enabled . If VDD falls further to below the operating condition, the power monitor 
initiates a reset condition . This can occur either when the MAXQ610 is first powered up when the VDD supply is above 
the POR voltage threshold, or when VDD drops out of tolerance from an acceptable level .

In either case, the reset condition is maintained until VDD rises above the reset level VRST . Once (VDD > VRST), there 
is a delay of 8192 oscillator cycles until execution resumes to ensure that the clock source has stabilized .

Rather than leaving the power-fail reset monitoring circuit always on once the VRST condition has occurred, it can be 
advantageous to the application to conserve battery capacity during power-fail reset in order to extend the time until 
POR is reached (and possibly retaining SRAM contents) . While there is still no single bit indicator that can be used to 
guarantee SRAM retention once power-fail reset has occurred, one possibility is that the user can perform a checksum 
over the area for which retention is questioned to make this assessment . So, in order to reduce current consumption 
during the power-fail reset state, two power-fail reset check time configuration bits (PFRCK[1:0]) are provided for the 
user . These bits are used to enable duty cycling of the VRST power-monitoring circuitry during the time when VDD is 
below the VRST threshold but has not reached the POR threshold . These bits are reset only by POR (not even VRST) . 
Table 2-8 provides the bit settings and corresponding duty cycling of the power monitor check when VPOR < VDD < 
VRST . Note that the VPOR state for the bits is 00b, which results in the monitor being on always .

During the power-fail reset condition, duty cycling of the VRST power-monitoring circuitry results in reduced current that 
can be approximated by the following equation:

IPOWERFAIL = (3 x IS2 + (Check Interval Cycles - 3) x (IS1 + INANO))/Check Interval Cycles

where:

IS1 = stop-mode current with power-fail monitor off

IS2 = stop-mode current with power-fail monitor on

INANO = nanopower ring oscillator current

When the processor exits from the power-on/power-fail reset state, the POR bit in the watchdog control register 
(WDCN) is set to 1 and can only be cleared by software . The user software can examine the POR bit following a reset 
to determine whether the reset was caused by a power-on reset or by another source .

The power-fail monitor is always on during normal operation . However, it can be selectively disabled during stop 
mode using the power-fail monitor disable (PFD) bit in the PWCN register if the regulator is also selectively disabled 
(REGEN = 0) during stop mode . If the user opts to leave the regulator on during stop mode, the power-fail monitor is 
automatically left enabled as well, regardless of the state of the PFD bit . The reset default state for the PFD bit is 0, 
which enables the power-fail monitor function during stop mode . If power-fail monitoring is disabled (PFD = 1) during 
stop mode, the circuitry responsible for generating a power-fail warning or reset is shut down and neither condition is 
detected . Thus, the VDD < VRST condition does not generate a reset . However, in the event that VDD falls below the 

Table 2-8. Power-Fail Reset Check Interval
PFRCK[1:0] POWER-FAIL MONITOR CHECK INTERVAL (NANOPOWER RING OSCILLATOR CYCLES)

00 No interval defined (Monitor on always as normal) 

01 210 (~ 128ms for 8kHz nanopower ring oscillator frequency)

10 211 (~ 256ms for 8kHz nanopower ring oscillator frequency)

11 212 (~ 512ms for 8kHz nanopower ring oscillator frequency)
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POR level, a POR is generated . The power-fail monitor is enabled prior to the stop mode exit and before code execu-
tion begins . If a power-fail warning condition (VDD < VPFW) is then detected, the power-fail interrupt flag is set on stop 
mode exit . If a power-fail reset condition is detected (VDD < VRST), the CPU goes into reset .

2.11.2 External Reset
During normal operation, the MAXQ610 device is placed into external reset mode by holding the RESET pin low for 
at least four clock cycles . If the MAXQ610 is in the low-power stop mode (i .e ., system clock is not active), the RESET 
pin becomes an asynchronous source, forcing the reset state immediately after being taken low . Once the MAXQ610 
enters reset mode, it remains in reset as long as the RESET pin is held low . After the RESET pin returns to high, the pro-
cessor exits the reset state within four clock cycles and begins program execution from utility ROM at address 8000h .

The RESET pin is an output as well as an input . If a reset condition is caused by another source (such as a power-fail 
reset or internal reset), an output reset pulse is generated at the RESET pin for as long as the MAXQ610 remains in 
reset . If the RESET pin is connected to an RC reset circuit or a similar circuit, it may not be able to drive the output 
reset signal; however, if this occurs, it does not affect the internal reset condition .

2.11.3 Watchdog Timer Reset
The watchdog timer is a programmable hardware timer that can be set to reset the processor in the case of a soft-
ware lockup or other unrecoverable error . Once the watchdog is enabled in this manner, the processor must reset the 
watchdog timer periodically to avoid a reset . If the processor does not reset the watchdog timer before it elapses, the 
watchdog initiates a reset state .

If the watchdog resets the processor, it remains in reset for four clock cycles . Once the reset condition is removed, the 
processor begins executing program code from utility ROM at address 8000h . When a reset occurs due to a watch-
dog timeout, the watchdog timer reset flag in the WDCN register is set to 1 and can only be cleared by software . User 
software can examine this bit following a reset to determine if that reset was caused by a watchdog timeout .

2.11.4 Internal System Reset
The MAXQ610 can incorporate functions that logically warrant the ability to generate an internal system reset . This 
reset generation capability is assessed by MAXQ610 function based upon its expected use . In-system programming 
is a prime example of functionality that benefits by having the ability to reset the device . The exact in-system program-
ming protocol is somewhat device- and interface-specific, however, it is expected that, upon completion of in-system 
programming, many users will want the ability to reset the system . This internal (software-triggered) reset generation 
capability is possible following in-system programming .

2.12 Power-Management Mode
There are two major sources of power dissipation in CMOS circuitry . The first is static dissipation caused by continu-
ous leakage current . The second is dynamic dissipation caused by transient switching current required to charge and 
discharge load capacitors as well as short-circuit current produced by momentary connections between VDD and 
ground during gate switching .

Usually it is the dynamic switching power dissipation that dominates the total power consumption, and this power dis-
sipation (PD) for a CMOS circuit can be calculated in terms of load capacitance (CL), power-supply voltage (VDD), 
and operating frequency (f) as:

PD = CL O VDD2 O f

Capacitance and supply voltage are technology dependent and relatively fixed . However, the operating frequency 
determines the clock rate, and the required clock rate can be different from application to application depending on 
the amount of processing power required .

If an external crystal or oscillator is being used, the operating frequency can be adjusted by changing external compo-
nents . However, it could be the case that a single application can require maximum processing power at some times 
and very little at others . Power-management mode allows an application to reduce its clock frequency and, therefore, 
its power consumption under software control .
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Power-management mode is invoked by setting the PMME bit to 1 . Once this bit has been set, one system clock cycle 
occurs every 256 oscillator cycles . All operations continue as normal in this mode, but at the reduced clock rate . Power-
management mode can be deactivated by clearing the PMME bit to 0; the PMME bit is also cleared automatically to 
0 by any reset condition .

To avoid data loss, the PMME bit cannot be set while the USART or SPI ports are either transmitting or receiving, or 
while an external interrupt is waiting to be serviced . Attempts to set the PMME bit under these conditions result in a 
no-op .

2.12.1 Switchback
When power-management mode is active, the MAXQ610 operates at a reduced clock rate . Although execution contin-
ues as normal, peripherals that base their timing on the system clock such as the USART module and the SPI module 
might be unable to operate normally or at a high enough speed for proper application response . Additionally, interrupt 
latency is greatly increased .

The switchback feature is used to allow a processor running under power-management mode to switch back to normal 
mode quickly under certain conditions that require rapid response . Switchback is enabled by setting the SWB bit to 1 . 
If switchback is enabled, a processor running under power-management mode automatically clears the PMME bit to 
0 and returns to normal mode when any of the following conditions occur:

•  An external interrupt condition occurs on an INTn pin and the corresponding external interrupt is enabled.

•   An active-low transition occurs on the USART serial receive input line (modes 1, 2, and 3) and data reception is 
enabled .

•  The SBUF register is written to send an outgoing byte through the USART and transmission is enabled.

•   The SPIB register is written in master mode (STBY = 1) to send an outgoing character through the SPI module and 
transmission is enabled .

•  The SPI module’s SSEL signal is asserted in slave mode .

•   Active debug mode is entered either by breakpoint match or issuance of the debug command from background 
mode .

•  Power-fail interrupt if enabled (PFIE = 1).

2.13 Stop Mode
When the MAXQ610 is in stop mode, the CPU system clock is stopped and all processing activity is halted . All on-chip 
peripherals requiring the system clock are also stopped . Power consumption in the lowest power stop mode is basi-
cally limited to static leakage current .

Stop mode is entered by setting the STOP bit to 1 . The processor enters stop mode immediately once the instruction 
that sets the STOP bit is executed .

Note: It is necessary to include a ‘nop’ immediately following the instruction to invoke stop mode for proper interrupt 
operation . Example code is as follows:

move ckcn, #010h    ; enter stop mode

nop                ; No operation to cause a one cycle delay

The MAXQ610 exits stop mode when any of the following conditions occur:

•   An external interrupt condition occurs on one of the INTn pins and the corresponding external interrupt is enabled. 
After the interrupt returns, execution resumes after the stop point .

•   An external reset signal is applied to the RESET pin . After the reset signal is removed, execution resumes from utility 
ROM at 8000h as it would after any reset state .

•  A power-fail interrupt occurs, if enabled (PFIE = 1).

•  A wake-up timer interrupt occurs, if enabled (WTE = 1).
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Note that the voltage monitor and bandgap reference can be disabled during stop mode to conserve current consump-
tion . In this case, a power-fail condition does not cause a reset as it would under normal conditions . However, the POR 
monitor remains enabled, and any voltage drop on VDD that goes below the POR level causes a POR to occur . To 
continue to monitor supply voltage during stop mode, the power-fail monitor is left on if the regulator is left on (REGEN 
= 1), or it can be explicitly enabled (if the regulator is disabled; REGEN = 0) by clearing the PWCN .PFD bit to 0 . The 
power-fail monitor is always enabled prior to stop mode exit and resumption of code execution .

Once the processor exits stop mode, it resumes execution as follows:

•   If the crystal oscillator is selected as the system clock source, the crystal oscillator is started and execution resumes 
following an 8192-clock-cycle delay to allow the oscillator frequency to stabilize .
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SECTION 3: PROGRAMMING

This section contains the following information:
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SECTION 3: PROGRAMMING
This section provides a programming overview of the MAXQ610 . For full details on the instruction set as well as the 
system register and peripheral register detailed bit descriptions, see the appropriate sections later in this document .

3.1 Addressing Modes
The instruction set for the MAXQ610 provides three different addressing modes: direct, indirect, and immediate .

System and peripheral registers are referenced by direct addressing only . This addressing mode is used to specify 
both source and destination registers, such as:

move A[0], A[1]  ; copy accumulator 1 to accumulator 0

push A[0]   ; push accumulator 0 on the stack

add  A[1]   ; add accumulator 1 to the active accumulator

Direct addressing is also used to specify addressable bits within registers .

move C, Acc.0  ; copy bit zero of the active accumulator

    ; to the carry flag

move PO0.3, #1  ; set bit three of port 0 Output register

Indirect addressing, in which a register contains a source or destination address, is used only in a few cases .

move @DP[0], A[0] ; copy accumulator 0 to the data memory

    ; location pointed to by data pointer 0

move A[0], @SP-- ; where @SP-- is used to pop the data pointed to

    ; by the stack pointer register

Immediate addressing is used to provide values to be directly loaded into registers or used as operands .

move A[0], #10h  ; set accumulator 1 to 10h/16d

3.2 Prefix Operations
All instructions on the MAXQ610 are 16 bits long and execute in a single cycle . However, some operations require 
more data than can be specified in a single cycle or require that high-order register index bits be set to achieve the 
desired transfer . In these cases, the prefix register module, PFX, is loaded with temporary data and/or required register 
index bits to be used by the following instruction . The PFX module only holds loaded data for a single cycle before it 
clears to zero .

Instruction prefixing is required for the following operations, which effectively makes them two-cycle operations .

•   When providing a 16-bit immediate value for an operation (e.g., loading a 16-bit register, ALU operation, supplying 
an absolute program branch destination), the PFX module must be loaded in the previous cycle with the high byte 
of the 16-bit immediate value unless that high byte is zero . One exception to this rule is when supplying an absolute 
branch destination to 00xxh . In this case, PFX still must be written with 00h . Otherwise, the branch instruction would 
be considered a relative one instead of the desired absolute branch .

•   When selecting registers with indexes greater than 07h within a module as destinations for a transfer or registers 
with indexes greater than 0Fh within a module as sources, the PFX[n] register must be loaded in the previous cycle . 
This can be combined with the previous item .

Generally, prefixing operations are inserted automatically by the assembler as needed, so that (for example):

move DP[0], #1234h

actually assembles as:

move PFX[0], #12h

move DP[0], #34h
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However, the operation:

move DP[0], #0055h

does not require a prefixing operation even though the register DP[0] is 16 bits . This is because the prefix value 
defaults to zero, so the following line is not required:

move PFX[0], #00h

3.3 Reading and Writing Registers
All functions in the MAXQ610 are accessed through registers, either directly or indirectly . This section discusses load-
ing registers with immediate values and transferring values between registers of the same size and different sizes .

3.3.1 Loading an 8-Bit Register with an Immediate Value
Any writable 8-bit register with a subindex from 0h to 7h within its module can be loaded with an immediate value in a 
single cycle using the MOVE instruction .

move AP, #05h  ; load accumulator pointer register with 5

Writable 8-bit registers with subindexes 8h and higher can be loaded with an immediate value using MOVE as well, 
but an additional cycle is required to set the prefix value for the destination .

move WDCN, #33h  ; assembles to: move PFX[2], #00h

    ; move (WDCN-80h), #33h

3.3.2 Loading a 16-Bit Register with a 16-Bit Immediate Value
Any writable 16-bit register with a subindex from 0h to 7h can be loaded with an immediate value in a single cycle if 
the high byte of that immediate value is zero .

move LC[0], #0010h ; prefix defaults to zero for high byte

If the high byte of that immediate value is not zero or if the 16-bit destination subindex is greater than 7h, an extra cycle 
is required to load the prefix value for the high byte and/or the high-order register index bits .

    ; high byte <> #00h

move LC[0], #0110h ; assembles to: move PFX[2], #01h

    ; move LC[0], #10h

    ; destination sub-index > 7h

move A[8], #0034h ; assembles to: move PFX[2], #00h

    ; move (A[8]-80h), #34h

3.3.3 Moving Values Between Registers of the Same Size
Moving data between same-size registers can be done in a single-cycle MOVE if the destination register’s index is from 
0h to 7h and the source register index is between 0h and 0Fh .

move A[0], A[8]  ; copy accumulator 8 to accumulator 0

move LC[0], LC[1] ; copy loop counter 1 to loop counter 0

If the destination register’s index is greater than 7h or if the source register index is greater than 0Fh, prefixing is 
required .

move A[15], A[0] ; assembles to: move PFX[2], #00h

    ; move (A[15]-80h), A[0]
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3.3.4 Moving Values Between Registers of Different Sizes
Before covering some transfer scenarios that might arise, a special register must be introduced that is used in many 
of these cases . The 16-bit general register (GR) is expressly provided for performing byte singulation of 16-bit words . 
The high and low bytes of GR are individually accessible in the GRH and GRL registers, respectively . A read-only GRS 
register makes a byte-swapped version of GR accessible, and the GRXL register provides a sign-extended version of 
GRL .

3.3.5 8-Bit Destination ← Low Byte (16-Bit Source)
The simplest transfer possibility would be loading an 8-bit register with the low byte of a 16-bit register . This transfer 
does not require use of GR and requires a prefix only if the destination or source register are outside the single-cycle 
write or read regions, 0 to 7h and 0 to 0Fh, respectively .

move OFFS, LC[0] ; copy the low byte of LC[0] to the OFFS

    ; register

move ULDR, @DP[1] ; copy the low byte @DP[1] to the ULDR register

move WDCN, LC[0] ; assembles to: move PFX[2], #00h

    ; move (WDCON-80h), LC[0]

3.3.6 8-Bit Destination ← High Byte (16-Bit Source)
If, however, we needed to load an 8-bit register with the high byte of a 16-bit source, it would be best to use the GR 
register . Transferring the 16-bit source to the GR register adds a single cycle .

move GR, LC[0]  ; move LC[0] to the GR register

move IC, GRH  ; copy the high byte into the IC register

3.3.7 16-Bit Destination ← Concatenation (8-Bit Source, 8-Bit Source)
Two 8-bit source registers can be concatenated and stored into a 16-bit destination by using the prefix register to hold 
the high-order byte for the concatenated transfer . An additional cycle could be required if either source byte register 
index is greater than 0Fh or the 16-bit destination is greater than 07h .

move PFX[0], IC  ; load high order source byte IC into PFX

move @++SP, AP  ; store @DP[0] the concatenation of IC:AP

    ; 16-bit destination sub-index: dst=08h

    ; 8-bit source sub-indexes:

    ; high=10h, low=11h

move PFX[1], #00h ;

move PFX[3], hig ; PFX=00:high

move dst, low  ; dst=high:low
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3.3.8 Low (16-Bit Destination) ← 8-Bit Source
To modify only the low byte of a given 16-bit destination, the 16-bit register should be moved into the GR register such 
that the high byte can be singulated and the low byte written exclusively . An additional cycle is required if the destina-
tion index is greater than 0Fh .

move GR, DP[0  ; move DP[0] to the GR register

move PFX[0], GRH ; get the high byte of DP[0] via GRH

move DP[0], #20h ; store the new DP[0] value

    ; 16-bit destination sub-index: dst=10h

    ; 8-bit source sub-index: src=11h

move PFX[1], #00h ;

move GR, dst  ; read dst word to the GR register

move PFX[5], GRH ; get the high byte of dst via GRH

move dst, src  ; store the new dst value

3.3.9 High (16-Bit Destination) ← 8-Bit Source
To modify only the high byte of a given 16-bit destination, the 16-bit register should be moved into the GR register such 
that the low byte can be singulated and the high byte can be written exclusively . Additional cycles are required if the 
destination index is greater than 0Fh or if the source index is greater than 0Fh .

move GR, DP[0  ; move DP[0] to the GR register

move PFX[0], #20h ; get the high byte of DP[0] via GRH

move DP[0], GRL  ; store the new DP[0] value

    ; 16-bit destination sub-index: dst=10h

    ; 8-bit source sub-index: src=11h

move PFX[1], #00h ;

move GR, dst  ; read dst word to the GR register

move PFX[1], #00h

move PFX[4], src ; get the new src byte

move dst, GRL  ; store the new dst value

If the high byte needs to be cleared to 00h, the operation can be shortened by transferring only the GRL byte to the 
16-bit destination (example follows):

move GR, DP[0  ; move DP[0] to the GR register

move DP[0], GRL  ; store the new DP[0] value, 00h used for high

    ; byte

3.4 Reading and Writing Register Bits
The MOVE instruction can also be used to directly set or clear any one of the lowest 8 bits of a peripheral register in 
modules 0h to 5h or a system register in module 8h . The set or clear operation does not affect the upper byte of a 16-bit 
register that is the target of the set or clear operation . If a set or clear instruction is used on a destination register that 
does not support this type of operation, the register high byte is written with the prefix data and the low byte is written 
with the bit mask (i .e ., all zeros with a single one for the set bit operation or all ones with a single zero for the clear bit 
operation) .
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Register bits can be set or cleared individually using the MOVE instruction as follows:

move IGE, #1  ; set IGE (Interrupt Global Enable) bit

move APC.6, #0  ; clear IDS bit (APC.6)

As with other instructions, prefixing is required to select destination registers beyond index 07h . The MOVE instruction 
can also be used to transfer any one of the lowest 8 bits from a register source or any active accumulator (Acc) bit to 
the carry flag . There is no restriction on the source register module for the “MOVE C, src .bit” instruction .

move C, Acc.7  ; copy Acc.7 to Carry

Prefixing is required to select source registers beyond index 15h .

3.5 Using the Arithmetic and Logic Unit
The MAXQ610 provides a 16-bit arithmetic and logic unit (ALU) that allows operations to be performed between the 
active accumulator and any other register . The default ALU configuration provides 16 accumulator registers that are 
16-bit wide, of which any one can be selected as the active accumulator .

3.5.1 Selecting the Active Accumulator
Any of the 16 accumulator registers A[0] to A[15] can be selected as the active accumulator by setting the low 4 bits 
of the accumulator pointer register (AP) to the index of the accumulator register the users wants to select .

move AP, #01h  ; select A[1] as the active accumulator

move AP, #0Fh  ; select A[15] as the active accumulator

The current active accumulator can be accessed as the Acc register, which is also the register used as the implicit 
destination for all arithmetic and logical operations .

move A[0], #55h  ; set A[0] = 0055 hex

move AP, #00h  ; select A[0] as active accumulator

move Acc, #55h  ; set A[0] = 0055 hex

3.5.2 Enabling Autoincrement and Autodecrement
The accumulator pointer, AP, can be set to automatically increment or decrement after each arithmetic or logical 
operation . This is useful for operations involving a number of accumulator registers, such as adding or subtracting two 
multibyte integers .

If autoincrement/decrement is enabled, the AP register increments or decrements after any of the following operations:

•  ADD src  (Add source to active accumulator)

•  ADDC src  (Add source to active accumulator with carry)

•  SUB src  (Subtract source from active accumulator)

•  SUBB src  (Subtract source from active accumulator with borrow)

•  AND src  (Logical AND active accumulator with source)

•  OR src  (Logical OR active accumulator with source)

•  XOR src  (Logical XOR active accumulator with source)

•  CPL   (Bitwise complement active accumulator)

•  NEG   (Negate active accumulator)

•  SLA   (Arithmetic shift left on active accumulator)

•  SLA2   (Arithmetic shift left active accumulator 2 bit positions)

•  SLA4   (Arithmetic shift left active accumulator 4 bit positions)

•  SRA   (Arithmetic shift right on active accumulator)

•  SRA2   (Arithmetic shift right active accumulator 2 bit positions)
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•  SRA4   (Arithmetic shift right active accumulator 4 bit positions)

•  RL   (Rotate active accumulator left)

•  RLC   (Rotate active accumulator left through carry flag)

•  RR   (Rotate active accumulator right)

•  RRC   (Rotate active accumulator right through carry flag)

•  SR   (Logical shift active accumulator right)

•  MOVE Acc, src (Copy data from source to active accumulator)

•  MOVE dst, Acc (Copy data from active accumulator to destination)

•  MOVE Acc, Acc (Recirculation of active accumulator contents)

•  XCHN  (Exchange nibbles within each byte of active accumulator)

•  XCH    (Exchange active accumulator bytes)

The active accumulator cannot be the source in any instruction where it is also the implicit destination .

There is an additional notation that can be used to refer to the active accumulator for the instruction “MOVE dst, Acc .” 
If the instruction is instead written as “MOVE dst, A[AP],” the source value is still the active accumulator, but no AP 
autoincrement or autodecrement function takes place, even if this function is enabled . Note that the active accumulator 
cannot be the destination for the MOVE dst, A[AP] instruction (i .e ., MOVE Acc, A[AP] is prohibited) .

So, the following two instructions are equivalent, except that the first instruction triggers autoincrement/decrement (if it 
is enabled), while the second one would never do so .

move A[7], Acc

move A[7], A[AP]

The accumulator pointer control register (APC) is used to control the automatic increment/decrement mode as well as 
select the range of bits (modulo) in the AP register that are to be incremented or decremented . There are 10 unique 
settings for the APC register, as listed in Table 3-1 .

For the modulo increment or decrement operation, the selected range of bits in AP are incremented or decremented . 
However, if these bits roll over or under, they simply wrap around without affecting the remaining bits in the accumulator 
pointer . So, the operations can be defined as follows:

•  Increment modulo 2:  AP = AP[3:1] + ((AP[0] + 1) mod 2)

•  Decrement modulo 2: AP = AP[3:1] + ((AP[0] - 1) mod 2)

•  Increment modulo 4: AP = AP[3:2] + ((AP[1:0] + 1) mod 4)

•  Decrement modulo 4: AP = AP[3:2] + ((AP[1:0] - 1) mod 4)

Table 3-1. Accumulator Pointer Control Register Settings
APC.2

(MOD2)
APC.1

(MOD1)
APC.0

(MOD0)
APC.6
(IDS)

APC AUTOINCREMENT/DECREMENT SETTING

0 0 0 0 00h No autoincrement/decrement (default mode)

0 0 1 0 01h Increment bit 0 of AP (modulo 2)

0 0 1 1 41h Decrement bit 0 of AP (modulo 2)

0 1 0 0 02h Increment bits [1:0] of AP (modulo 4)

0 1 0 1 42h Decrement bits [1:0] of AP (modulo 4)

0 1 1 0 03h Increment bits [2:0] of AP (modulo 8)

0 1 1 1 43h Decrement bits [2:0] of AP (modulo 8)

1 0 0 0 04h Increment all 4 bits of AP (modulo 16)

1 0 0 1 44h Decrement all 4 bits of AP (modulo 16)
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•  Increment modulo 8: AP = AP[3] + ((AP[2:0] + 1) mod 8)

•  Decrement modulo 8: AP = AP[3] + ((AP[2:0] - 1) mod 8)

•  Increment modulo 16: AP = (AP + 1) mod 16

•  Decrement modulo 16:  AP = (AP - 1) mod 16

For this example, assume that all 16 accumulator registers are initially set to zero .

move AP, #02h ; select A[2] as active accumulator

mov  APC, #02h ; auto-increment AP[1:0] modulo 4

    ; AP A[0] A[1] A[2] A[3]

    ; 02 0000 0000 0000 0000

add  #01h   ; 03 0000 0000 0001 0000

add  #02h   ; 00 0000 0000 0001 0002

add  #03h   ; 01 0003 0000 0001 0002

add  #04h   ; 02 0003 0004 0001 0002

add  #05h   ; 03 0003 0004 0006 0002

3.5.3 ALU Operations Using the Active Accumulator and a Source
The following arithmetic and logical operations can use any register or immediate value as a source . The active accu-
mulator, Acc, is always used as the second operand and the implicit destination . Also, Acc cannot be used as the 
source for any of these operations .

add  A[4]   ; Acc = Acc + A[4]

addc  #32h   ; Acc = Acc + 0032h + Carry

sub  A[15]   ; Acc = Acc – A[15]

subb  A[1]   ; Acc = Acc – A[1] - Carry

cmp  #00h   ; If (Acc == 0000h), set Equals flag

and  A[0]   ; Acc = Acc AND A[0]

or   #55h   ; Acc = Acc OR #0055h

xor  A[1]   ; Acc = Acc XOR A[1]

3.5.4 ALU Operations Using Only the Active Accumulator
The following arithmetic and logical operations operate only on the active accumulator .

cpl    ; Acc = NOT Acc

neg    ; Acc = (NOT Acc) + 1

rl     ; Rotate accumulator left (not using Carry)

rlc    ; Rotate accumulator left through Carry

rr     ; Rotate accumulator right (not using Carry)

rrc    ; Rotate accumulator right through Carry

sla    ; Shift accumulator left arithmetically once

sla2    ; Shift accumulator left arithmetically twice

sla4    ; Shift accumulator left arithmetically 4 times

sr     ; Shift accumulator right, set Carry to Acc.0,

    ; set Acc.15 to zero
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sra    ; Shift accumulator right arithmetically once

sra2    ; Shift accumulator right arithmetically twice

sra4    ; Shift accumulator right arithmetically 4 times

xchn    ; Swap low and high nibbles of each Acc byte

xch    ; Swap low byte and high byte of Acc

3.5.5 ALU Bit Operations Using Only the Active Accumulator
The following operations operate on single bits of the current active accumulator in conjunction with the carry flag . Any 
of these operations can use an Acc bit from 0 to 7 .

move C, Acc.0  ; copy bit 0 of accumulator to Carry

move  Acc.5, C  ; copy Carry to bit 5 of accumulator

and  Acc.3   ; Acc.3 = Acc.3 AND Carry

or  Acc.0   ; Acc.0 = Acc.0 OR Carry

xor  Acc.1   ; Acc.1 = Acc.1 OR Carry

None of the above bit operations cause the autoincrement, autodecrement, or modulo operations defined by the accu-
mulator pointer control (APC) register .

3.5.6 Example: Adding Two 4-Byte Numbers Using Autoincrement
move  A[0], #5678h  ; First number – 12345678h

move  A[1], #1234h

move  A[2], #0AAAAh  ; Second number – 0AAAAAAAh

move  A[3], #0AAAh

move  APC, #81h  ; Active Acc = A[0], increment low bit = mod 2

add  A[2]   ; A[0] = 5678h + AAAAh = 0122h + Carry

addc  A[3]   ; A[1] = 1234h + AAAh + 1 = 1CDFh

    ; 12345678h + 0AAAAAAAh = 1CDF0122h

3.6 Processor Status Flag Operations
The processor status flag (PSF) register contains four flags that are used to indicate and store the results of arithmetic 
and logical operations as well as control program branching .

3.6.1 Sign Flag
The sign flag (PSF .6) reflects the current state of the high bit of the active accumulator, Acc .15 . If signed arithmetic is 
being used, this flag indicates whether the value in the accumulator is positive or negative .

Because the sign flag is a dynamic reflection of the high bit of the active accumulator, any instruction that changes the 
value in the active accumulator can potentially change the value of the sign flag . Also, any instruction that changes 
which accumulator is the active one (including AP autoincrement/decrement) can also change the sign flag .

The following operation uses the sign flag:

•  JUMP S, src  (jump if sign flag is set)
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3.6.2 Zero Flag
The zero flag (PSF .7) is a dynamic flag that reflects the current state of the active accumulator Acc . If all bits in the 
active accumulator are zero, the zero flag equals 1 . Otherwise, it equals 0 .

Because the zero flag is a dynamic reflection of (Acc = 0), any instruction that changes the value in the active accu-
mulator can potentially change the value of the zero flag . Any instruction that changes which accumulator is the active 
one (including AP autoincrement/decrement) can also change the zero flag .

The following operations use the zero flag:

•  JUMP Z, src  (jump if zero flag is set)

•  JUMP NZ, src  (jump if zero flag is cleared)

3.6.3 Equals Flag
The equals flag (PSF .0) is a static flag set by the CMP instruction . When the source given to the CMP instruction is 
equal to the active accumulator, the equals flag is set to 1 . When the source is different from the active accumulator, 
the equals flag is cleared to 0 .

The following instructions use the value of the equals flag . Note that the ‘src’ for the JUMP E/NE instructions must be 
immediate .

•  JUMP E, src  (jump if equals flag is set)

•  JUMP NE, src  (jump if equals flag is cleared)

In addition to the CMP instruction, any instruction using PSF as the destination can alter the equals flag .

3.6.4 Carry Flag
The carry flag (PSF .1) is a static flag indicating that a carry or borrow bit resulted from the last ADD/ADDC or SUB/
SUBB operation . Unlike the other status flags, it can be set or cleared explicitly, and is also used as a generic bit 
operand by many other instructions .

The following instructions can alter the carry flag:

•  ADD src  (Add source to active accumulator)

•  ADDC src  (Add source and carry to active accumulator)

•  SUB src  (Subtract source from active accumulator)

•  SUBB src  (Subtract source and carry from active accumulator)

•  SLA, SLA2, SLA4 (Arithmetic shift left active accumulator)

•  SRA, SRA2, SRA4 (Arithmetic shift right active accumulator)

•  SR   (Shift active accumulator right)

•  RLC/RRC  (Rotate active accumulator left/right through carry)

•  MOVE C, Acc.<b> (Set Carry to selected active accumulator bit)

•  MOVE C, #i   (Explicitly set, i = 1, or clear, i = 0, the carry flag)

•  CPL C  (Complement carry)

•  MOVE C, src.<b> (Copy bit addressable register bit to carry)

•  any instruction using PSF as the destination

The following instructions use the value of the carry flag:

•  ADDC src  (Add source and carry to active accumulator)

•  SUBB src  (Subtract source and carry from active accumulator)

•  RLC/RRC  (Rotate active accumulator left/right through carry)

•  CPL C  (Complement carry)
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•  MOVE Acc.<b>, C (Set selected active accumulator bit to carry)

•  AND Acc.<b>  (Carry = carry AND selected active accumulator bit)

•  OR Acc.<b>  (Carry = carry OR selected active accumulator bit)

•  XOR Acc.<b>  (Carry = carry XOR selected active accumulator bit)

•  JUMP C, src  (Jump if carry flag is set)

•  JUMP NC, src  (Jump if carry flag is cleared)

3.6.5 Overflow Flag
The overflow flag (PSF .2) is a static flag indicating that the carry or borrow bit (carry status flag) resulting from the last 
ADD/ADDC or SUB/SUBB operation, but did not match the carry or borrow of the high order bit of the active accumula-
tor . The overflow flag is useful when performing signed arithmetic operations .

The following instructions can alter the overflow flag:

•  ADD src  (Add source to active accumulator)

•  ADDC src  (Add source and carry to active accumulator)

•  SUB src  (Subtract source from active accumulator)

•  SUBB src  (Subtract source and carry from active accumulator)

3.7 Controlling Program Flow
The MAXQ610 provides several options to control program flow and branching . Jumps can be unconditional, condi-
tional, relative, or absolute . Subroutine calls store the return address on the soft stack for later return . Built-in counters 
and address registers are provided to control looping operations .

3.7.1 Obtaining the Next Execution Address
The address of the next instruction to be executed can be read at any time by reading the IP register . This can be 
particularly useful for initializing loops, as shown in the following sections . Note that the value returned is actually the 
address of the current instruction plus 1, so this is the address of the next instruction executed as long as the current 
instruction does not cause a jump .

3.7.2 Unconditional jumps
An unconditional jump can be relative (IP +127/-128 words) or absolute (to anywhere in program space) . Relative 
jumps must use an 8-bit immediate operand, such as:

Label1:    ; must be within +127/-128 words of the JUMP

 ....

 jump Label1

Absolute jumps can use either a 16-bit immediate operand, a 16-bit register, or an 8-bit register .

 jump LongJump  ; assembles to: move PFX[0], #high(LongJump)

    ; jump #low(LongJump)

 jump DP[0]   ; absolute jump to the address in DP[0]

If an 8-bit register is used as the jump destination, the prefix value is used as the high byte of the address and the 
register is used as the low byte .
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3.7.3 Conditional Jumps
Conditional jumps transfer program execution based on the value of one of the status flags (C, E, Z, S) . Except where 
noted for JUMP E and JUMP NE, the absolute and relative operands allowed are the same as for the unconditional 
JUMP command .

 jump c, Label1 ; jump to Label1 if Carry is set

 jump nc, LongJump ; jump to LongJump if Carry is not set

 jump z, LC[0] ; jump to 16-bit register destination if

    ; Zero is set

 jump nz, Label1  ; jump to Label1 if Zero is not set (Acc<>0)

 jump s, A[2]  ; jump to A[2] if Sign flag is set

 jump e, Label1  ; jump to Label1 if Equal is set

 

 jump ne, Label1  ; jump to Label1 if Equal is cleared

 

JUMP E and JUMP NE can only use immediate destinations .

3.7.4 Calling Subroutines
The CALL instruction works the same as the unconditional JUMP, except that the next execution address is pushed on 
the stack before the jump is made . The RET instruction is used to return from a normal call, and RETI is used to return 
from an interrupt handler routine .

 call Label1    ; if Label1 is relative,

    ; assembles to: call #immediate

 call LongCall  ; assembles to: move PFX[0], #high(LongCall)

    ; call #low(LongCall)

 call LC[0]   ; call to address in LC[0]

LongCall:

 ret    ; return from subroutine

3.7.5 Loop Operations
Looping over a section of code can, of course, be performed by using the conditional jump instructions . However, 
there is built-in functionality in the form of the “DJNZ LC[n], src” instruction to support faster, more compact looping 
code with separate loop counters . The 16-bit registers LC[0] and LC[1] are used to store these loop counts . The “DJNZ 
LC[n], src” instruction automatically decrements the associated loop counter register and jumps to the loop address 
specified by src if the loop counter has not reached 0 .

To initialize a loop, set the LC[n] register to the desired count before entering the loop’s main body .

The desired loop address should be supplied in the src operand of the “DJNZ LC[n], src” instruction . When the sup-
plied loop address is relative (+127/-128 words) to the DJNZ LC[n] instruction, as is typically the case, the assembler 
automatically calculates the relative offset and inserts this immediate value in the object code .

move LC[1], #10h  ; loop 16 times

LoopTop:    ; loop addr relative to djnz LC[n],src

call LoopSub

djnz LC[1], LoopTop  ; decrement LC[1] and jump if nonzero
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When the supplied loop address is outside the relative jump range, the prefix register (PFX[0]) is used to supply the 
high byte of the loop address as required .

move LC[1], #10h  ; loop 16 times

LoopTop:    ; loop addr not relative to djnz LC[n],src

call LoopSub

...

djnz LC[1], LoopTop  ; decrement LC[1] and jump if nonzero

    ; assembles to: move PFX[0], #high(LoopTop)

    ; djnz LC[1], #low(LoopTop)

If loop execution speed is critical and a relative jump cannot be used, one might consider preloading an internal 16-bit 
register with the src loop address for the “DJNZ LC[n], src” loop . This ensures that the prefix register does not need to 
supply the loop address and always yields the fastest execution of the DJNZ instruction .

move LC[0], #LoopTop  ; using LC[0] as address holding register

    ; assembles to: move PFX[0], #high(LoopTop)

    ; move LC[0], #low(LoopTop)

move LC[1], #10h  ; loop 16 times

...

LoopTop:    ; loop address not relative to djnz LC[n],src

call LoopSub

...

djnz LC[1], LC[0]  ; decrement LC[1] and jump if nonzero

If opting to preload the loop address to an internal 16-bit register, the most time and code efficient means is by per-
forming the load in the instruction just prior to the top of the loop:

move LC[1], #10h  ; Set loop counter to 16

move LC[0], IP   ; Set loop address to the next address

LoopTop:    ; loop addr not relative to djnz LC[n],src

...

3.7.6 Conditional Returns
Similar to the conditional jumps, the MAXQ610 microcontroller also supports a set of conditional return operations . 
Based upon the value of one of the status flags, the CPU can conditionally pop the stack and begin execution at the 
address popped from the stack . If the condition is not true, the conditional return instruction does not pop the stack 
and does not change the instruction pointer . The following conditional return operations are supported:

RET C   ; if C=1, a RET is executed

RET NC   ; if C=0, a RET is executed

RET Z   ; if Z=1 (Acc=00h), a RET is executed

RET NZ   ; if Z=0 (Acc<>00h), a RET is executed

RET S   ; if S=1, a RET is executed
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3.7.7 Conditional Return from Interrupt
Similar to the conditional returns, the MAXQ610 microcontroller also supports a set of conditional return from interrupt 
operation . Based upon the value of one of the status flags, the CPU can conditionally pop the stack, set the IPS bits 
to 11b, and begin execution at the address popped from the stack . If the condition is not true, the conditional return 
from interrupt instruction leaves the IPS bits unchanged, does not pop the stack and does not change the instruction 
pointer . The following conditional return from interrupt operations are supported:

RETI C   ; if C=1, a RETI is executed

RETI NC   ; if C=0, a RETI is executed

RETI Z   ; if Z=1 (Acc=00h), a RETI is executed

RETI NZ   ; if Z=0 (Acc<>00h), a RETI is executed

RETI S   ; if S=1, a RETI is executed

3.8 Accessing the Stack
The soft stack is used automatically by the CALL, RET, and RETI instructions, but it can also be used explicitly to store 
and retrieve data . All values stored on the stack are 16 bits wide .

The PUSH instruction increases the stack depth (by decrementing the stack pointer SP) and then stores a value on the 
stack . When pushing a 16-bit value onto the stack, the entire value is stored . However, when pushing an 8-bit value 
onto the stack, the high byte stored on the stack comes from the prefix register . The @++SP stack access mnemonic 
is the associated destination specifier that generates this push behavior, thus the following two instruction sequences 
are equivalent:

move PFX[0], IC

push PSF    ; stored on stack: IC:PSF

move PFX[0], IC

move @++SP, PSF  ; stored on stack: IC:PSF

The POP instruction removes a value from the stack and then decreases the stack depth (by incrementing the stack 
pointer) . The @SP-- stack access mnemonic is the associated source specifier that generates this behavior, thus, the 
following two instructions are equivalent:

pop  PSF

move PSF, @SP--

The POPI instruction is equivalent to the POP instruction, but additionally sets the IPS bits to 11b’ . Thus, the following 
two instructions would be equivalent:

popi IP

reti

The @SP-- mnemonic can be used by the MAXQ610 so that stack values can be used directly by ALU operations (e .g ., 
ADD src, XOR src, etc .) without requiring that the value be first popped into an intermediate register or accumulator .

add  @SP--   ; sum the last three words pushed onto the

add  @SP--   ; with Acc, disregarding overflow

add  @SP--

The stack pointer SP can be set explicitly, however, only the least significant bits needed to represent the stack depth 
are used . The MAXQ610 has a stack depth constrained only by the size of the SRAM, and the lowest 10 bits of SP are 
used . Setting SP to 03F0h returns it to its reset state .

On the MAXQ610, the stack naturally grows downward from the top of the SRAM . A push operation  
(move @++SP, …) increases the depth of the stack, but decreases the numeric value in the stack pointer . A pop 
(move …, @SP--) decreases the depth of the stack, but decreases the numeric value in the stack pointer .
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Because the stack is 16 bits wide, it is possible to store two 8-bit register values on it in a single location . This allows 
more efficient use of the stack if it is being used to save and restore registers at the start and end of a subroutine .

SubOne:

move PFX[0], IC

push PSF     ; store IC:PSF on the stack

...

pop  GR     ; 16-bit register

move IC, GRH    ; IC was stored as high byte

move PSF, GRL    ; PSF was stored as low byte

ret

3.9 Accessing Data Memory
Data memory is accessed through the data pointer registers DP[0] and DP[1] or the frame pointer BP[OFFS] . Once 
one of these registers is set to a location in data memory, that location can be read or written as follows, using the 
mnemonic @DP[0], @DP[1], or @BP[OFFS] as a source or destination .

move DP[0], #0000h   ; set pointer to location 0000h

move A[0], @DP[0]   ; read from data memory

move @DP[0], #55h   ; write to data memory

Either of the data pointers can be postincremented or postdecremented following any read, or can be preincremented 
or predecremented before any write access by using the following syntax .

move A[0], @DP[0]++   ; increment DP[0] after read

move @++DP[0], A[1]   ; increment DP[0] before write

move A[5], @DP[1]--   ; decrement DP[1] after read

move @--DP[1], #00h   ; decrement DP[1] before write

The frame pointer (BP[OFFS]) is actually composed of a base pointer (BP) and an offset from the base pointer (OFFS) . 
For the frame pointer, the offset register (OFFS) is the target of any increment or decrement operation . The base pointer 
(BP) is unaffected by increment and decrement operations on the frame pointer . Similar to DP[n], the OFFS register 
can be preincremented/decremented when writing to data memory, and can be postincremented/decremented when 
reading from data memory .

move A[0], @BP[OFFS--] ; decrement OFFS after read

move @BP[++OFFS], A[1]  ; increment OFFS before write

All three data pointers support both byte and word access to data memory . Each data pointer has its own word/byte 
select (WBSn) special function register bit to control the access mode associated with the data pointer . These three 
register bits (WBS2, which controls BP[OFFS] access; WBS1, which controls DP[1] access; and WBS0, which controls 
DP[0] access) reside in the data pointer control register (DPC) . When a given WBSn control bit is configured to 1, the 
associated pointer is operated in the word-access mode . When the WBSn bit is configured to 0, the pointer is operated 
in the byte-access mode . Word access mode allows addressing of 64KWords of memory, while byte-access mode 
allows addressing of 64KB of memory .

Each data pointer and frame pointer base (BP) register is actually implemented internally as a 17-bit register (e .g ., 
16:0) . The frame pointer offset register (OFFS) is implemented internally as a 9-bit register (e .g ., 8:0) . The WBSn bit 
for the respective pointer controls whether the highest 16 bits (16:1) of the pointer are in use, as is the case for word 
mode (WBSn = 1) or whether the lowest 16 bits (15:0) are in use, as is the case for byte mode (WBSn = 0) . The WBS2 
bit also controls whether the high 8 bits (8:1) of the offset register are in use (WBS2 = 1) or the low 8 bits (7:0) are 
used (WBS2 = 0) . All data pointer register reads, writes, autoincrement/decrement operations occur with respect to 
the current WBSn selection . Data pointer increment and decrement operations only affect those bits specific to the 
current word- or byte-addressing mode (e .g ., incrementing a byte-mode data pointer from FFFFh does not carry into 
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the internal high-order bit that is used only for word-mode data-pointer access) . Switching from byte- to word-access 
mode or vice versa does not alter the data pointer contents . Therefore, it is important to maintain the consistency of 
data-pointer address value within the given access mode .

move DPC, #0   ; DP[0] in byte mode

move DP[0], #2345h  ; DP[0]=2345h (byte mode)

    ; internal bits 15:0 loaded

move DPC, #4   ; DP[0] in word mode

move DP[0], #2345h  ; DP[0]=2345h (word mode)

    ; internal bits 16:1 loaded

move DPC, #0   ; DP[0] in byte mode

move GR, DP[0]   ; GR = 468Bh (looking at bits 15:0)

The three pointers share a single read/write port on the data memory and, thus, the user must knowingly activate 
a desired pointer before using it for data memory read operations . This can be done explicitly using the data-
pointer select bits (SDPS[1:]0; DPC[1:0]) or implicitly by writing to the DP[n], BP, or OFFS register, as shown below . 
Additionally, any write operation sets the SDPS bits, thereby activating the write pointer as the active source pointer .

move DPC, #2   ; (explicit) selection of FP as the pointer

move DP[0], src  ; (implicit) selection of DP[0]; set SDPS1:0=00b

move DP[1], DP[1]  ; (implicit) selection of DP[1]; set SDPS1:0=01b

move OFFS, src   ; (implicit) selection of FP; set SDPS1=1

Once the pointer selection has been made, it remains in effect until:

•   The source data-pointer select bits are changed through the explicit or implicit methods described above (i.e., 
another data pointer is selected for use)

•   The memory to which the active source data pointer is addressing is enabled for code fetching using the instruction 
pointer, or

•  A data-memory write operation sets the SDPS and activates the pointer used for writing as the active source pointer.

move DP[1], DP[1]  ; select DP[1] as the active pointer

move dst, @DP[1]  ; read from pointer

move @DP[1], src  ; write using a data pointer

    ; DP[0] is needed

move DP[0], DP[0]  ; select DP[0] as the active pointer

To simplify data pointer increment/decrement operations without disturbing register data, a virtual NUL destination has 
been assigned to system module 6, subindex 7 to serve as a “bit bucket .” Data-pointer increment/decrement opera-
tions can be done as follows without altering the contents of any other register:

move NUL, @DP[0]++  ; increment DP[0]

move NUL, @DP[0]--  ; decrement DP[0]

The following data-pointer-related instructions are invalid:

move @++DP[0], @DP[0]++

move @++DP[1], @DP[1]++

move @BP[++Offs], @BP[Offs++]

move @--DP[0], @DP[0]--

move @--DP[1], @DP[1]--

move @BP[--Offs], @BP[Offs--]

move @++DP[0], @DP[0]--
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move @++DP[1], @DP[1]--

move @BP[++Offs], @BP[Offs--]

move @--DP[0], @DP[0]++

move @--DP[1], @DP[1]++

move @BP[--Offs], @BP[Offs++]

move @DP[0], @DP[0]++

move @DP[1], @DP[1]++

move @BP[Offs], @BP[Offs++]

move @DP[0], @DP[0]--

move @DP[1], @DP[1]--

move @BP[Offs], @BP[Offs--]

move DP[0], @DP[0]++

move DP[0], @DP[0]--

move DP[1], @DP[1]++

move DP[1], @DP[1]--

move Offs, @BP[Offs--]

move Offs, @BP[Offs++]

3.10 Using the Watchdog Timer
The watchdog timer is a user-programmable clock counter that can serve as a time-base generator, an event timer, 
or a system supervisor . As shown in Figure 3-1, the main system clock drives the timer, which is supplied to a series 
of dividers . If the watchdog interrupt and the watchdog reset are disabled (EWDI = 0 and EWT = 0), the watchdog 
timer and its input clock are disabled . Whenever the watchdog timer is disabled, the watchdog interval timer (through 
the WD[1:0] bits) and the 512-clock reset counter are reset if either the interrupt or reset function is enabled . When 
the watchdog timer is initially enabled, there is a one- to three-clock-cycle delay before it starts . The divider output is 
selectable and determines the interval between timeouts . When the timeout is reached, an interrupt flag is set, and, 
if enabled, an interrupt occurs . A watchdog-reset function is also provided in addition to the watchdog interrupt . The 
reset and interrupt are completely discrete functions that can be acknowledged or ignored, together or separately, for 
various applications .

The watchdog timer reset function works as follows: After initializing the correct timeout interval (discussed below), 
software can enable, if desired, the reset function by setting the enable watchdog timer reset (EWT = WDCN .1) bit . 
Setting the EWT bit resets/restarts the watchdog timer if the watchdog interrupt is not already enabled . At any time 
prior to reaching its user-selected terminal value, software can set the reset watchdog timer (RWT = WDCN .0) bit . If 
the watchdog timer is reset (RWT bit written to 1) before the timeout period expires, the timer starts over . Hardware 
automatically clears RWT after software sets it .

Table 3-2. Watchdog Timer Register Control Bits
BIT NAME DESCRIPTION REGISTER LOCATION BIT POSITION

EWDI Enable Watchdog Timer Interrupt

WDCN (0Fh, 8h)

WDCN .6

WD[1:0] Watchdog Interval Control Bits WDCN[5:4]

WDIF Watchdog Interrupt Flag WDCN .3

WTRF Watchdog Timer Reset Flag WDCN .2

EWT Enable Watchdog Timer Reset WDCN .1

RWT Reset Watchdog Timer WDCN .0
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If the timeout is reached without RWT being set, hardware generates a watchdog interrupt if the interrupt source has 
been enabled . If no further action is taken to prevent a watchdog reset, in the 512 system clock cycles following the 
timeout, hardware can reset the CPU if EWT = 1 . When the reset occurs, the watchdog timer reset flag (WTRF = 
WDCN .2) is automatically set to indicate the cause of the reset, however, software must clear this bit manually .

The watchdog interrupt is also available for applications that do not need a true watchdog reset, but simply a very 
long timer . The interrupt is enabled using the enable watchdog timer interrupt (EWDI = WDCN .6) bit . When the timeout 
occurs, the watchdog timer sets the WDIF bit (WDCN .3), and an interrupt occurs if the interrupt global enable (IGE 
= IC .0) is set and either 1) the interrupt priority status (IPS[1:0]) bits are set to 11b (idle), or 2) the watchdog timer 
interrupt is configured to higher priority than an interrupt currently being serviced . Note that WDIF is set 512 system 
clocks before a potential watchdog reset . The watchdog interrupt flag indicates the source of the interrupt, and must 
be cleared by software .

Using the watchdog interrupt during software development can allow the user to select ideal watchdog reset locations . 
Code is first developed without enabling the watchdog interrupt or reset functions . Once the program is complete, 
the watchdog interrupt function is enabled to identify the required locations in code to set the RWT (WDCN .0) bit . 
Incrementally adding instructions to reset the watchdog timer prior to each address location (identified by the watch-
dog interrupt) allows the code to eventually run without receiving a watchdog interrupt . At this point the watchdog timer 
reset can be enabled without the potential of generating unwanted resets . At the same time the watchdog interrupt can 
also be disabled . Proper use of the watchdog interrupt with the watchdog reset allows interrupt software to survey the 
system for errant conditions .

When using the watchdog timer as a system monitor, the watchdog reset function should be used . If the interrupt func-
tion were solely used, the purpose of the watchdog would be defeated . For example, assume the system is execut-
ing errant code prior to the watchdog interrupt . The interrupt would temporarily force the system back into control by 
vectoring the CPU to the interrupt service routine . Restarting the watchdog and exiting by an RETI or RET would return 
the processor to the lost position prior to the interrupt . By using the watchdog reset function, the processor is restarted 
from the beginning of the program and therefore placed into a known state .

Figure 3-1. Watchdog Timer Block Diagram
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The watchdog timeout selection is made using bits WD1 (WDCN .5) and WD0 (WDCN .4) . The watchdog has four time-
out selections based on the system clock frequency as shown Figure 3-1 . Because the timeout is a function of the 
system clock, the actual timeout interval is dependent on both the crystal frequency and the system clock mode selec-
tion . Table 3-3 shows a summary of the selectable watchdog timeout intervals for the various system clock modes and 
WD[1:0] control bit settings . If enabled, the watchdog reset is always scheduled to occur 512 system clocks following 
the timeout . Watchdog-generated resets last for eight system clock cycles .

Table 3-3. Watchdog Timeout Period Selection

SYSTEM CLOCK 
MODE

SYSTEM CLOCK SELECT BITS
WATCHDOG TIMEOUT

(IN NUMBER OF OSCILLATOR CLOCKS)

PMME CD1 CD0 WD[1:0] = 00b WD[1:0] = 01b WD[1:0] = 10b WD[1:0] = 11b

Divide by 1 (default) 0 0 0 215 218 221 224

Divide by 2 0 0 1 216 219 222 225

Divide by 4 0 1 0 217 220 223 226

Divide by 8 0 1 1 218 221 224 227

Power-Management 
Mode (Divide by 256)

1 x x 223 226 229 232
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SECTION 4: SYSTEM REGISTER DESCRIPTION
Registers currently defined in the MAXQ610 system register map are described in Tables 4-1, 4-2, and 4-3 .

Table 4-1. System Register Map

Note 1: Register names that appear in italics indicate read-only registers. Register names that appear in bold indicate 16-bit registers.

Note 2: Registers with indexes 8h and higher can only be accessed as destinations by using the prefix register. Similarly, registers 
with indexes 10h and higher can only be accessed as sources through the prefix register.

Note 3: All undefined or unused indexes (indicated by a “—”) are either used for op-code implementation or reserved for future 
expansion, and should not be accessed explicitly. Accessing these locations as registers can have deterministic effects, but the 
effects are probably not the intended ones.

MODULE SPECIFIER

REGISTER 
INDEX WITHIN 

MODULE
06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh

00h — — AP A[0] Acc PFX[0] IP — — —

01h — — APC A[1] A[AP] PFX[1] — SP — —

02h — — PRIV A[2] — PFX[2] — IV — —

03h — — PRIVT0 A[3] — PFX[3] — — OFFS DP[0]

04h — — PSF A[4] — PFX[4] — — DPC —

05h — — IC A[5] — PFX[5] — — GR —

06h — — PRIVT1 A[6] — PFX[6] — LC[0] GRL —

07h — — — A[7] — PFX[7] — LC[1] BP DP[1]

08h — — SC A[8] — — — — GRS —

09h — — IPR0 A[9] — — — — GRH —

0Ah — — — A[10] — — — — GRXL —

0Bh — — PRIVF A[11] — — — — FP CP

0Ch — — ULDR A[12] — — — — — —

0Dh — — UAPP A[13] — — — — — —

0Eh — — CKCN A[14] — — — — — —

0Fh — — WDCN A[15] — — — — — —

10h — — — — — — — — — —

11h — — — — — — — — — —

12h — — — — — — — — — —

13h — — — — — — — — — —

14h — — — — — — — — — —

15h — — — — — — — — — —

16h — — — — — — — — — —

17h — — — — — — — — — —

18h — — — — — — — — — —

19h — — — — — — — — — —

1Ah — — — — — — — — — —

1Bh — — — — — — — — — —

1Ch — — — — — — — — — —

1Dh — — — — — — — — — —

1Eh — — — — — — — — — —

1Fh — — — — — — — — — —
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Table 4-2. System Register Bit Map

REG
BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AP — — — — AP (4 bits)

APC CLR IDS — — — MOD2 MOD1 MOD0

PRIV — — — — PSYW PSYR PULW PULR

PRIVT0 — — — — PRIVT0 (4 bits)

PSF Z S — GPF1 GPF0 OV C E

IC — — — — IPS1 IPS0 — IGE

PRIVT1 — — — — PRIVT1 (4 bits)

SC — — — — — MPE PWLL PWLS TAP — CDA1 CDA0 UPA ROD PWL —

IPR0 IVP7[1:0] IVP6[1:0] IVP5[1:0] IVP4[1:0] IVP3[1:0] IVP2[1:0] IVP1[1:0] IVP0[1:0]

PRIVF PSYWF PSYRF PULWF PULRF — — — —

ULDR — — — — — — — ULDR (9 bits)

UAPP — — — — — — — UAPP (9 bits)

CKCN — — — STOP SWB PMME CD1 CD0

WDCN POR EWDI WD1 WD0 WDIF WTRF EWT RWT

A[0:15] A[0:15] (16 bits)

PFX[0:7] PFX[0:7] (16 bits)

IP IP (16 bits)

SP — — — — — — SP (10 bits)

IV IV (16 bits)

LC[0] LC[0] (16 bits)

LC[1] LC[1] (16 bits)

OFFS OFFS (8 bits)

DPC — — — — — — — — — CWBS — WBS2 WBS1 WBS0 SDPS1 SDPS0

GR GR (16 bits)

GRL GRL (8 bits)

BP BP (16 bits)

GRS GRS (16 bits) = (GRL, GRH)

GRH GRH (8 bits)

GRXL GRXL (16 bits) = (GRL .7, 8 bits):(GRL, 8 bits)

FP FP = BP[OFFS] (16 bits)

DP[0] DP[0] (16 bits)

DP[1] DP[1] (16 bits)

CP CP (16 bits)
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Table 4-3. System Register Bit Reset Values

Note 1: Bits marked as “s” are static across some or all resets.

Note 2: ULDR/UAPP reset values shown are for parts with 64KB/512B per page of program space. The reset value is the first 
page address past the available program memory on all resets.

REG
BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AP 0 0 0 0 0 0 0 0

APC 0 0 0 0 0 0 0 0

PRIV 0 0 0 0 1 1 1 1

PRIVT0 0 0 0 0 0 0 0 0

PSF 1 0 0 0 0 0 0 0

IC 0 0 0 0 1 1 0 0

PRIVT1 0 0 0 0 0 0 0 0

SC 0 0 0 0 0 1 s s 1 0 0 0 0 0 s 0

IPR0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PRIVF 0 0 0 0 0 0 0 0

ULDR 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

UAPP 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

CKCN s s s 0 0 0 0 0

WDCN s s 0 0 0 s s 0

A[0:15] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PFX[0:7] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SP 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

IV 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

LC[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OFFS 0 0 0 0 0 0 0 0

DPC 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0

GR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GRL 0 0 0 0 0 0 0 0

BP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GRS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GRH 0 0 0 0 0 0 0 0

GRXL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DP[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DP[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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4.1 System Register Descriptions
The addresses for each register are given in the format module[index], where module is the module specifier from 08h 
to 0Fh and index is the register subindex from 00h to 0Fh .

REGISTER DESCRIPTION

AP, 08h[00h] Accumulator Pointer Register (8 bits)

Initialization This register is cleared to 00h on all forms of reset .

Access Unrestricted direct read/write access .
AP.3 to AP.0 Active Accumulator Select. These bits select which of the 16 accumulator registers are 

used for arithmetic and logical operations . If the APC register has been set to perform 
automatic increment/decrement of the active accumulator, this setting is automatically 
changed after each arithmetic or logical operation . If a ‘MOVE AP, Acc’ instruction is exe-
cuted, any enabled AP inc/dec/modulo control takes precedence over the transfer of Acc 
data into AP .

AP.7 to AP.4 Reserved . All reads return 0 .

APC, 08h[01h] Accumulator Pointer Control Register (8 bits)

Initialization This register is cleared to 00h on all forms of reset .

Access Unrestricted direct read/write access .
APC.2 to APC.0
(MOD2 to MOD0)

Accumulator Pointer Auto Increment/Decrement Modulus. If these bits are set to a non-
zero value, the accumulator pointer (AP[3:0]) is automatically incremented or decremented 
following each arithmetic or logical operation .
The mode for the autoincrement/decrement is determined as follows:

MOD[2:0] AUTOINCREMENT/DECREMENT MODE

000 No autoincrement/decrement (default)

001 Increment/decrement AP[0] modulo 2

010 Increment/decrement AP[1:0] modulo 4

011 Increment/decrement AP[2:0] modulo 8

100 Increment/decrement AP modulo 16

101 to 111 Reserved (modulo 16 when set)

APC.5 to APC.3 Reserved . All reads return 0 .
APC.6 (IDS) Increment/Decrement Select. If this bit is set to 0, the accumulator pointer, AP, is incre-

mented following each arithmetic or logical operation according to MOD[2:0] .
If this bit is set to 1, the accumulator pointer, AP, is decremented following each arithmetic 
or logical operation according to MOD[2:0] .
If MOD[2:0] is set to 000, the setting of this bit is ignored .

APC.7 (CLR) AP Clear. Writing this bit to 1 clears the accumulator pointer, AP, to zero . If a ‘MOVE APC, 
Acc’ instruction is executed requesting that AP be set to zero (i .e ., CLR = 1), the AP clear 
function overrides any enabled inc/dec/modulo control . All reads from this bit return 0 .
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REGISTER DESCRIPTION

PRIV, 08h[02h] Privilege Register (8 bits)
Initialization This register is reset to 00001111b on all resets .

Bits 3 and 2 are cleared by hardware when the current IP is not in utility ROM code, nor 
system code .
Bits 1 and 0 are cleared by hardware when the current IP is not in utility ROM, system, nor 
user loader code .

Access Bits 3 and 2 can only be modified by utility ROM code, or system code . Bits 1 and 0 can 
only be modified by utility ROM code, system code, or user loader code . Unrestricted read 
access .
Writing this register clears the PRIVT0 register .

PRIV.0 (PULR) User Loader Read Privilege. This bit defaults to 1 on a power-on reset . When this bit 
is 1, code can read the user loader memory area . Clearing this bit to 0 disables reading 
from user loader memory and any read attempt generates a protection-fault interrupt . Note 
that this bit is automatically cleared when the current IP is not in utility ROM code, system 
memory, or user loader memory .

PRIV.1 (PULW) User Loader Write Privilege. This bit defaults to 1 on a power-on reset . This bit defaults 
to 1 on a power-on reset . When this bit is 1, code can write (program) the user loader 
memory area . Clearing this bit to 0 disables writing to user loader memory and any write 
attempt generates a protection-fault interrupt . Note that this bit is automatically cleared 
when the current IP is not in utility ROM code, system memory, or user loader memory .

PRIV.2 (PSYR) System Read Privilege. This bit defaults to 1 on a power-on reset . When this bit is 1, code 
can read the system memory area . Clearing this bit to 0 disables reading from system 
memory and any read attempt generates a protection-fault interrupt . Note that this bit is 
automatically cleared when the current IP is not in utility ROM code or system memory .

PRIV.3 (PSYW) System Write Privilege. This bit defaults to 1 on a power-on reset . This bit defaults to 1 on 
a power-on reset . When this bit is 1, code can write (program) the system memory area . 
Clearing this bit to 0 disables writing to system memory and any write attempt generates 
a protection-fault interrupt . Note that this bit is automatically cleared when the current IP is 
not in utility ROM code or system memory .

PRIV.7 to PRIV.4 Reserved . Reads return 0 .

PRIVT0, 08h[03h] Privilege Register Atomic 0 (8 bits)
Initialization This register is reset to 00h on all resets, and on any write to the PRIV register, or the 

PRIVT1 destination .
Bits 3 and 2 are cleared by hardware when the current IP is not in utility ROM code, nor 
system code .
Bits 1 and 0 are cleared by hardware when the current IP is not in utility ROM, system, nor 
user loader code .

Access Bits 3 and 2 can only be modified by utility ROM code, or system code . Bits 1 and 0 can 
only be modified by utility ROM code, system code, or user loader code . Unrestricted read 
access .

PRIVT0.3 to PRIVT0.0 Privilege Atomic 0 Bits. These bits default to 0 on a power-on reset . The bits are used as 
a logical AND bit mask when writing to PRIVT1 .

PRIVT0.7 to PRIVT0.4 Reserved . Reads return 0 .
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REGISTER DESCRIPTION

PSF, 08h[04h] Processor Status Flags Register (8 bits)

Initialization This register is cleared to 80h on all forms of reset . 
Access Bit 7 (Z) and bit 6 (S) are read-only .

Bits 4, 3 (GPF1, GPF0), bit 2 (OV), bit 1 (C) and bit 0 (E) are unrestricted read/write .

PSF.0 (E) Equals Flag. This bit flag is set to 1 whenever a compare operation (CMP) returns an 
equal result . If a CMP operation returns not equal, this bit is cleared .

PSF.1 (C) Carry Flag. This bit flag is set to 1 whenever an addition or subtraction operation (ADD, 
ADDC, SUB, SUBB) returns a carry or borrow .
This bit flag is cleared to 0 whenever an addition or subtraction operation does not return a 
carry or borrow .

PSF.2 (OV) Overflow Flag. This flag is set to 1 if there is a carry out of bit 14 but not out of bit 15, or 
a carry out of bit 15 but not out of bit 14 from the last arithmetic operation, otherwise, the 
OV flag remains as 0 . OV indicates a negative number resulted as the sum of two positive 
operands, or a positive sum resulted from two negative operands . 

PSF.3 (GPF0) General-Purpose Flag 0

PSF.4 (GPF1) General-Purpose Flag 1. General-purpose flag bits are provided for user software control .

PSF.5 Reserved . Reads return 0 .

PSF.6 (S) Sign Flag. This bit flag mirrors the current value of the high bit of the active accumulator 
(Acc .15) .

PSF.7 (Z) Zero Flag. The value of this bit flag equals 1 whenever the active accumulator is equal to 
zero, and it equals 0 otherwise .
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REGISTER DESCRIPTION

IC, 8h[5h] Interrupt and Control Register (8 bits)

Initialization This register is cleared to 0Ch on all forms of reset .
Access Unrestricted direct read . Write access to bits 0, 4, 5, 6, 7 only . See bit descriptions for 

details .

IC.0 (IGE) Interrupt Global Enable
If this bit is set to 1, interrupts can be enabled individually .
If this bit is set to 0, all interrupts are disabled (except the power-fail warning interrupt, 
which is enabled solely by its interrupt enable (PFIE)) .

IC.1 Reserved . Reads return 0 .

IC.2 (IPS0) Interrupt Priority Status 0

IC.3 (IPS1) Interrupt Priority Status 1. These read-only bits are set to 11b if the processor is not 
serving an interrupt . These bits are updated by the interrupt handler in response to an 
interrupt request . Any value other than 11b indicates that the processor is currently execut-
ing an interrupt service routine with the specified priority . These bits are set to 11b when 
the processor executes the corresponding RETI instruction .

IPS1 IPS0 FUNCTION

0 0 Serving a level 0 (highest priority) interrupt

0 1 Serving a level 1 interrupt

1 0 Serving a level 2 (lowest priority) interrupt

1 1 Not serving any interrupt

IC.7 to IC.4 Reserved . Reads return 0 .

PRIVT1, 08h[06h] Privilege Register Atomic 1 (8 bits)
Initialization This register is reset to 00h on all resets .

Bits 3 and 2 are cleared by hardware when the current IP is not in utility ROM code, nor 
system code .
Bits 1 and 0 are cleared by hardware when the current IP is not in utility ROM, system, nor 
user loader code .

Access Bits 3 and 2 can only be written by utility ROM code, or system code . Bits 1 and 0 can 
only be written by utility ROM code, system code, or user loader code . No read access .

PRIVT1.3 to PRIVT1.0 Privilege Atomic 1 Bits. These bits default to 0 on a power-on reset . The bits are used as 
a logical AND bit mask . Writing these bits sets the corresponding bits in the PRIV register 
using the PRIVT0 register as a logical AND bit mask:
PRIV = (PRIVT0) AND (PRIVT1) .
Writing to PRIVT1 clears the PRIVT0 register .

PRIVT1.7 to PRIVT1.4 Reserved . Reads return 0 .
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REGISTER DESCRIPTION

SC, 08h[08h] System Control Register (16 bits)
Initialization This register is reset to 000001ss100000s0b on all resets . Bits 1, 8, and 9 (PWL, PWLS, 

PWLL) are set to 1 on power-fail and power-on reset only .

Access Bits 8, 9, and 10 have write restrictions (see bit descriptions) . All other bits: unrestricted 
read/write access .

SC.0 Reserved . All reads return 0 .

SC.1 (PWL) Password Lock Application. This bit defaults to 1 on power-fail and power-on reset . 
When this bit is 1, it requires a 32-byte password to be matched with the password in the 
user application program space before allowing access to the user-application password 
protected in-circuit debug or bootstrap loader utility ROM routines . Clearing this bit to 
0 disables the password protection for these utility ROM routines . ROM-assisted active 
debug commands are always disallowed if the value at flash word address 000Eh is pro-
grammed (i .e ., ≠FFFFh) .

SC.2 (ROD) Utility ROM Operation Done . This bit is used to signify completion of a utility ROM opera-
tion sequence to the control units . This allows the debug engine to determine the status 
of a utility ROM sequence . Setting this bit to 1 causes an internal system reset if the JTAG 
SPE bit is also set . Setting the ROD bit clears the JTAG SPE bit if it is set, and the ROD bit 
is automatically cleared by hardware once the control unit acknowledges the done indica-
tion .

SC.3 (UPA) Upper Program Access . The physical program memory is logically divided into four 
pages; P0 and P1 occupy the lower 32KWords while P2 and P3 occupy the upper 
32KWords . P0 and P1 are assigned to the lower half of the program space and are always 
active . However, P2 and P3 must be implicitly activated in the upper half of the program 
space by setting the UPA bit to 1 for normal program execution . When UPA bit is cleared 
to 0, the upper program memory space is occupied by the utility ROM and the physical 
data to be accessible as program memory . This bit is reserved and reads return 0 on all 
parts with 64KB program memory or less .

SC.5 to SC.4
(CDA1, CDA0)

Code Data Access Bits 1:0. The CDA bits are used to logically map physical program 
memory page to the data space for read/write access:

CDA[1:0]
BYTE MODE

ACTIVE PAGE
WORD MODE
ACTIVE PAGE

00 P0 P0 and P1

01 P1 P0 and P1

10 P2 P2 and P3

11 P3 P2 and P3

The logical addresses are depending on which memory segment is executing .
CDA1 is reserved and reads return 0 on all parts with 64KB program memory or less .
CDA0 is reserved and reads return 0 on all parts with 32KB program memory or less .

SC.6 Reserved . All reads return 0 .

SC.7 (TAP) Test Access (JTAG) Port Enable . This bit controls whether the test access port special 
function pins are enabled . The TAP defaults to being enabled . Clearing this bit to 0 dis-
ables the TAP special function pins .

SC.8 (PWLS) Password Lock System. This bit defaults to 1 on power-fail and power-on reset . When 
this bit is 1, it requires a 32-byte password to be matched with the password in the system 
program space before allowing access to the system password-protected in-circuit debug 
or bootstrap loader utility ROM routines . Clearing this bit to 0 disables the password pro-
tection for these utility ROM routines . This register bit can only be written by utility ROM 
code when PRIV = HIGH . ROM assisted active debug commands are always disallowed if 
the value at flash word address 000Eh is programmed (i .e ., ≠FFFFh) .
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SC.9 (PWLL) Password Lock User Loader. This bit defaults to 1 on power-fail and power-on reset . 
When this bit is 1, it requires a 32-byte password to be matched with the password in the 
user loader program space before allowing access to the user loader password-protected 
in-circuit debug or bootstrap loader utility ROM routines . Clearing this bit to 0 disables the 
password protection for these utility ROM routines . This register bit can only be written 
by utility ROM code when PRIV R MEDIUM . ROM-assisted active debug commands are 
always disallowed if the value at flash word address 000Eh is programmed (i .e ., ≠FFFFh) .

SC.10 (MPE) Memory Protection Enable. This bit defaults to 1 on any reset . When this bit is 1, it 
enables memory protection and access control . When this bit is 0, no protection-fault 
interrupts are generated and any code can access the protected resources . This register 
bit can only be changed from 1 to 0 (thereby disabling memory protection) when PRIV = 
HIGH . Note that the ability to read utility ROM is always allowed (independent of the MPE 
bit state) .

SC.15 to SC.11 Reserved . Reads return 0 .

IPR0, 08h[09h] Interrupt Priority Register Zero (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read/write .
IPR0[1:0] (IVP0[1:0]) Interrupt Vector 0 Priority Bits 1:0. These bits are used to specify the priority level of 

interrupt vector 0 .

IVP[1:0] PRIORITY

00 Level 0 (the highest)

01 Level 1

10 Level 2 (the lowest)

11 Reserved (interrupt disabled)

IPR0[3:2] (IVP1[1:0]) Interrupt Vector 1 Priority Bits 1:0. These bits are used to specify the priority level of 
interrupt vector 1 .

IPR0[5:4] (IVP2[1:0]) Interrupt Vector 2 Priority Bits 1:0. These bits are used to specify the priority level of 
interrupt vector 2 .

IPR0[7:6] (IVP3[1:0]) Interrupt Vector 3 Priority Bits 1:0. These bits are used to specify the priority level of 
interrupt vector 3 .

IPR0[9:8] (IVP4[1:0]) Interrupt Vector 4 Priority Bits 1:0. These bits are used to specify the priority level of 
interrupt vector 4 .

IPR0[11:10] (IVP5[1:0]) Interrupt Vector 5 Priority Bits 1:0. These bits are used to specify the priority level of 
interrupt vector 5 .

IPR0[13:12] (IVP6[1:0]) Interrupt Vector 6 Priority Bits 1:0. These bits are used to specify the priority level of 
interrupt vector 6 .

IPR0[15:14] (IVP7[1:0]) Interrupt Vector 7 Priority Bits 1:0. These bits are used to specify the priority level of 
interrupt vector 7 .
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PRIVF, 08h[0Bh] Privilege Flag Register (8 bits)

Initialization This register is cleared to 00h on all forms of reset .

Access Unrestricted direct read/write .

PRIVF.3 to PRIVF.0 Reserved . All reads return 0 .
PRIVF.4 (PULRF) Protected User Loader Read Interrupt Flag. The interrupt flag is set to 1 if code 

attempts/requests to read user loader memory when PULR = 0 . Once set, this flag can 
only be cleared by software or by reset .

PRIVF.5 (PULWF) Protected User Loader Write Interrupt Flag. The interrupt flag is set to 1 if code 
attempts/requests to write user loader memory when PULW = 0 . Once set, this flag can 
only be cleared by software or by reset .

PRIVF.6 (PSYRF) Protected System Read Interrupt Flag. The interrupt flag is set to 1 if code attempts/
requests to read system memory when PSYR = 0 . Once set, this flag can only be cleared 
by software or by reset .

PRIVF.7 (PSYWF) Protected System Write Interrupt Flag. The interrupt flag is set to 1 if code attempts/
requests to write system memory when PSYW = 0 . Once set, this flag can only be cleared 
by software or by reset .

ULDR, 08h[0Ch] User Loader Starting Page Address (16 bits)
Initialization This register is reset to the first page address past the available flash program memory on 

all resets . On a part with 64KB of program memory with 512-byte pages, this register is 
reset to 0080h . 

Access This register can only be modified when PRIV = HIGH . Unrestricted read access .

ULDR.8 to ULDR.0 User Loader Starting Page Address. These bits define the starting page address of the 
user loader memory area .

ULDR.15 to ULDR.9 Reserved . Reads return 0 .

UAPP, 08h[0Dh] User Application Starting Page Address (16 bits)
Initialization This register is reset to the first page address past the available flash program memory on 

all resets . On a part with 64KB of program memory with 512-byte pages, this register is 
reset to 0080h .

Access This register can only be modified when PRIV R MEDIUM . Unrestricted read access .

UAPP.8 to UAPP.0 User Application Starting Page Address. These bits define the starting page address of 
the user application memory area .

UAPP.15 to UAPP.9 Reserved . Reads return 0 .
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CKCN, 08h[0Eh] System Clock Control Register (8 bits)

Initialization Bits 4:0 are cleared to zero on all forms of reset . See bit description for bits 7:5 .
Access Unrestricted read/write, except there is a locking mechanism for the PMME, CD1, and CD0 

bits when changing their bits values; bit 5 is read-only .

CKCN.0 (CD0) Clock Divide Bit 0

CKCN.1 (CD1) Clock Divide Bit 1. If the PMME bit is cleared, the CD0 and CD1 bits control the number 
of oscillator clocks required to generate one system clock as follows:

CD1 CD0
OSCILLATOR CLOCK CYCLES PER SYSTEM CLOCK 

CYCLE

0 0 1 (default)

0 1 2

1 0 4

1 1 8

If the PMME bit is set to 1, the values of CD0 and CD1 cannot be altered and do not affect 
the system clock frequency .

CKCN.2 (PMME) Power-Management Mode Enable. If the PMME bit is cleared to 0, the values of CD0 and 
CD1 determine the number of oscillator clock cycles per system clock cycle . If the PMME 
bit is set to 1, the values of CD0 and CD1 are ignored and the system clock operates in a 
fixed mode of 1 cycle per 256 oscillator cycles (divide by 256) .
If the PMME bit is set to 1, switchback mode has been enabled by setting the SWB bit and 
a switchback source (such as an enabled external interrupt) is currently active, PMME is 
cleared to 0 and cannot be set to 1 unless all switchback sources are inactive .

CKCN.3 (SWB) Switchback Enable. If the SWB bit is cleared to 0, switchback mode is not active . If the 
SWB bit is set to 1, switchback mode is active .
Switchback mode has no effect if power management mode is not active (PMME = 0) . 
If power management mode is active and switchback mode is enabled, the PMME bit is 
cleared to 0 when one of the qualifying events occurs . For details, refer to the switchback 
description .
When any of these conditions cause switchback to clear PMME to 0, the system clock rate 
is then determined by the settings of CD0 and CD1 . After PMME is cleared to 0 by switch-
back, it cannot be set back to 1 as long as any of the above conditions are true .

CKCN.4 (STOP) Stop Mode Select. Setting this bit to 1 causes the MAXQ610 to enter stop mode . This 
does not change the currently selected clock divide ratio (CD0, CD1, PMME) .

CKCN.7 to CKCN.5 Reserved . Reads return 0 .
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WDCN, 08h[0Fh] Watchdog Control Register (8 bits)
Initialization Bits 5, 4, 3, and 0 are cleared to 0 on all forms of reset; for others, see individual bit 

descriptions .

Access Unrestricted direct read/write access .

WDCN.0 (RWT) Reset Watchdog Timer. Setting this bit to 1 resets the watchdog timer count . If watchdog 
interrupt and/or reset modes are enabled, the software must set this bit to 1 before the 
watchdog timer elapses to prevent an interrupt or reset from occurring .
This bit always returns 0 when read .

WDCN.1 (EWT) Enable Watchdog Timer Reset. If this bit is set to 1 when the watchdog timer elapses, 
the watchdog resets the processor 512 system clock cycles later unless action is taken to 
disable the reset event . Clearing this bit to 0 prevents a watchdog reset from occurring but 
does not stop the watchdog timer or prevent watchdog interrupts from occurring if EWDI 
= 1 . If EWT = 0 and EWDI = 0, the watchdog timer is stopped . If the watchdog timer is 
stopped (EWT = 0 and EWDI = 0), setting the EWT bit resets the watchdog interval and 
resets counter, and enables the watchdog timer .
This bit is cleared on power-fail and power-on reset and is unaffected by other forms of 
reset .

WDCN.2 (WTRF) Watchdog Timer Reset Flag. This bit is set to 1 when the watchdog resets the processor . 
Software can check this bit following a reset to determine if the watchdog was the source 
of the reset .
Setting this bit to 1 in software does not cause a watchdog reset . This bit is cleared by 
power-fail and power-on reset only and is unaffected by other forms of reset . It should also 
be cleared by software following any reset so that the source of the next reset can be cor-
rectly determined by software .
This bit is only set to 1 when a watchdog reset actually occurs, so if EWT is cleared to 0 
when the watchdog timer elapses, this bit is not set .

WDCN.3 (WDIF) Watchdog Interrupt Flag. This bit is set to 1 when the watchdog timer interval has 
elapsed or can be set to 1 by user software . When WDIF = 1, an interrupt request occurs 
if the watchdog interrupt has been enabled (EWDI = 1) and not otherwise masked or 
prevented by a higher priority interrupt already in service (i .e ., IGE = 1, and IPS = 11b 
or lower priority interrupt in service in order for the interrupt to occur) . This bit should be 
cleared by software before exiting the interrupt service routine to avoid repeated inter-
rupts . Furthermore, if the watchdog reset has been enabled (EWT = 1), a reset is sched-
uled to occur 512 system clock cycles following setting of the WDIF bit . 

WDCN.4 (WD0)
WDCN.5 (WD1)

Watchdog Timer Mode Select Bit 0
Watchdog Timer Mode Select Bit 1. These bits determine the watchdog interval or the 
length of time between resetting of watchdog timer and the watchdog generated interrupt 
in terms of system clocks . Modifying the watchdog interval through the WD[1:0] bits auto-
matically resets the watchdog timer unless the 512 system clock reset counter is already in 
progress, in which case, changing the WD[1:0] bits does not affect the watchdog timer or 
reset counter .

WD1 WD0
CLOCKS UNTIL 

INTERRUPT
CLOCKS UNTIL RESET

0 0 215 215 + 512

0 1 218 218 + 512

1 0 221 221 + 512

1 1 224 224 + 512
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WDCN.6 (EWDI) Watchdog Interrupt Enable. If this bit is set to 1, an interrupt request can be generated 
when the WDIF bit is set to 1 by any means . If this bit is cleared to 0, no interrupt occurs 
when WDIF is set to 1, however, it does not stop the watchdog timer or prevent watch-
dog resets from occurring if EWT = 1 . If EWT = 0 and EWDI = 0, the watchdog timer is 
stopped . If the watchdog timer is stopped (EWT = 0 and EWDI = 0), setting the EWDI bit 
resets the watchdog interval and reset counter, and enables the watchdog timer .

This bit is cleared to 0 by power-fail and power-on reset and is unaffected by other forms 
of reset .

WDCN.7 (POR) Power-on Reset Flag. This bit is set to 1 anytime when VDD is below the VPOR threshold . 
This bit must be cleared by software . This bit is unaffected by resets and is set to 1 by 
hardware only by POR (VDD < VPOR) .

A[n], 09h[nh] Accumulator n Register (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read/write access .
A[n].15 to A[n].0 This register acts as the accumulator for all ALU arithmetic and logical operations when 

selected by the accumulator pointer (AP) . It can also be used as a general-purpose work-
ing register .

PFX[n], 0Bh[nh] Prefix Register (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read/write access .
PFX[n].15 to PFX[n].0 The prefix register provides a means of supplying an additional 8 bits of high-order data 

for use by the succeeding instruction as well as providing additional indexing capabilities .
This register only holds any data written to it for one execution cycle, after which it reverts 
to 0000h . Although this is a 16-bit register, only the lower 8 bits are actually used for pre-
fixing purposes by the next instruction .
Writing to or reading from any index in the prefix module selects the same 16-bit register . 
However, when the prefix register is written, the index n used for the PFX[n] write also 
determines the high-order bits for the register source and destination specified in the fol-
lowing instruction .

SOURCE, DESTINATION INDEX SELECTION

WRITE TO
SOURCE REGISTER 

RANGE
DESTINATION REGISTER 

RANGE

PFX[0] 00h to 0Fh 00h to 07h

PFX[1] 10h to 1Fh 00h to 07h

PFX[2] 00h to 0Fh 08h to 0Fh

PFX[3] 10h to 1Fh 08h to 0Fh

PFX[4] 00h to 0Fh 10h to 17h

PFX[5] 10h to 1Fh 10h to 17h

PFX[6] 00h to 0Fh 18h to 1Fh

PFX[7] 10h to 1Fh 18h to 1Fh

The index selection reverts to 0 (default mode allowing selection of registers 0h to 7h for 
destinations) after one cycle in the same manner as the contents of the prefix register .
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IP, 0Ch[00h] Instruction Pointer Register (16 bits)

Initialization This register is cleared to 8000h on all forms of reset .

Access Unrestricted direct read/write access .
IP.15 to IP.0 This register contains the address of the next instruction to be executed and is automati-

cally incremented by 1 after each program fetch .
Writing an address value to this register causes program flow to jump to that address . 
Reading from this register does not affect program flow .

SP, 0Dh[01h] Stack Pointer Register (16 bits)

Initialization This register is cleared to 03F0h on all forms of reset .

Access Unrestricted direct read/write access .
SP.9 to SP.0 These 10 bits indicate the current top (equals the lowest address used) of the soft stack . 

This pointer is decremented before a value is pushed on the stack (increasing the stack 
depth, MOVE @++SP, …) and incremented after a value is popped from the stack 
(decreasing the stack depth, MOVE …, @SP--) .

SP.15 to SP.10 Reserved . Reads return 0 .

IV, 0Dh[02h] Interrupt Vector Register (16 bits)

Initialization This register is cleared to 0020h on all forms of reset .

Access Unrestricted direct read-only .
IV.15 to IV.0 This register contains the address of the interrupt service routine . The interrupt handler 

generates a CALL to an offset from this address whenever the corresponding interrupt is 
acknowledged . 

LC[0], 0Dh[06h] Loop Counter 0 Register (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read/write access .
LC[0].15 to LC[0].0 This register is used as the loop counter for the DJNZ LC[0], src operation . This operation 

decrements LC[0] by one and then jumps to the address specified in the instruction by src .

LC[1], 0Dh[07h] Loop Counter 1 Register (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read/write access .
LC[1].15 to LC[1].0 This register is used as the loop counter for the DJNZ LC[1], src operation . This operation 

decrements LC[1] by one and then jumps to the address specified in the instruction by src .

OFFS, 0Eh[03h] Frame Pointer Offset Register (8 bits)

Initialization This register is cleared to 00h on all forms of reset .

Access Unrestricted direct read/write access .
OFFS.7 to OFFS.0 This 8-bit register provides the frame pointer (FP) offset from the base pointer (BP) . The 

frame pointer is formed by unsigned addition of frame pointer base register (BP) and 
frame pointer offset register (OFFS) . The contents of this register can be postincremented 
or postdecremented when using the frame pointer for read operations and can be prein-
cremented or predecremented when using the frame pointer for write operations . A carry 
out or borrow resulting from an increment/decrement operation has no effect on the frame 
pointer base register (BP) .
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DPC, 0Eh[04h] Data Pointer Control Register (16 bits)

Initialization This register is cleared to 005Ch on all forms of reset .

Access Unrestricted direct read/write access .
DPC.1 to DPC.0
(SDPS1, SDPS0)

Source Data Pointer Select Bits 1:0. These bits select one of the three data pointers 
as the active source pointer for the load operation . A new data pointer must be selected 
before being used to read data memory:

SDPS1 SDPS0 SOURCE POINTER SELECTION

0 0 DP[0] 

0 1 DP[1]

1 0 FP (BP[OFFS])

1 1 Reserved (select FP if set)

These bits default to 00b but do not activate DP[0] as an active source pointer until the 
SDPS bits are explicitly cleared to 00b or the DP[0] register is written by an instruction . Also, 
modifying the register contents of a data/frame pointer register (DP[0], DP[1], BP or OFFS) 
changes the setting of the SDPS bits to reflect the active source pointer selection .

DPC.2 (WBS0) Word/Byte Select 0. This bit selects access mode for DP[0] . When WBS0 is set to 1, the 
DP[0] is operated in word mode for data memory access; when WBS0 is cleared to 0, 
DP[0] is operated in byte mode for data memory access .

DPC.3 (WBS1) Word/Byte Select 1. This bit selects access mode for DP[1] . When WBS1 is set to 1, the 
DP[1] is operated in word mode for data memory access; when WBS1 is cleared to 0, 
DP[1] is operated in byte mode for data memory access .

DPC.4 (WBS2) Word/Byte Select 2. This bit selects access mode for BP[OFFS] . When WBS2 is set to 1, 
the BP[OFFS] is operated in word mode for data memory access; when WBS2 is cleared 
to 0, BP[OFFS] is operated in byte mode for data memory access .

DPC.5 Reserved . Reads return 0 .

DPC.6 (CWBS) Code Pointer Word/Byte Select. This bit selects access mode for the code pointer, CP . 
When CWBS is set to 1, the CP is operated in word mode for data memory access; when 
CWBS is cleared to 0, CP is operated in byte mode for data memory access .

DPC.15 to DPC.7 Reserved . Read returns 0 .

GR, 0Eh[05h] General Register (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read/write access .
GR.15 to GR.0 This register is intended primarily for supporting byte operations on 16-bit data . The 16-bit 

register is byte-readable, byte-writable through the corresponding GRL and GRH 8-bit reg-
isters and byte-swappable through the GRS 16-bit register

GRL, 0Eh[06h] General Register Low Byte (8 bits)

Initialization This register is cleared to 00h on all forms of reset .

Access Unrestricted direct read/write access .
GRL.7 to GRL.0 This register reflects the low byte of the GR register and is intended primarily for support-

ing byte operations on 16-bit data . Any data written to the GRL register is also stored in 
the low byte of the GR register .

BP, 0Eh[07h] Frame Pointer Base Register (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read/write access .
BP.15 to BP.0 This register serves as the base pointer for the frame pointer (FP) . The frame pointer is 

formed by unsigned addition of frame pointer base register (BP) and frame pointer offset 
register (OFFS) . The content of this base pointer register is not affected by increment/dec-
rement operations performed on the offset (OFFS) register .
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GRS, 0Eh[08h] General Register Byte-Swapped (16 bits)

Initialization This register is cleared to 0000h on all forms of reset

Access Unrestricted read-only access .
GRS.15 to GRS.0 This register is intended primarily for supporting byte operations on 16-bit data . This 16-bit 

read-only register returns the byte-swapped value for the data contained in the GR register .

GRH, 0Eh[09h] General Register High Byte (8 bits)

Initialization This register is cleared to 00h on all forms of reset .

Access Unrestricted direct read/write access .
GRH.7 to GRH.0 This register reflects the high byte of the GR register and is intended primarily for support-

ing byte operations on 16-bit data . Any data written to the GRH register is also stored in 
the high byte of the GR register .

GRXL, 0Eh[0Ah] General Register Sign Extended Low Byte (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read-only access .

GRXL.15 to GRXL.0 This register provides the sign extended low byte of GR as a 16-bit source .

FP, 0Eh[0Bh] Frame Pointer Register (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read-only access .

FP.15 to FP.0 This register provides the current value of the frame pointer (BP[OFFS]) .

DP[0], 0Fh[03h] Data Pointer 0 Register (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read/write access .
DP[0].15 to DP[0].0 This register is used as a pointer to access data memory . DP[0] can be automatically 

incremented or decremented following each read operation or can be automatically incre-
mented or decremented before each write operation .

DP[1], 0Fh[07h] Data Pointer 1 Register (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read/write access .
DP[1].15 to DP[1].0 This register is used as a pointer to access data memory . DP[1] can be automatically 

incremented or decremented following each read operation or can be automatically incre-
mented or decremented before each write operation .

CP, 0Fh[0Bh] Code Pointer Address Register (16 bits)

Initialization This register is cleared to 0000h on all forms of reset .

Access Unrestricted direct read/write access .
CP.15 to CP.0 This register is used as a pointer to access program code memory . CP can be automati-

cally incremented or decremented following each read operation .
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The MAXQ610 microcontroller uses peripheral registers to control and monitor peripheral modules . These registers 
reside in modules 0h to 3h, with subindex values 0h to 1Fh .

Table 5-1. Peripheral Register Map

Table 5-2. Peripheral Register Bit Function

MODULE INDEX OF SPECIAL FUNCTION REGISTER (SECTIONS I AND II)

MODULE SPECIFIER 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

M0 00000 PO0 PO1 PO2 PO3 EIF0 EIE0 EIF1 EIE1 PI0 PI1 PI2 PI3 EIES0 EIES1

M1 00001 PO4 WUTC WUT PI4 PWCN

M2 00010 TB0R TB0CN TB1R TB1CN IRCN IRCA IRMT IRCNB TB0C TB0V TB1C TB1V IRV

M3 00011 SCON0 SBUF0 SCON1 SBUF1 SPIB SPICN PR0 SMD0 PR1 SMD1 SPICF SPICK

M4 00100

M5 00101

MODULE INDEX OF SPECIAL FUNCTION REGISTER (SECTION III)

MODULE SPECIFIER 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

M0 00000 PD0 PD1 PD2 PD3 CHPREV

M1 00001 PD4

M2 00010

M3 00011

M4 00100

M5 00101

REG
BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PO0 PO0[7:0]

PO1 PO1[7:0]

PO2 PO2[7:0]

PO3 PO3[7:0]

EIF0 IE[7:0]

EIE0 EX[7:0]

EIF1 IE[15:8]

EIE1 EX[15:8]

PI0 PI0[7:0]

PI1 PI1[7:0]

PI2 PI2[7:0]

PI3 PI3[7:0]

EIES0 IT[7:0]

EIES1 IT[15:8]

PD0 PD0[7:0]

PD1 PD1[7:0]

PD2 PD2[7:0]

PD3 PD3[7:0]

CHPREV CHPREV[7:0]
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Table 5-2. Peripheral Register Bit Function (continued)

REG
BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PO4 — — PO4[5:0]

WUTC — — — — — — WTF WTE

WUT WUT[15:0]

PI4 — — PI4[5:0]

PWCN — — — — — — PFRCK1 PFRCK0 PFRST IRRXWP IRTXOUT IRTXOE REGEN PFI PFIE PFD

PD4 — — PD4[5:0]

TB0R TB0R[15:0]

TB0CN C/TB — — TBCS TBCR TBPS2 TBPS1 TBPS0 TFB EXFB TBOE DCEN EXENB TRB ETB CP/RLB

TB1R TB1R[15:0]

TB1CN C/TB — — TBCS TBCR TBPS2 TBPS1 TBPS0 TFB EXFB TBOE DCEN EXENB TRB ETB CP/RLB

IRCN — — — IRDIV[2:0] IRENV[1:0] IRXRL IRCFME IRRXSEL[1:0] IRDATA IRTXPOL IRMODE IREN

IRCA IRCAH[7:0] IRCAL[7:0]

IRMT IRMT[15:0]

IRCNB — — — — RXBCNT IRIE IRIF IROV

TB0C TB0C[15:0]

TB0V TB0V[15:0]

TB1C TB1C[15:0]

TB1V TB1V[15:0]

IRV IRV[15:0]

SCON0 SM0/FE SM1 SM2 REN TB8 RB8 TI RI

SBUF0 SBUF0[7:0]

SCON1 SM0/FE SM1 SM2 REN TB8 RB8 TI RI

SBUF1 SBUF1[7:0]

SPIB SPIB[15:0]

SPICN STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN

PR0 PR0[15:0]

SMD0 — — — — — ESI0 SMOD0 FEDE0

PR1 PR1[15:0]

SMD1 — — — — — ESI1 SMOD1 FEDE1

SPICF ESPII SAS — — — CHR CKPHA CKPOL

SPICK CKR[7:0]

REG
BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PO0 0 0 0 0 0 0 0 0

PO1 0 0 0 0 0 0 0 0

PO2 0 0 0 0 0 0 0 0

PO3 0 0 0 0 0 0 0 0

EIF0 0 0 0 0 0 0 0 0

EIE0 0 0 0 0 0 0 0 0
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Table 5-3. Peripheral Register Reset Values (continued)

REG
BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EIF1 0 0 0 0 0 0 0 0

EIE1 0 0 0 0 0 0 0 0

PI0 s s s s s s s s

PI1 s s s s s s s s

PI2 s s s s s s s s

PI3 s s s s s s s s

EIES0 0 0 0 0 0 0 0 0

EIES1 0 0 0 0 0 0 0 0

PD0 s s s s s s s s

PD1 s s s s s s s s

PD2 s s s s s s s s

PD3 s s s s s s s s

CHPREV s s s s s s s s

PO4 0 0 0 0 0 0 0 0

WUTC 0 0 0 0 0 0 0 0

WUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PI4 0 0 s s s s s s

PWCN 0 0 0 0 0 0 s s s 1 1 0 0 0 0 0

PD4 0 0 s s s s s s

TB0R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TB0CN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TB1R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TB1CN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IRCN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IRCA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IRMT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IRCNB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TB0C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TB0V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TB1C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TB1V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IRV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCON0 0 0 0 0 0 0 0 0

SBUF0 0 0 0 0 0 0 0 0

SCON1 0 0 0 0 0 0 0 0

SBUF1 0 0 0 0 0 0 0 0

SPIB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPICN 0 0 0 0 0 0 0 0

PR0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SMD0 0 0 0 0 0 0 0 0

PR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SMD1 0 0 0 0 0 0 0 0

SPICF 0 0 0 0 0 0 0 0

SPICK 0 0 0 0 0 0 0 0
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5.1 Peripheral Register Bit Descriptions

REGISTER DESCRIPTION

PO0 (00h, 00h) Port 0 Output Register (8-bit register)
Initialization: This register is set to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

PO0.7 to PO0.0 Port 0 Output Register Bits 7:0. The PO0 register stores output data for port 0 when it is 
defined as an output port and controls whether the internal weak p-channel pullup transistor 
is enabled/disabled if a port pin is defined as an input . The contents of this register can be 
modified by a write access . Reading from the register returns the contents of the register . 
Changing the direction of port 0 does not change the data contents of the register .

PO1 (01h, 00h) Port 1 Output Register (8-bit register)
Initialization: This register is set to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

PO1.7 to PO1.0 Port 1 Output Register Bits 7:0. The PO1 register stores output data for port 1 when it is 
defined as an output port and controls whether the internal weak p-channel pullup transistor 
is enabled/disabled if a port pin is defined as an input . The contents of this register can be 
modified by a write access . Reading from the register returns the contents of the register . 
Changing the direction of port 1 does not change the data contents of the register .

PO2 (02h, 00h) Port 2 Output Register (8-bit register)
Initialization: This register is set to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

PO2.7 to PO2.0 Port 2 Output Register Bits 7:0. The PO2 register stores output data for port 2 when it is 
defined as an output port and controls whether the internal weak p-channel pullup transistor 
is enabled/disabled if a port pin is defined as an input . The contents of this register can be 
modified by a write access . Reading from the register returns the contents of the register . 
Changing the direction of port 2 does not change the data contents of the register .

PO3 (03h, 00h) Port 3 Output Register (8-bit register)
Initialization: This register is set to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

PO3.7 to PO3.0 Port 3 Output Register Bits 7:0. The PO3 register stores output data for port 3 when it is 
defined as an output port and controls whether the internal weak p-channel pullup transistor 
is enabled/disabled if a port pin is defined as an input . The contents of this register can be 
modified by a write access . Reading from the register returns the contents of the register . 
Changing the direction of port 3 does not change the data contents of the register .

EIF0 (04h, 00h) External Interrupt Flag 0 Register
Initialization: EIF0 is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

EIF0.7 to EIF0.0 (IE[7:0]) Interrupt Edge Detect Bits 7:0. These bits are set when a negative edge (ITn = 1) or a 
positive edge (ITn = 0) is detected on the interrupt pin n . Setting any of the bits to 1 gener-
ates an interrupt to the CPU if the corresponding interrupt is enabled . The bit remains set 
until cleared by software or a reset . It must be cleared by software before exiting the inter-
rupt source routine or another interrupt is generated as long as the bit remains set .

EIE0 (05h, 00h) External Interrupt Enable 0 Register
Initialization: EIE0 is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

EIE0.7 to EIE0.0 (EX[7:0]) Enable External Interrupt Bits 7:0. Setting any of these bits to 1 enables the correspond-
ing external interrupt . Clearing any of the bits to 0 disables the corresponding interrupt 
function .



5-6

MAXQ610 User’s Guide

REGISTER DESCRIPTION

EIF1 (06h, 00h) External Interrupt Flag 1 Register
Initialization: EIF1 is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

EIF1.7 to EIF1.0 (IE[15:8]) Interrupt Edge Detect Bits 15:8. These bits are set when a negative edge (ITn = 1) or a 
positive edge (ITn = 0) is detected on the interrupt n pin . Setting any of the bits to 1 gener-
ates an interrupt to the CPU if the corresponding interrupt is enabled . The bit remains set 
until cleared by software or a reset . It must be cleared by software before exiting the inter-
rupt source routine or another interrupt is generated as long as the bit remains set .

Note: For the 32-pin package, the INT8 to INT15 functions are not present on external pins, 
however, the associated interrupt registers (EIE1, EIF1, EIES1) are still present . Software 
should not write to the EIF1 register as this could trigger an unplanned interrupt condition if 
EIE1 and EIES1 are used for general purpose .

EIE1 (07h, 00h) External Interrupt Enable 1 Register
Initialization: EIE1 is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

EIE1.7 to EIE1.0 (EX[15:8]) Enable External Interrupt Bits 15:8. Setting any of these bits to 1 enables the correspond-
ing external interrupt . Clearing any of the bits to 0 disables the corresponding interrupt 
function .

Note: For the 32-pin package, the INT8 to INT15 functions are not present on external pins . 
This register can be used as a general-purpose register as long as the user software does 
not write to the EIF1 flag register since this could trigger an unplanned interrupt condition .

PI0 (08h, 00h) Port 0 Input Register
Initialization: The reset value for this register is dependent on the logical states of the pins .

Read/Write Access: Unrestricted read-only .

PI0.7 to PI0.0 Port 0 Input Register Bits 7:0. The PI0 register always reflects the logic state of its pins 
when read . Note that each port pin has a weak pullup circuit when functioning as an input 
and the p-channel pullup transistor is controlled by its respective PO bits . If the PO bit is set 
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the 
port pin into three-state .

PI1 (09h, 00h) Port 1 Input Register
Initialization: The reset value for this register is dependent on the logical states of the pins .

Read/Write Access: Unrestricted read .

PI1.7 to PI1.0 Port 1 Input Register Bits 7:0. The PI1 register always reflects the logic state of its pins 
when read . Note that each port pin has a weak pullup circuit when functioning as an input 
and the p-channel pullup transistor is controlled by its respective PO bits . If the PO bit is set 
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the 
port pin into three-state .

PI2 (0Ah, 00h) Port 2 Input Register
Initialization: The reset value for this register is dependent on the logical states of the pins .

Read/Write Access: Unrestricted read .

PI2.7 to PI2.0 Port 2 Input Register Bits 7:0. The PI2 register always reflects the logic state of its pins 
when read . Note that each port pin has a weak pullup circuit when functioning as an input 
and the p-channel pullup transistor is controlled by its respective PO bits . If the PO bit is set 
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the 
port pin into three-state .
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PI3 (0Bh, 00h) Port 3 Input Register
Initialization: The reset value for this register is dependent on the logical states of the pins .

Read/Write Access: Unrestricted read .

PI3.7 to PI3.0 Port 3 Input Register Bits 7:0. The PI3 register always reflects the logic state of its pins 
when read . Note that each port pin has a weak pullup circuit when functioning as an input 
and the p-channel pullup transistor is controlled by its respective PO bits . If the PO bit is set 
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the 
port pin into three-state .

EIES0 (0Ch, 00h) External Interrupt Edge Select 0 Register
Initialization: EIES0 is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

EIES0.7 to EIES0.0 (IT[7:0]) Edge Select for External Interrupt Bits 7:0
ITn = 0: External Interrupt n is positive edge triggered .
ITn = 1: External Interrupt n is negative edge triggered .

EIES1 (0Dh, 00h) External Interrupt Edge Select 1 Register
Initialization: EIES1 is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

EIES1.7 to EIES1.0 (IT[15:8]) External Interrupt Edge Select Bits 15:8
ITx = 0: External interrupt x is positive edge triggered .
ITx = 1: External interrupt x is negative edge triggered .

Note: For the 32-pin package, the INT8 to INT15 functions are not present on external pins . 
This register can be used as a general-purpose register as long as the user software does 
not write to the EIF1 flag register since this could trigger an unplanned interrupt condition .

PD0 (10h, 00h) Port 0 Direction Register
Initialization: This register is cleared to 00h on all resets except power-fail reset . This register is unaf-

fected by power-fail reset .
Read/Write Access: Unrestricted read/write .

PD0.7 to PD0.0 Port 0 Direction Register Bits 7:0. PD0 is used to determine the direction of the port 0 
function . The port pins are independently controlled by their direction bits . When a bit is set 
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin . 
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external 
signal to drive the pin . Note that each port pins has a weak pullup circuit when functioning 
as an input and the p-channel pullup transistor is controlled by its respective PO bits . If the 
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off 
and forces the port pin into three-state .

PD1 (11h, 00h) Port 1 Direction Register
Initialization: This register is cleared to 00h on all resets except power-fail reset . This register is unaf-

fected by power-fail reset .
Read/Write Access: Unrestricted read/write .

PD1.7 to PD1.0 Port 1 Direction Register Bits 7:0. PD1 is used to determine the direction of the port 1 
function . The port pins are independently controlled by their direction bit . When a bit is set 
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin . 
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external 
signal to drive the pin . Note that each port pin has a weak pullup circuit when functioning 
as an input and the p-channel pullup transistor is controlled by its respective PO bits . If the 
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off 
and forces the port pin into three-state .
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PD2 (12h, 00h) Port 2 Direction Register
Initialization: This register is cleared to 00h on all resets except power-fail reset . This register is unaf-

fected by power-fail reset .
Read/Write Access: Unrestricted read/write .

PD2.7 to PD2.0 Port 2 Direction Register Bits 7:0. PD2 is used to determine the direction of the port 2 
function . The port pins are independently controlled by their direction bit . When a bit is set 
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin . 
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external 
signal to drive the pin . Note that each port pin has a weak pullup circuit when functioning 
as an input and the p-channel pullup transistor is controlled by its respective PO bits . If the 
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off 
and forces the port pin into three-state .

PD3 (13h, 00h) Port 3 Direction Register
Initialization: This register is cleared to 00h on all resets except power-fail reset . This register is unaf-

fected by power-fail reset .
Read/Write Access: Unrestricted read/write .

PD3.7 to PD3.0 Port 3 Direction Register Bits 7:0. PD3 is used to determine the direction of the port 3 
function . The port pins are independently controlled by their direction bit . When a bit is set 
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin . 
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external 
signal to drive the pin . Note that each port pin has a weak pullup circuit when functioning 
as an input and the p-channel pullup transistor is controlled by its respective PO bits . If the 
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off 
and forces the port pin into three-state .

CHPREV (13h, 00h) Chip Revision Register (16-bit register)
Initialization: The reset value of this register is dependent on the revision of the chip .

Read/Write Access: Unrestricted read-only .

CHPREV.7 to CHPREV.0 Chip Revision ID Register Bits 7:0. The register is used to provide chip revision informa-
tion . Read accesses return the chip revision in the lower byte and 00h in the upper byte 
(e .g ., 00A1h) .

PO4 (00h, 01h) Port 4 Output Register (8-bit register)
Initialization: This register is set to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

PO4.5 to PO4.0 Port 4 Output Register Bits 5:0. The PO4 register stores output data for port 4 when it is 
defined as an output port and controls whether the internal weak p-channel pullup transistor 
is enabled/disabled if a port pin is defined as an input . The contents of this register can be 
modified by a write access . Reading from the register returns the contents of the register . 
Changing the direction of port 4 does not change the data contents of the register .

PO4.7 to PO4.6 Reserved . Reads return 0 .
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WUTC (04h, 01h) Wake-Up Timer Control Register (8-bit register)
Initialization: This register is cleared to 00h on all resets .

Read/Write Access: Unrestricted read/write access except that bit 1 is read-only .

WUTC.0 (WTE) Wake-Up Timer Enable. This control bit enables down counting of the 16-bit wake-up 
timer . Clearing this bit resets the internal wake-up timer down counter and resets WTF = 
0 . When WTE = 0, the initial down-counter starting value written into the WUT register is 
accessed on WUT register reads . Setting this bit from 0 to 1 loads the internal down counter 
with the initial value written to the WUT register, and enables down counting of the wake-up 
timer using the ring oscillator . When WTE = 1, the internal down counter value is accessed 
on WUT register reads . When WTE = 1, hardware setting of the WTF bit can generate an 
interrupt request to the CPU if also enabled globally . 

WUTC.1 (WTF) Wake-Up Timer Flag. This bit serves as a status bit/interrupt flag to denote when the wake-
up timer down count has reached 0h . Hardware sets this bit whenever the wake-up down 
counter reaches 0h . The WTF bit is cleared by hardware any time the WTE bit is changed 
from 1 to 0 . 

WUTC.7 to WUT.2 Reserved . Reads return 0 .

WUT (05h, 01h) Wake-Up Timer Register (16-bit register)
Initialization: This register is cleared to 0000h on all resets .

Read/Write Access: Unrestricted write access .
When WTE = 0, reads access the initial starting value written to WUT . When WTE = 1, reads 
access the internal down counter, thus multiple reads should be made to attain a stable 
value

WUT.15 to WUT.0 Wake-Up Timer Value Register Bits 15:0. These bits reflect the 16 bit value of the Wake-
Up Timer . When WTE = 0, the initial wake-up timer starting value may be accessed by 
reads and writes of the WUT register . This initial starting value is retained internally so that 
triggering another wake-up timer interval requires only toggling of the WTE bit 1 ≥ 0 ≥ 1 . 
When WTE = 1, the internal down-counter value is accessed by reads of WUT, however, 
write access is still directed to the initial starting value (that is loaded to the down counter 
each time WTE is changed 0 ≥ 1) . The 16-bit wake-up timer counts downward until reach-
ing 0h unless disabled . The internal down counter is asynchronously reset to 0 anytime the 
wake-up timer is disabled by clearing WTE = 0 . Once started, the WTF flag is set by hard-
ware when the down count reaches 0h . The 0FFFFh starting state for the WUT[15:0] bits 
yield the maximum possible down-count range . Writing the WUT[15:0] bits establishes the 
down-count starting values shown below:

WUT[15:0] DOWN-COUNT START VALUE

0001h 1

0002h 2

0003h 3

0004h 4

--Other-- (WUT[15:0])

0FFFEh (216  - 2) = 65,534

0FFFFh (216  - 1) = 65,535

PI4 (08h, 01h) Port 4 Input Register
Initialization: The reset value for this register is dependent on the logical states of the pins .

Read/Write Access: Unrestricted read .

PI4.5 to PI4.0 Port 4 Input Register Bits 5:0. The PI4 register always reflects the logic state of its pins 
when read . Note that each port pin has a weak pullup circuit when functioning as an input 
and the p-channel pullup transistor is controlled by its respective PO bits . If the PO bit is set 
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the 
port pin into three-state .

PI4.7 to PI4.6 Reserved . Reads return 0 .
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PWCN (0Ch, 01h) Power Control Register (16-bit register)
Initialization: This register is set to 000000sss1100000b on all forms of reset .

Read/Write Access: Unrestricted read/write .

PWCN.0 (PFD) Power-Fail Monitor Disable. This bit determines whether the power-fail monitoring is 
enabled in stop mode when the regulator is off (REGEN = 0) . When the regulator is enabled 
(as in normal operation or when REGEN = 1 in stop mode), the power-fail monitoring is 
always enabled, independent of the PFD bit setting . Otherwise, when set to 1, the power-
fail reset detection for DVDD is disabled when the device is placed into stop mode . When 
placed into stop mode with PFD = 1 and REGEN = 0, the power-fail reset comparator shuts 
down . When configured to 0 with REGEN = 0, the power-fail monitoring function is enabled 
for detecting the condition DVDD < VRST during stop mode .

PWCN.1 (PFIE) Power-Fail Monitor Interrupt Enable. Setting this bit to 1 generates an interrupt to the CPU 
when PFI is set to 1 . Clearing this bit to 0 disables the interrupt from generating . The power-
fail monitor interrupt is not masked by the global interrupt enable (IGE) and is controlled 
solely by the PFIE bit .

PWCN.2 (PFI) Power-Fail Monitor Interrupt. This bit is set to 1 when the supply voltage falls below the 
power-fail warning threshold . Clearing this bit to 0 clears the interrupt flag . However, if the 
supply voltage is still below the threshold, this flag is set again . Setting this bit to 1 causes 
an interrupt to the CPU when PFIE = 1 . The power-fail monitor interrupt is not masked by 
the global interrupt enable (IGE) and is controlled solely by the PFIE bit .

It is not recommended to write to flash when the supply voltage drops below the power-fail 
warning level as there is uncertainty in the duration of continuous power supply . The user 
application should check the status of the PFI flag before initiating a flash program/erase 
operation .

PWCN.3 (REGEN) Regulator Enable. When set to 1, the internal regulator remains powered on when the 
device is placed in stop mode . When cleared to 0, the internal regulator is shut down to 
conserve power . The regulator is always enabled outside of stop mode, independent of the 
REGEN bit setting .

PWCN.4 (IRTXOE) IRTX Output Enable. The IRTXOE bit is used in conjunction with the IRTXOUT bit to deter-
mine the state of the IRTX pin when the IR timer is not enabled (i .e ., IREN = 0) . When the bit 
is set to 1, the IRTX pin is used as an output; data in the IRTXOUT bit is driven on the pin . 
When the bit is cleared to 0, the IRTX pin is three-stated (if IRTXOUT = 0) or weakly pulled 
up (if IRTXOUT = 1) .

IRTXOE IRTXOUT IREN IRTX PIN STATE
0 0 0 High-Z
0 1 0 Weak Pullup
1 0 0 Strong 0
1 1 0 Strong 1
X X 1 IR Timer Tx Control
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PWCN.5 (IRTXOUT) IRTX Output Pin Control. This bit controls the output drive state for the IRTX pin when the 
IR timer is not enabled (i .e ., IREN = 0) and when the IRTX pin has been enabled for out-
put by IRTXOE = 1 . When IREN = 0 and IRTXOE = 1, setting this bit to 1 enables a strong 
output high drive on the IRTX pin . Clearing this bit to 0 enables a strong output low drive 
on the IRTX pin . When IRTXOE = 0 and the IR timer is not enabled (IREN = 0), this bit con-
trols the input mode for the IRTX pin . When IRTXOE = 0, the IRTX pin is three-state . When 
IRTXOE = 1, the pin is weakly pulled up .

PWCN.6 (IRRXWP) IRRX Weak Pullup Enable. This bit controls the input mode of the IRRX pin . When this bit 
is set to 1, the internal weak pullup is enabled . When this bit is cleared to 0, the internal 
weak pullup is turned off, resulting in the three-state input mode .

PWCN.7 (PFRST) Power-Fail Reset Flag. This bit is set to 1 whenever a power-fail reset occurs . It is unaf-
fected by other forms of reset . This bit can be checked by software following a reset to 
determine if it was a power-fail reset that occurred . It should always be cleared by software 
following a reset to ensure that the source of any future reset can be determined correctly .
Note that this bit is set anytime VDD < VRST . The WDCN .POR bit can be examined to deter-
mine whether VDD was below the VPOR threshold.

PWCN.9 to PWCN.8 (PFRCK[1:0]) Power-Fail Reset Check Time Bits 1:0. These bits are used to enable duty cycling of the 
VRST power-monitoring circuitry during the time when VDD is below the VRST threshold, but 
has not reached the POR threshold . The duty cycling of the power-fail monitor during the 
VRST condition is provided to reduce the time-averaged current consumption and extend 
the SRAM data-retention time when the battery voltage is low, but still provide adequate 
response time to exit the VRST state if the battery source is replaced . These bits are reset 
only by POR (not even VRST) . The table below provides the bit settings and corresponding 
duty cycling of the power monitor check when VPOR < VDD < VRST .

PFRCK[1:0]
POWER-FAIL MONITOR CHECK INTERVAL (NANOPOWER RING 

OSCILLATOR CYCLES)

00 No interval defined (Monitor on always as normal)

01 210 (~128ms for 8kHz nanopower ring oscillator frequency)

10 211 (~256ms for 8kHz nanopower ring oscillator frequency)

11 212 (~512ms for 8kHz nanopower ring oscillator frequency)

PWCN.15 to PWCN.10 Reserved . Read returns 0 .

PD4 (10h, 01h) Port 4 Direction Register
Initialization: This register is cleared to 00h on all resets except power-fail reset . This register is unaf-

fected by power-fail reset .
Read/Write Access: Unrestricted read/write .

PD4.5 to PD4.0 Port 4 Direction Register Bits 5:0. PD4 is used to determine the direction of the port 4 
function . The port pins are independently controlled by their direction bit . When a bit is set 
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin . 
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external 
signal to drive the pin . Note that each port pin has a weak pullup circuit when functioning 
as an input and the p-channel pullup transistor is controlled by its respective PO bits . If the 
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off 
and forces the port pin into three-state .

PD4.7 to PD4.6 Reserved . Reads return 0 .

TB0R (00h, 02h) Timer B 0 Capture/Reload Value Register (16-bit register)
Initialization: This register is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read/write .

TB0R.15 to TB0R.0 Timer B Capture/Reload Bits 15:0. This register is used to capture the TBV value when 
Timer B is configured in capture mode . This register is also used as the 16-bit reload value 
when Timer B is configured in autoreload mode .
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TB0CN (01h, 02h) Timer B 0 Control Register (16-bit register)
Initialization: This register is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read/write .

TB0CN.0 (CP/RLB) Capture/Reload Select. This bit determines whether the capture or reload function is used 
for Timer B . Timer B functions in an autoreload mode following each overflow/underflow . 
See the TFB bit description for overflow/underflow condition . Setting this bit to 1 causes a 
Timer B capture to occur when a falling edge is detected on TBB if EXENB is 1 . Clearing 
this bit to 0 causes an autoreload to occur when Timer B overflow or a falling edge is 
detected on TBB if EXENB is 1 . It is not intended that the Timer B compare functionality 
should be used when operating in capture mode .

TB0CN.1 (ETB) Enable Timer B Interrupt. Setting this bit to 1 enables the interrupt from the Timer B TFB 
and EXFB flags in TBCN . In Timer B clock output mode (TBOE = 1), the timer overflow flag 
(TFB) is still set on an overflow, however, the TBOE = 1 condition prevents this flag from 
causing an interrupt when ETB = 1 .

TB0CN.2 (TRB) Timer B Run Control. This bit enables Timer B operation when set to 1 . Clearing this bit to 
0 halts Timer B operation and preserves the current count in TBV .

TB0CN.3 (EXENB) Timer B External Enable. Setting this bit to 1 enables the capture/reload function on the 
TBB pin for a negative transition (in up-counting mode) . A reload results in TBV being 
reset to 0000h . Clearing this bit to 0 causes Timer B to ignore all external events on TBB 
pin . When operating in autoreload mode (CP/RLB = 0) with the PWM output functionality 
enabled, enabling the TBB input function (EXENB = 1) allows PWM output negative transi-
tions to set the EXFB flag, however, no reload occurs as a result of the external negative 
edge detection .

TB0CN.4 (DCEN) Down-Count Enable. This bit in conjunction with the TBB pin controls the direction that 
Timer B counts in 16-bit autoreload mode . Clearing this bit to 0 causes Timer B to count 
up only . Setting this bit to 1 enables the up/down-counting mode (i .e ., it causes Timer B 
to count up if the TBB pin is 1 and to count down if the TBB pin is 0) . When Timer B PWM 
output mode functionality is enabled along with up/down counting (DCEN = 1), the up/
down-count control of Timer B is controlled internally based upon the count in relation to the 
register settings . In the compare modes, the DCEN bit controls whether the timer counts up 
and resets (DCEN = 0), or counts up and down (DCEN = 1) .
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TB0CN.5 (TBOE) Timer B Output Enable. Setting this bit to 1 enables the clock output function on the TBA 
pin if C/TB = 0 . Timer B rollovers do not cause interrupts . Clearing this bit to 0 allows the 
TBA pin to function as either a standard port pin or a counter input for Timer B . Timer B 0 
and Timer B 1 share the TBA pin . If both timers are configured to generate clock output, the 
Timer B 0 clock output special function takes priority over the Timer B 1 clock output .

TB0CN.6 (EXFB) External Timer B Trigger Flag. When configured as a Timer (C/TB = 0), a negative transi-When configured as a Timer (C/TB = 0), a negative transi-
tion on the TBB pin causes this flag to be set if (CP/RLB = EXENB = 1) or (CP/RLB = DCEN 
= 0 and EXENB = 1) or (CP/RLB = 0 and DCEN = EXENB = 1 and TBCS:TBCR ≠ 00b) . 
When CP/RLB = 0 and DCEN = 1 and TBCS:TBCR = 00b, EXFB toggles whenever Timer B 
underflows or overflows . Overflow/underflow condition is the same as described for the TFB 
bit . In this mode, EXFB can be used as the 17th timer bit and does not cause an interrupt . If 
set by a negative transition, this flag must be cleared by software . Setting this bit to 1 forces 
a timer interrupt if enabled .

TB0CN.7 (TFB) Timer B Overflow Flag . This bit is set when Timer B overflows from TBR or the count is 
equal to 0000h in down count mode . It must be cleared by software .

TB0CN.10 to TB0CN.8 (TBPS[2:0]) Timer B Clock Prescaler Bits 2:0 . The TBPS[2:0] bits select the clock prescaler applied 
to the system clock input to Timer B . The TBPS[2:0] bits should be configured by the 
user when the timer is stopped (TRB = 0) . While hardware does not prevent changing the 
TBPS[2:0] bits when the timer is running, the resulting behavior is indeterministic .

Timer B Clock = System Clock/2(2xTBPS[2:0])

TBPS[2:0] TIMER B INPUT CLOCK

000 Sysclk/1

001 Sysclk/4

010 Sysclk/16

011 Sysclk/64

100 Sysclk/256

101 Sysclk/1024

11x Sysclk/1

TB0CN.11 (TBCR) TBB Pin Output Reset Mode

TB0CN.12 (TBCS) TBB Pin Output Set Mode. These mode bits define whether the PWM mode output function 
is enabled on the TBB pin, the initial output starting state, and what compare mode output 
function is in effect . Note that the TBB pin still has certain input functionality when the PWM 
output function is enabled . Reference the PWM Output Function section for details on this 
mode .

TB0CN.14 to TBCN.13 Reserved . Reads return 0 .

TB0CN.15 (C/TB) Counter/Timer Select. This bit determines whether Timer B functions as a timer or counter . 
Setting this bit to 1 causes Timer B to count negative transitions on the TBA pin . Clearing 
this bit to 0 causes Timer B to function as a timer . The speed of Timer B is determined by 
the TBPS[2:0] bits of TBCN .

TB1R (02h, 02h) Timer B Capture/Reload Value Register (see the TB0R register bit description)

TB1CN (03h, 02h) Timer B Control Register (see the TB0CN register bit description)
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IRCN (04h, 02h) Infrared Control Register (16-bit register)
Initialization: This register is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read/write .

IRCN.0 (IREN) IR Enable. This register bit enables the IR module . Setting this bit to 1 starts the operating 
mode as defined by IRMODE bit . Clearing this bit to 0 terminates IR operation .

IRCN.1 (IRMODE) IR Mode. This register bit controls the IR module operation mode .

IRMODE IR OPERATION MODE

0 Receive Mode

1 Transmit Mode

IRCN.2 (IRTXPOL) IR TX Polarity Select. When the IR timer is enabled (IREN = 1), this bit selects the starting/
idle logic state, and the carrier polarity for the IRTX transmit output . This bit also impacts the 
polarity of the IRTXM envelope when the independent modulator transmit output mode is 
enabled (IRENV[1:0] = 01b or 10b) . When IRENV[1:0] = 01b or 10b, the latched IRDATA bit 
is directly output to the IRTXM pin as the envelope when IRTXPOL = 0 . When IRTXPOL = 1, 
the complement of the latched IRDATA bit is output .

IRCN.3 (IRDATA) IR Data. This register bit defines how the carrier is modulated in transmit mode and in 
receive mode, it contains the state of IRRX when a qualified capture event happens . When 
IR transmit mode is in effect, setting IRDATA = 1 enables the output of the carrier module 
(as affected by IRTXPOL) to be visible on the IRTX pin . When IRDATA = 0, the IR module is 
put in the idle state and IRTXPOL is output onto IRTX . In receive mode, the IRDATA bit con-
tains the latched state of the IRRX pin each time a capture event occurs .

IRCN.5 to IRCN.4 (IRRXSEL[1:0]) IR Receive Edge Select Bits. These bits define which edge of the input signal trigger a 
receive capture function when enabled . 

IRRXSEL[1:0] IR RECEIVE MODE

00 Trigger on falling edge

01 Trigger on rising edge

10 Trigger on both rising and falling edge

11 Reserved (disables edge detection)

IRCN.6 (IRCFME) IR Clock Frequency Mux Enable. In receive mode, setting this bit to 1 enables direct 
clocking of the IRV register using the defined IRCLK during the IR receive operation . 
Clearing this bit to 0 results in IRV counting of the IRCA-defined carrier during the receive 
operation . Using IRCFME = 1 allows IRCLK clock resolution when capturing whereas 
IRCFME = 0 allows only (IRCLK/2) resolution when IRCA = 0000h . In transmit mode, set-
ting this bit to 1 enables direct clocking of the IRV register down counter with IRCLK so 
that intervals can be generated with IRCLK resolution . When this bit is cleared to 0, the IRV 
down counter is clocked with the IRCA-defined carrier clock, resulting in IRV interval gen-
eration according to the defined carrier frequency .

IRCN.7 (IRXRL) IR Receive Reload Enable. Setting this bit to 1 enables automatic reload of the IRV register 
with 0000h whenever a qualified edge event capture occurs during the IR receive opera-
tion . If IRXRL = 0, the IRV register is not reloaded with 0000h, but continues running during 
the IR receive operation .

IRCN.9 to IRCN.8 (IRENV[1:0]) IR Envelope Mode Bits 1:0. Setting either of these bits (but not both) to 1 enables the 
envelope modulation signal (based upon the IRDATA and IRTXPOL bits) to be output sepa-
rately to the IRTXM pin during transmit mode . When the bits are both cleared to 0 or set to 
1, the standard internal modulation is performed during IR transmit mode and the envelope 
signal is not output to the IRTXM pin . When the envelope mode is enabled, it is possible to 
output either the modulated or unmodulated carrier to the IRTX pin (see table) .

IRENV[1:0] IRTX OUTPUT

00 or 11
Envelope mode disabled .
Standard IRTX modulation (default) .

01 Standard IRTX modulation .

10 Constant IRTX carrier (unmodulated) .



5-15

MAXQ610 User’s Guide

REGISTER DESCRIPTION

IRCN.12 to IRCN.10 (IRDIV[2:0]) IR Clock Divide Bits. These two bits select the divide ratio for the IR input clock .

IRDIV[2:0] IR INPUT CLOCK-DIVIDE RATIO
000 fSYSCLK/1
001 fSYSCLK/2
010 fSYSCLK/4
011 fSYSCLK/8
100 fSYSCLK/16
101 fSYSCLK/32
110 fSYSCLK/64
111 fSYSCLK/128

IRCN.15 to IRCN.13 Reserved . Reads return 0 .

IRCA (05h, 02h) IR Carrier Register (16-bit register)
Initialization: This register is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read/write .

IRCA.7 to IRCA.0 (IRCAL[7:0]) IR Carrier Low Byte Bits 7:0. The IRCAL byte defines the number of IR input clocks during 
carrier low time . The carrier low time = IRCAL[7:0] + 1 . 

IRCA.15 to IRCA.8 (IRCAH[7:0]) IR Carrier High Byte Bits 7:0. The IRCAH byte defines the number of IR input clocks dur-
ing carrier high time . The carrier high time = IRCAH[7:0] + 1 .

IRMT (06h, 02h) IR Modulator Time (16-bit register)
Initialization: This register is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read/write .

IRMT.15 to IRMT.0 IR Modulator Time Bits 15:0. The IRMT register is a 16-bit register that defines the IRDATA 
active time during transmit mode . In receive mode (when RXBCNT = 0), it is used to cap-
ture the IRV value on qualified IRRXSEL edges . In receive mode (when RXBCNT = 1), the 
IRMT register increments on detection of selected IRRXSEL edge(s) . When RXBCNT is 
changed from 0 to 1, the IRMT register is set to 0001h by hardware .

IRCNB (07h, 02h) Infrared Control Register B (8-bit register)
Initialization: This register is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

IRCNB.0 (IROV) IR Timer Overflow Flag. This flag is set to 1 when the IR timer overflows from 0FFFFh to 
0000h in receive mode . This bit must be cleared to 0 by software once it is set .

IRCNB.1 (IRIF) IR Interrupt Flag. This flag is set to 1 during transmit when the IR timer reloads its value 
and in receive mode (if RXBCNT = 0), when a capture occurs . In receive mode (when 
RXBCNT = 1), this flag is set whenever the IRCA*2 interval timer expires . This bit must be 
cleared to 0 by software once it is set .

IRCNB.2 (IRIE) IR Interrupt Enable. Setting this bit to 1 enables an interrupt be generated to the CPU 
when the IR timer overflow (IROV) or IR interrupt flag is set (IRIF) . Clearing this bit to 0 dis-
ables IR timer interrupt generation .

IRCNB.3 (RXBCNT) Receive Carrier Burst-Count Enable. Setting this bit to 1 enables the carrier burst count-
ing mode for the IR timer when operating in receive mode . This bit is not meaningful for 
the transmit mode . Whenever software changes RXBCNT from 0 to 1, the IRMT register is 
set to 0001h by hardware . When RXBCNT = 1, the IR timer receive mode is modified in the 
following ways: 1) The IRV register is not captured to the IRMT register on detection of the 
IRRXSEL[1:0] selected edge(s); 2) The IRMT register is incremented on detection of the 
IRRXSEL[1:0] selected edge(s); 3) The IRIF flag is no longer set on capture edge detec-
tion; 4) An IRCA x 2 interval timer is enabled and upon expiration the IRIF flag is set . When 
RXBCNT = 0, the receive carrier burst-count mode is disabled and normal receive capture 
functionality can be used .

IRCNB.7 to IRCNB.4 Reserved . Reads return 0 .
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TB0C (08h, 02h) Timer B 0 Compare Register (16-bit register)
Initialization: This register is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read/write .

TB0C.15 to TB0C.0 Timer B Compare Bits 15:0. This register is used for comparison versus the TBV value 
when Timer B is operated in compare mode .

TB0V (09h, 02h) Timer B 0 Value Register (16-bit register)
Initialization: The Timer B Value is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read/write .

TB0V.15 to TB0V.0 Timer B Value Bits 15:0. This register is used to load and read the 16-bit Timer B value .

TB1C (0Ah, 02h) Timer B Compare Register (see the TB0C register bit description)

TB1V (0Bh, 02h) Timer B Value Register (see the TB0V register bit description)

IRV (0Ch, 02h) IR Value Register (16-bit register)
Initialization: This register is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read/write .

IRV.15 to IRV.0 IR Value Register Bits 15:0. The IRV register is a 16-bit register that holds the current IR 
timer value . The IR timer value starts counting when the IREN bit is set to 1 . It stops count-
ing when the IREN bit is cleared to 0 and retains the current timer value .

SCON0 (00h, 03h) Serial Port 0 Control Register 
Initialization: The serial port control is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

SCON0.0 (RI) Receive Interrupt Flag. This bit indicates that a data byte has been received in the serial 
port buffer . The bit is set at the end of the 8th bit for mode 0, after the last sample of the 
incoming stop bit for mode 1 subject to the value of the SM2 bit, or after the last sample of 
RB8 for modes 2 and 3 . This bit must be cleared by software once set .

SCON0.1 (TI) Transmit Interrupt Flag. This bit indicates that the data in the serial port data buffer has 
been completely shifted out . It is set at the end of the last data bit for all modes of operation 
and must be cleared by software once set .

SCON0.2 (RB8) 9th Received Bit State. This bit identifies the state of the 9th bit of received data in serial 
port modes 2 and 3 . When SM2 is 0, it is the state of the stop bit in mode 1 . This bit has no 
meaning in mode 0 .

SCON0.3 (TB8) 9th Transmission Bit State. This bit defines the state of the 9th transmission bit in serial 
port modes 2 and 3 .

SCON0.4 (REN) Receive Enable .
REN_0 = 0: Serial port 0 receiver disabled .
REN_0 = 1: Serial port 0 receiver enabled for modes 1, 2, and 3 . Initiate synchronous 
reception for mode 0 .

SCON0.5 (SM2) Serial Port Mode Bit 2. Setting this bit in mode 1 ignores reception if an invalid stop bit is 
detected . Setting this bit in mode 2 or 3 enables multiprocessor communications, and pre-
vents the RI bit from being set and the interrupt from being asserted if the 9th bit received 
is 0 . This bit also used to support mode 0 for clock selection:
SM2 = 0: Clock is divided by 12 .
SM2 = 1: Clock is divided by 4 .
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SCON0.6 (SM1)
SCON0.7 (SM0/FE)

Serial Port 0 Mode Bits 1:0 (when FEDE is 0) . When FEDE is set to 1, this bit is the 
Framing Error Flag that is set upon detection of an invalid stop bit . It must be cleared by 
software . Modification of this bit when FEDE is set has no effect on the serial mode .

MODE SM2 SM1 SM0 FUNCTION
LENGTH 

(BITS)
PERIOD

0 0 0 0 Synchronous 8 12 system clocks

0 1 0 0 Synchronous 8 4 system clocks

1 x 1 0 Asynchronous 10
64/16 baud clocks 
(SMOD = 0/1)

2 0 0 1 Asynchronous 11
64/32 system 
clocks (SMOD = 
0/1)

2 1 0 1 Asynchronous (MP) 11
64/32 system 
clocks (SMOD = 
0/1)

3 0 1 1 Asynchronous 11
64/16 baud clocks 
(SMOD = 0/1)

3 1 1 1 Asynchronous (MP) 11
64/16 baud clocks 
(SMOD = 0/1)

SBUF0 (01h, 03h) Serial Data Buffer 0
Initialization: This buffer is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

SBUF0.7 to SBUF0.0 Serial Data Buffer 0 Bits 7:0. Data for serial port 0 is read from or written to this location . 
The serial transmit and receive buffers are separate but both are addressed at this location .
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SCON1 (02h, 03h) Serial Port 1 Control Register 
Initialization: The serial port control is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

SCON1.0 (RI) Receive Interrupt Flag. This bit indicates that a data byte has been received in the serial 
port buffer . The bit is set at the end of the 8th bit for mode 0, after the last sample of the 
incoming stop bit for mode 1 subject to the value of the SM2 bit, or after the last sample of 
RB8 for modes 2 and 3 . This bit must be cleared by software once set .

SCON1.1 (TI) Transmit Interrupt Flag. This bit indicates that the data in the serial port data buffer has 
been completely shifted out . It is set at the end of the last data bit for all modes of operation 
and must be cleared by software once set .

SCON1.2 (RB8) 9th Received Bit State. This bit identifies the state of the 9th bit of received data in serial 
port modes 2 and 3 . When SM2 is 0, it is the state of the stop bit in mode 1 . This bit has no 
meaning in mode 0 .

SCON1.3 (TB8) 9th Transmission Bit State . This bit defines the state of the 9th transmission bit in serial 
port modes 2 and 3 .

SCON1.4 (REN) Receive Enable
REN_0 = 0: Serial port 0 receiver disabled .
REN_0 = 1: Serial port 0 receiver enabled for modes 1, 2, and 3 . Initiate synchronous 
reception for mode 0 .

SCON1.5 (SM2) Serial Port 1 Mode Bit 2. Setting this bit in mode 1 ignores reception if an invalid stop bit is 
detected . Setting this bit in mode 2 or 3 enables multiprocessor communications, and pre-
vents the RI bit from being set and the interrupt from being asserted if the 9th bit received 
is 0 . This bit also used to support mode 0 for clock selection:
SM2 = 0: Clock is divided by 12 .
SM2 = 1: Clock is divided by 4 .

SCON1.6 (SM1)
SCON1.7 (SM0/FE)

Serial Port 1 Mode Bits 1:0 (when FEDE is 0) . When FEDE is set to 1, this bit is the Framing 
Error Flag that is set upon detection of an invalid stop bit . It must be cleared by software . 
Modification of this bit when FEDE is set has no effect on the serial mode .

MODE SM2 SM1 SM0 FUNCTION
LENGTH 

(BITS)
PERIOD

0 0 0 0 Synchronous 8 12 system clocks

0 1 0 0 Synchronous 8 4 system clocks

1 x 1 0 Asynchronous 10
64/16 baud clocks 
(SMOD = 0/1)

2 0 0 1 Asynchronous 11
64/32 system 
clocks (SMOD = 
0/1)

2 1 0 1 Asynchronous (MP) 11
64/32 system 
clocks (SMOD = 
0/1)

3 0 1 1 Asynchronous 11
64/16 baud clocks 
(SMOD = 0/1)

3 1 1 1 Asynchronous (MP) 11
64/16 baud clocks 
(SMOD = 0/1)
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SBUF1 (03h, 03h) Serial Data Buffer 1
Initialization: This buffer is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

SBUF1.7 to SBUF1.0 Serial Data Buffer 1 Bit 7:0. Data for serial port 0 is read from or written to this location . 
The serial transmit and receive buffers are separate but both are addressed at this location .

SPIB (04h, 03h) SPI Data Buffer (16-bit register)
Initialization: This buffer is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read, write is allowed outside of a transfer cycle; when the STBY bit is set, write 
is blocked and causes write collision error .

SPIB.15 to SPIB.0 SPI Data Buffer Bits 15:0. Data for SPI is read from or written to this location . The serial 
transmit and receive buffers are separate but both are addressed at this location .

SPICN (05h, 03h) SPI Control Register
Initialization: This buffer is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write except bit 7 is read-only .

SPICN.0 (SPIEN) SPI Enable. Setting this bit to 1 enables the SPI module and its baud-rate generator for SPI 
operation . Clearing this bit to 0 disables the SPI module and its baud-rate generator .

SPICN.1 (MSTM) Master Mode Enable. MSTM functions as a master mode enable bit for the SPI module . 
When MSTM is set to 1, the SPI operates as a master . When MSTM is cleared to 0, the 
SPI module operates in slave mode . Note that this bit can be set from 0 to 1 only when the 
SSEL signal is deasserted .

SPICN.2 (MODFE) Mode Fault Enable. When set to 1 in master mode, this bit enables the use of SSEL input 
as a mode fault signal; when cleared to 0, the SSEL has no function and its port pin can be 
used for other purposes . In slave mode, the SSEL pin always functions as a slave select 
input signal to the SPI module, independent of the setting of the MODFE bit .

SPICN.3 (MODF) Mode Fault Flag. This bit is the mode fault flag when the SPI is operating as a master . 
When mode fault detection is enabled as MODFE = 1 in master mode, a detection of a high 
to low transition on the SSEL pin signifies a mode fault and sets the MODF to 1 . This bit 
must be cleared to 0 by software once set . Setting this bit to 1 by software causes an inter-
rupt if enabled . This flag has no meaning in slave mode .

SPICN.4 (WCOL) Write Collision Flag. This bit indicates a write collision when set to 1 . This is caused by 
attempting to write to the SPIB while a transfer cycle is in progress . This bit must be cleared 
to 0 by software once set . Setting this bit to 1 by software causes an interrupt if enabled .

SPICN.5 (ROVR) Receive Overrun Flag. This bit indicates a receive overrun when set to 1 . This is caused 
by two or more characters have been received since the last read by the processor . The 
newer data is lost . This bit must be cleared to 0 by software once set . Setting this bit to 1 by 
software causes an interrupt if enabled .

SPICN.6 (SPIC) SPI Transfer Complete Flag. This bit indicates the completion of a transfer cycle when 
set to 1 . This bit must be cleared to 0 by software once set . Setting this bit to 1 by software 
causes an interrupt if enabled .

SPICN.7 (STBY) SPI Transfer Busy Flag. This bit is used to indicate the current status of the SPI module . 
STBY is set to 1 when starting a SPI transfer cycle and is cleared to 0 when the transfer 
cycle is completed . This bit is controlled by hardware and is read-only for user software .

PR0 (08h, 03h) Phase Register 0
Initialization: The phase register is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read/write .

PR0.15 to PR0.0 Phase Register Bits 15:0. This register is used to load and read the 16-bit value in the 
phase register that determines the baud rate for the serial port 0 .
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SMD0 (09h, 03h) Serial Port Mode Register 0
Initialization: This register is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

SMD0.0 (FEDE0) Framing Error-Detection Enable. This bit selects the function of SM0 (SCON0 .7):
FEDE = 0: SCON0 .7 functions as SM0 for serial port mode selection .
FEDE = 1: SCON0 .7 is converted to the framing error (FE) flag .

SMD0.1 (SMOD0) Serial Port 0 Baud-Rate Select. The SMOD selects the final baud rate for the asynchro-
nous mode:
SMOD = 1: 16 times the baud clock for mode 1 and 3,
32 times the system clock for mode 2 .
SMOD = 0: 64 times the baud clock for mode 1 and 3,
64 times the system clock for mode 2 .

SMD0.2 (ESI0) Enable Serial Port 0 Interrupt. Setting this bit to 1 enables interrupt requests generated by 
the RI or TI flags in SCON0 . Clearing this bit to 0 disables the serial port interrupt .

SMD0.7 to SMD0.3 Reserved . Reads return 0 .

PR1 (0Ah, 03h) Phase Register 1
Initialization: The phase register is cleared to 0000h on all forms of reset .

Read/Write Access: Unrestricted read/write .

PR1.15 to PR1.0 Phase Register 1 Bits 15:0. This register is used to load and read the 16-bit value in the 
phase register that determines the baud rate for the serial port 1 .

SMD1 (0Bh, 03h) Serial Port Mode Register 1
Initialization: This register is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

SMD1.0 (FEDE1) Framing Error-Detection Enable. This bit selects the function of SM0 (SCON1 .7):
FEDE = 0: SCON1 .7 functions as SM0 for serial port mode selection .
FEDE = 1: SCON1 .7 is converted to the framing error (FE) flag .

SMD1.1 (SMOD1) Serial Port 1 Baud-Rate Select . The SMOD selects the final baud rate for the asynchronous 
mode:
SMOD = 1: 16 times the baud clock for mode 1 and 3, 32 times the system clock for mode 2 .
SMOD = 0: 64 times the baud clock for mode 1 and 3, 64 times the system clock for mode 2 .

SMD1.2 (ESI1) Enable Serial Port 1 Interrupt. Setting this bit to 1 enables interrupt requests generated by 
the RI or TI flags in SCON1 . Clearing this bit to 0 disables the serial port interrupt .

SMD1.7 to SMD1.3 Reserved, read returns 0.
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SPICF (0Ch, 03h) SPI Configuration Register
Initialization: This buffer is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

SPICF.0 (CKPOL) Clock Polarity Select. This bit is used with the CKPHA bit to determine the SPI transfer 
format . When the CKPOL is set to 1, the SPI uses the clock falling edge as an active edge . 
When the CKPOL is cleared to 0, the SPI selects the clock rising edge as an active edge .

SPICF.1 (CKPHA) Clock Phase Select . This bit is used with the CKPOL bit to determine the SPI transfer for-
mat . When the CKPHA is set to 1, the SPI samples input data at an inactive edge . When the 
CKPHA is cleared to 0, the SPI samples input data at an active edge .

SPICF.2 (CHR) Character Length Bit. The CHR bit determines the character length for an SPI transfer 
cycle . A character can consist 8 or 16 bits in length . When CHR bit is 0, the character is 8 
bits; when CHR is set to 1, the character is 16 bits .

SPICF.5 to SPICF.3 Reserved . Reads return 0 .

SPICF.6 (SAS) Slave Active Select. This bit is used to determine the SSEL active state . When the SAS is 
cleared to 0, the SSEL is active low and responds to an external low signal . When the SAS 
is set to 1, the SSEL is active high .

SPICF.7 (ESPII) SPI Interrupt Enable . Setting this bit to 1 enables the SPI interrupt when MODF, WCOL, 
ROVR, or SPIC flags are set . Clearing this bit to 0 disables the SPI interrupt .

SPICK (0Dh, 03h) SPI Clock Register
Initialization: This buffer is cleared to 00h on all forms of reset .

Read/Write Access: Unrestricted read/write .

SPICK.7 to SPICK.0 (CKR[7:0]) Clock-Divide Ratio Bits 7:0. These bits select one of the 256 divide ratios (0 to 255) used 
for the baud-rate generator, with bit 7 as the most significant bit . The frequency of the SPI 
baud rate is calculated using the following equation:

SPI Baud Rate = 0 .5 x System Clock/(divide ratio + 1)

This register has no function when operating in slave mode and the clock generation cir-
cuitry should be disabled .
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SECTION 6: GENERAL-PURPOSE I/O MODULE
The MAXQ610 provides 38 port pins for general-purpose I/O that are grouped into eight port pins on port 0 to port 3 
and six port pins on port 4 . Each of these port pins has the following features:

•  CMOS output drivers

•  Schmitt trigger inputs

•  Optional weak pullup to VDD when operating in input mode

From a software perspective, each port appears as a group of peripheral registers with unique addresses . Special 
function pins can also be used as general-purpose IO pins when the special functions are disabled (ports 2 and 3) .

Table 6-1. Port Pin Special Functions
PORT PIN DIRECTION SPECIAL FUNCTION ENABLED WHEN

P0 .0 Input/Output IR modulator/envelope output (IRTXM) IRENV[1:0] = 01b or 10b

P0 .1 Input/Output Serial USART 0 Receive (RX0) REN = 1

P0 .2 Input/Output Serial USART 0 Transmit (TX0) SBUF0 written

P0 .3 Input/Output Serial USART 1 Receive (RX1) REN = 1

P0 .4 Input/Output Serial USART 1 Transmit (TX1) SBUF1 written

P0 .5 Input/Output Timer 0 Input (TBA0)/Timer 1 Input (TBA1) C/TB = 1 or TBOE = 1

P0 .6 Input/Output Timer 0 PWM Output (TBB0) EXENB = 1 or TBCR:TBCS ≠ 00b

P0 .7 Input/Output Timer 1 PWM Output (TBB1) EXENB = 1 or TBCR:TBCS ≠ 00b

P1 .0 Input/Output External Interrupt 0 (INT0) EX0 = 1

P1 .1 Input/Output External Interrupt 1 (INT1) EX1 = 1

P1 .2 Input/Output External Interrupt 2 (INT2) EX2 = 1

P1 .3 Input/Output External Interrupt 3 (INT3) EX3 = 1

P1 .4 Input/Output External Interrupt 4 (INT4) EX4 = 1

P1 .5 Input/Output External Interrupt 5 (INT5) EX5 = 1

P1 .6 Input/Output External Interrupt 6 (INT6) EX6 = 1

P1 .7 Input/Output External Interrupt 7 (INT7) EX7 = 1

P2 .0 Input/Output SPI Master Out-Slave In (MOSI) SPIEN = 1

P2 .1 Input/Output SPI Master In-Slave Out (MISO) SPIEN = 1

P2 .2 Input/Output SPI Slave Clock (SCLK) SPIEN = 1

P2 .3 Input/Output SPI Slave Select (SSEL) SPIEN = 1

P2 .4 Input/Output JTAG interface—TAP Clock (TCK) (SC .7) TAP = 

P2 .5 Input/Output JTAG interface—TAP Data Input (TDI) (SC .7) TAP= 1

P2 .6 Input/Output JTAG interface—TAP Mode Select (TMS) (SC .7) TAP = 1

P2 .7 Input/Output JTAG interface—TAP Data Output (TDO) (SC .7) TAP = 1

P3 .0 Input/Output External Interrupt 8 (INT8) EX8 = 1

P3 .1 Input/Output External Interrupt 9 (INT9) EX9 = 1

P3 .2 Input/Output External Interrupt 10 (INT10) EX10 = 1

P3 .3 Input/Output External Interrupt 11 (INT11) EX11 = 1

P3 .4 Input/Output External Interrupt 12 (INT12) EX12 = 1

P3 .5 Input/Output External Interrupt 13 (INT13) EX13 = 1

P3 .6 Input/Output External Interrupt 14 (INT14) EX14 = 1

P3 .7 Input/Output External Interrupt 15 (INT15) EX15 = 1

P4 .0 Input/Output — —

P4 .1 Input/Output — —
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All these special functions are disabled by default with the exception of the JTAG interface pins, which are enabled 
by default following any reset .

The port pin input/output states can be defined as shown in Table 6-2 .

Table 6-2. MAXQ610 Port Pin Input/Output States

Table 6-1. Port Pin Special Functions (continued)

6.1 Port Pin Register Descriptions
The following peripheral registers are used to control the general-purpose I/O and external interrupt features specific 
to the MAXQ610 .

Bits 7:0: Port 0 Output. This register stores the data that is output on any of the pins of port 0 that have been defined 
as output pins . If the port pins are in input mode, this register controls the weak pullup enable for each pin . Changing 
the data direction of any pins for this port (through register PD0) does not affect the value in this register .

Bits 7:0: Port 1 Output. This register stores the data that is output on any of the pins of port 1 that have been defined 
as output pins . If the port pins are in input mode, this register controls the weak pullup enable for each pin . Changing 
the data direction of any pins for this port (through register PD0) does not affect the value in this register .

PORT PIN DIRECTION SPECIAL FUNCTION ENABLED WHEN

P4 .2 Input/Output — —

P4 .3 Input/Output — —

P4 .4 Input/Output — —

P4 .5 Input/Output — —

PDx.y POx.y PORT PIN MODE PORT PIN (Px.y) STATE

0 0 Input Three-state

0 1 Input Weak pullup HIGH

1 0 Output Strong drive LOW

1 1 Output Strong drive HIGH

Register Name PO0

Register Description Port 0 Output Register

Register Address M0[00h]

Register Name PO1

Register Description Port 1 Output Register

Register Address M0[01h]

Bit # 7 6 5 4 3 2 1 0

Name PO0 .7 PO0 .6 PO0 .5 PO0 .4 PO0 .3 PO0 .2 PO0 .1 PO0 .0

Reset s s s s s s s s

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name PO1 .7 PO1 .6 PO1 .5 PO1 .4 PO1 .3 PO1 .2 PO1 .1 PO1 .0

Reset s s s s s s s s

Access rw rw rw rw rw rw rw rw
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Bits 7:0: Port 2 Output. This register stores the data that is output on any of the pins of port 2 that have been defined 
as output pins . If the port pins are in input mode, this register controls the weak pullup enable for each pin . Changing 
the data direction of any pins for this port (through register PD2) does not affect the value in this register .

Bits 7:0: Port 3 Output. This register stores the data that is output on any of the pins of port 3 that have been defined 
as output pins . If the port pins are in input mode, this register controls the weak pullup enable for each pin . Changing 
the data direction of any pins for this port (through register PD3) does not affect the value in this register .

Bits 5:0: Port 4 Output. This register stores the data that is output on any of the pins of port 4 that have been defined 
as output pins . If the port pins are in input mode, this register controls the weak pullup enable for each pin . Changing 
the data direction of any pins for this port (through register PD4) does not affect the value in this register .

Bits 7:0: Port 0 Input Bits. The read values of these bits reflect the logic states present at port 0 pins P0 .0 to P0 .7 .

Register Name PO2

Register Description Port 2 Output Register

Register Address M0[02h]

Register Name PO3

Register Description Port 3 Output Register

Register Address M0[03h]

Register Name PO4

Register Description Port 4 Output Register

Register Address M1[04h]

Register Name PI0

Register Description Port 0 Input Register

Register Address M0[08h]

Bit # 7 6 5 4 3 2 1 0

Name PO2 .7 PO2 .6 PO2 .5 PO2 .4 PO2 .3 PO2 .2 PO2 .1 PO2 .0

Reset s s s s s s s s

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name PO3 .7 PO3 .6 PO3 .5 PO3 .4 PO3 .3 PO3 .2 PO3 .1 PO3 .0

Reset s s s s s s s s

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name — — PO4 .5 PO4 .4 PO4 .3 PO4 .2 PO4 .1 PO4 .0

Reset 0 0 s s s s s s

Access r r rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name PI0 .7 PI0 .6 PI0 .5 PI0 .4 PI0 .3 PI0 .2 PI0 .1 PI0 .0

Reset s s s s s s s s

Access r r r r r r r r
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Bits 7:0: Port 1 Input Bits. The read values of these bits reflect the logic states present at port 1 pins P1 .0 to P1 .7 .

Bits 7:0: Port 2 Input Bits. The read values of these bits reflect the logic states present at port 2 pins P2 .0 to P2 .7 .

Bits 7:0: Port 3 Input Bits. The read values of these bits reflect the logic states present at port 3 pins P3 .0 to P4 .7 .

Bits 5:0: Port 4 Input Bits. The read values of these bits reflect the logic states present at port 4 pins P4 .0 to P4 .5 .

Register Name PI1

Register Description Port 1 Input Register

Register Address M0[09h]

Register Name PI2

Register Description Port 2 Input Register

Register Address M0[0Ah]

Register Name PI3

Register Description Port 3 Input Register

Register Address M0[0Bh]

Register Name PI4

Register Description Port 4 Input Register

Register Address M1[08h]

Bit # 7 6 5 4 3 2 1 0

Name PI1 .7 PI1 .6 PI1 .5 PI1 .4 PI1 .3 PI1 .2 PI1 .1 PI1 .0

Reset s s s s s s s s

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name PI2 .7 PI2 .6 PI2 .5 PI2 .4 PI2 .3 PI2 .2 PI2 .1 PI2 .0

Reset s s s s s s s s

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name PI3 .7 PI3 .6 PI3 .5 PI3 .4 PI3 .3 PI3 .2 PI3 .1 PI3 .0

Reset s s s s s s s s

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — — PI4 .5 PI4 .4 PI4 .3 PI4 .2 PI4 .1 PI4 .0

Reset 0 0 s s s s s s

Access r r r r r r r r
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Bits 7:0: Input/Output Direction for Port 0. The bits in this register control the input/output direction for port pins P0 .0 
to P0 .7 . When PD0 .n is set to 0, the corresponding port pin (P0 .n) acts as an input with characteristics determined by 
PO0 .n . When PD0 .n is set to 1, the port pin acts as an output, driving the output state given by PO0 .n .

Bits 7:0: Input/Output Direction for Port 1. The bits in this register control the input/output direction for port pins P1 .0 
to P1 .7 . When PD1 .n is set to 0, the corresponding port pin (P1 .n) acts as an input with characteristics determined by 
PO1 .n . When PD1 .n is set to 1, the port pin acts as an output, driving the output state given by PO1 .n .

Bits 7:0: Input/Output Direction for Port 2. The bits in this register control the input/output direction for port pins P2 .0 
to P2 .7 . When PD2 .n is set to 0, the corresponding port pin (P2 .n) acts as an input with characteristics determined by 
PO2 .n . When PD2 .n is set to 1, the port pin acts as an output, driving the output state given by PO2 .n .

Bits 7:0: Input/Output Direction for Port 3. The bits in this register control the input/output direction for port pins P3 .0 
to P3 .7 . When PD3 .n is set to 0, the corresponding port pin (P3 .n) acts as an input with characteristics determined by 
PO3 .n . When PD3 .n is set to 1, the port pin acts as an output, driving the output state given by PO3 .n .

Register Name PD0

Register Description Port 0 Direction Register

Register Address M0[10h]

Register Name PD1

Register Description Port 1 Direction Register

Register Address M0[11h]

Register Name PD2

Register Description Port 2 Direction Register

Register Address M0[12h]

Register Name PD3

Register Description Port 3 Direction Register

Register Address M0[13h]

Bit # 7 6 5 4 3 2 1 0

Name PD0 .7 PD0 .6 PD0 .5 PD0 .4 PD0 .3 PD0 .2 PD0 .1 PD0 .0

Reset s s s s s s s s

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name PD1 .7 PD1 .6 PD1 .5 PD1 .4 PD1 .3 PD1 .2 PD1 .1 PD1 .0

Reset s s s s s s s s

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name PD2 .7 PD2 .6 PD2 .5 PD2 .4 PD2 .3 PD2 .2 PD2 .1 PD2 .0

Reset s s s s s s s s

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name PD3 .7 PD3 .6 PD3 .5 PD3 .4 PD3 .3 PD3 .2 PD3 .1 PD3 .0

Reset s s s s s s s s

Access rw rw rw rw rw rw rw rw
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Bits 5:0: Input/Output Direction for Port 4. The bits in this register control the input/output direction for port pins P4 .0 
to P4 .5 . When PD4 .n is set to 0, the corresponding port pin (P4 .n) acts as an input with characteristics determined by 
PO4 .n . When PD4 .n is set to 1, the port pin acts as an output, driving the output state given by PO4 .n .

6.1.1 Port Pin Example 1: Driving Outputs on Port 0
move PO0, #000h ; Set all outputs low

move PD0, #0FFh ; Set all P0 pins to output mode

6.1.2 Port Pin Example 2: Receiving Inputs on Port 1
move PO1, #0FFh  ; Set weak pullups ON on all pins

move PD1, #000h  ; Set all P1 pins to input mode

nop   ; Wait for external source to drive P1 pins

move Acc, PI1  ; Get input values from P1 (will return FF if

   ; no other source drives the pins low)

6.2 External Interrupt Register Descriptions

Each bit in this register is set when a negative edge or a positive edge (depending on the ITn bit setting) is detected 
on the corresponding interrupt pin . Once an external interrupt has been detected, the interrupt flag bit will remain 
set until cleared by software or a reset . Setting any of these bits causes the corresponding interrupt to trigger if it is 
enabled to do so .
Bit 7: External Interrupt 7 Edge Detect (IE7)
Bit 6: External Interrupt 6 Edge Detect (IE6)
Bit 5: External Interrupt 5 Edge Detect (IE5)
Bit 4: External Interrupt 4 Edge Detect (IE4)
Bit 3: External Interrupt 3 Edge Detect (IE3)
Bit 2: External Interrupt 2 Edge Detect (IE2)

Bit 1: External Interrupt 1 Edge Detect (IE1)

Bit 0: External Interrupt 0 Edge Detect (IE0)

Register Name PD4

Register Description Port 4 Direction Register

Register Address M2[10h]

Register Name EIF0

Register Description External Interrupt Flag 0 Register

Register Address M0[06h]

Bit # 7 6 5 4 3 2 1 0

Name — — PD4 .5 PD4 .4 PD4 .3 PD4 .2 PD4 .1 PD4 .0

Reset 0 0 s s s s s s

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name IE7 IE6 IE5 IE4 IE3 IE2 IE1 IE0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw
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Each bit in this register is set when a negative edge or a positive edge (depending on the ITn bit setting) is detected 
on the corresponding interrupt pin . Once an external interrupt has been detected, the interrupt flag bit remains set until 
cleared by software or a reset . Setting any of these bits causes the corresponding interrupt to trigger if it is enabled 
to do so .

Bit 7: External Interrupt 15 Edge Detect (IE15)

Bit 6: External Interrupt 14 Edge Detect (IE14)

Bit 5: External Interrupt 13 Edge Detect (IE13)

Bit 4: External Interrupt 12 Edge Detect (IE12)

Bit 3: External Interrupt 11 Edge Detect (IE11)

Bit 2: External Interrupt 10 Edge Detect (IE10)

Bit 1: External Interrupt 9 Edge Detect (IE9)

Bit 0: External Interrupt 8 Edge Detect (IE8)

Each bit in this register controls the enable for one external interrupt . If a bit is set to 1, the corresponding interrupt is 
enabled (if it is not otherwise masked) . If a bit is set to 0, its corresponding interrupt is disabled .

Bit 7: External Interrupt 7 Enable (EX7)

Bit 6: External Interrupt 6 Enable (EX6)

Bit 5: External Interrupt 5 Enable (EX5)

Bit 4: External Interrupt 4 Enable (EX4)

Bit 3: External Interrupt 3 Enable (EX3)

Bit 2: External Interrupt 2 Enable (EX2)

Bit 1: External Interrupt 1 Enable (EX1)

Bit 0: External Interrupt 0 Enable (EX0)

Register Name EIF1

Register Description External Interrupt Flag 1 Register

Register Address M0[07h]

Register Name EIE0

Register Description External Interrupt Enable 0 Register

Register Address M0[08h]

Bit # 7 6 5 4 3 2 1 0

Name IE15 IE14 IE13 IE12 IE11 IE10 IE9 IE8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name EX7 EX6 EX5 EX4 EX3 EX2 EX1 EX0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw
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Each bit in this register controls the enable for one external interrupt . If a bit is set to 1, the corresponding interrupt is 
enabled (if it is not otherwise masked) . If a bit is set to 0, its corresponding interrupt is disabled .

Bit 7: External Interrupt 15 Enable (EX15)

Bit 6: External Interrupt 14 Enable (EX14)

Bit 5: External Interrupt 13 Enable (EX13)

Bit 4: External Interrupt 12 Enable (EX12)

Bit 3: External Interrupt 11 Enable (EX11)

Bit 2: External Interrupt 10 Enable (EX10)

Bit 1: External Interrupt 9 Enable (EX9)

Bit 0: External Interrupt 8 Enable (EX8)

Each bit in this register controls the edge select mode for an external interrupt, as follows:

0 = The internal interrupt triggers on a rising (positive) edge .

1 = The external interrupt triggers on a negative (falling) edge .

Bit 7: Edge Select for External Interrupt 7 (IT7)

Bit 6: Edge Select for External Interrupt 6 (IT6)

Bit 5: Edge Select for External Interrupt 5 (IT5)

Bit 4: Edge Select for External Interrupt 4 (IT4)

Bit 3: Edge Select for External Interrupt 3 (IT3)

Bit 2: Edge Select for External Interrupt 2 (IT2)

Bit 1: Edge Select for External Interrupt 1 (IT1)

Bit 0: Edge Select for External Interrupt 0 (IT0)

Register Name EIE1

Register Description External Interrupt Enable 1 Register

Register Address M0[09h]

Register Name EIES0

Register Description External Interrupt Edge Select 0 Register

Register Address M0[0Ch]

Bit # 7 6 5 4 3 2 1 0

Name EX15 EX14 EX13 EX12 EX11 EX10 EX9 EX8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name IT7 IT6 IT5 IT4 IT3 IT2 IT1 IT0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw
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Each bit in this register controls the edge select mode for an external interrupt, as follows:

0 = The internal interrupt triggers on a rising (positive) edge .

1 = The external interrupt triggers on a negative (falling) edge .

Bit 7: Edge Select for External Interrupt 15 (IT15)

Bit 6: Edge Select for External Interrupt 14 (IT14)

Bit 5: Edge Select for External Interrupt 13 (IT13)

Bit 4: Edge Select for External Interrupt 12 (IT12)

Bit 3: Edge Select for External Interrupt 11 (IT11)

Bit 2: Edge Select for External Interrupt 10 (IT10)

Bit 1: Edge Select for External Interrupt 9 (IT9)

Bit 0: Edge Select for External Interrupt 8 (IT8)

Register Name EIES1

Register Description External Interrupt Edge Select 1 Register

Register Address M0[0Dh]

Bit # 7 6 5 4 3 2 1 0

Name IT15 IT14 IT13 IT12 IT11 IT10 IT9 IT8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw
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SECTION 7: TIMER/COUNTER TYPE B
The timer/counter module allows the MAXQ610 to control a 16-bit programmable timer/counter . The MAXQ610 imple-
ments two timer type B modules (“Timer B”): TB0 and TB1 .

7.1 Timer B
“Timer B” is an enhanced version of the MAXQ timer type 1 with modifications to support different input clock prescal-
ing and set/reset/compare output functionality . The new timer also counts in the range 0000h to TBR instead of TBR 
to 0FFFFh .

The Timer B value that increments or decrements (depending on mode of operation) is contained in the 16-bit register, 
TBV . Timer B is enabled by the Timer B run control (TRB) bit in the TBCN register . To support the basic functionality of 
Timer B, a 16-bit capture/reload register (TBR) is provided . The basic Timer B operational modes and corresponding 
TBCN register bit settings are shown in Table 7-1 . Following the table, each operational mode is described . The TBA 
pin can be used as a counter input for any mode except for the Timer B clock output mode since this mode uses TBA 
for clock output . The Timer B PWM output functionality is described in the sections that follow the basic modes .

7.1.1 Timer B Mode: Autoreload Mode
The Timer B autoreload mode is configured by setting the CP/RLB (TBCN .0) bit to 0 . In this mode, Timer B performs 
a simple timer or counter function, but adds a separate 16-bit reload value and the ability to trigger a reload with an 
external pin .

When initially enabled, Timer B starts counting from the TBV value . On overflow, TBV is reset and counting continues 
from 0000h . When Timer B reaches an overflow state, i .e ., the TBR value is reached, the TFB flag is set in the follow-
ing system clock cycle . This flag can generate an interrupt if enabled . In addition, the timer restores its starting 0000h 
value and begins timing (or counting) again . The overflow value is preloaded by software into the capture/reload reg-
ister, TBR . This register cannot be used for capture functionality while also performing autoreload, so these modes are 
mutually exclusive .

When in autoreload mode, Timer B can also be forced to reload with the TBB pin . If EXENB (TBCN .3) is set to 1, then 
a 1-to-0-transition on TBB causes a reload and the EXFB (TBCN .6) flag to be set . Note that the EXFB flag can be set 
independent of the state of the TRB bit (e .g ., EXFB can still be set on detection of a negative edge when TRB = 0) . 
Otherwise, the TBB pin is ignored .

If the C/TB bit (TBCN .15) is 0, the timer’s input clock is a function of the system clock . When C/TB = 1, pulses on the 
TBA pin are counted . Counting or timing is enabled or disabled using the Timer B run control bit = TRB (TBCN .2) . This 
mode, including the optional reload control, is illustrated in Figure 7-1 .

Table 7-1. Timer/Counter B Mode Summary

*For modes where the C/TB bit is x: When C/TB = 0, the timer input clock is a prescaled version of the system clock. When C/TB = 
1, counter mode is enabled and the external TBA pin is counted.

TIMER B OPERATIONAL MODE
TBCN REGISTER BIT SETTINGS*

TBOE DCEN EXENB C/TB CP/RLB

Autoreload 0 0 0 x 0

Autoreload using TBB pin 0 0 1 x 0

Capture using TBB pin 0 0 1 x 1

Up/down count using TBB pin 0 1 0 x 0

Clock output on TBA pin 1 x x 0 0
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7.1.2 Timer B Mode: Capture Mode
The 16-bit capture mode is invoked by setting the CP/RLB (TBCN .0) bit to 1 . Timer B, when initially enabled, begins 
counting from the TBV value and upon overflow, subsequently continues counting from 0000h to the 0FFFFh overflow, 
i .e ., rolls over from 0FFFFh to 0000h if left enabled and running . When an overflow occurs, it sets the TFB Flag . This 
flag can generate an interrupt if enabled . The optional capture function is enabled by setting the EXENB (TBCN .3) bit 
to 1 . Once this has been done, a 1-to-0-transition on the TBB pin causes the value in Timer B (TBV) to be transferred 
into the capture register (TBR) and the EXFB (TBCN .6) flag to be set . Note that the EXFB flag can be set independent 
of the state of the TRB bit (e .g ., EXFB can still be set on detection of a negative edge when TRB = 0) . Setting of the 
EXFB flag can generate an interrupt if enabled . If the EXENB bit is set to 0, then 1-to-0-transitions on the TBB pin do 
not automatically trigger a capture event .

Figure 7-1. Timer B Autoreload Mode

Figure 7-2. Timer B Capture Mode
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7.1.3 Timer B Mode: Up/Down Autoreload Mode
The up/down-count autoreload option is enabled by the DCEN (TBCN .4) bit . When DCEN is set to 1, Timer B counts up 
or down as controlled by the state of TBB pin . TBB causes upward counting when a high is applied and down counting 
when a low is applied . When DCEN = 0, Timer B only counts up .

When an upward counting overflow occurs (TBV overflow occurs after reaching TBR), a 0000h value loads into TBV . In 
the down-count direction, an underflow occurs when TBV reaches 0000h . When an underflow occurs, the TBR value 
is loaded into TBV counting continues .

Note that in this mode, the overflow/underflow output of the timer is provided to an edge-detection circuit as well as 
to the TFB bit (TBCN .7) . This edge-detection circuit toggles the EXFB bit (TBCN .6) on every overflow or underflow . 
Therefore, the EXFB bit behaves as a 17th bit of the counter, and can be used as such .

7.1.4 Timer B Mode: Clock Output Mode
Timer B can also be configured to drive a clock output on the TBA port pin as shown in Figure 7-4 . To configure Timer 
B for this mode, first it must be set to 16-bit autoreload timer mode (CP/RLB = 0, C/TB = 0) . Next, the TBOE (TBCN .5) 
bit must be set to 1 . The output state for this mode is always set to 1 each time the TBOE bit is changed from 0 to 1 . 
TRB (TBCN .2) must also be set to 1 to enable the timer and the corresponding output . If the timer is stopped (TRB = 
0) and subsequently restarted (TRB = 1) while leaving TBOE = 1, the previous timer clock output state is restored on 
the TBA pin . The DCEN bit has no effect in this mode . This mode produces a 50% duty-cycle square-wave output . The 
frequency of the square wave is given by the formula in the figure . Each timer overflow causes an edge transition on 
the pin, i .e ., the state of the pin toggles . The timer overflow flag (TFB) is still set on an overflow in clock output mode, 
however, the TBOE = 1 condition prevents this flag from causing an interrupt . The Timer B external interrupt is still 
available for use when enabled (EXENB = 1) . Note that the EXFB flag can be set independent of the state of the TRB 
bit (e .g ., EXFB can still be set on detection of a negative edge when TRB = 0) .

Figure 7-3. Timer B Up/Down Autoreload Mode
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7.1.5 Timer B Mode: PWM Output Function
The PWM output function is enabled whenever the TBCS:TBCR bit pair is nonzero . Table 7-2 shows how these bits 
define a certain output function .

When the PWM output function is configured to the reset mode, configuring TBC = 0000h disables the TBC compare 
match reset operation . The timer will do one set on 0000h and never reset . When the PWM output function is configured 
to the set mode, configuring TBC = TBR disables the TBC compare match set operation . The timer will do one reset 
on TBR match and never set . When the PWM output function is configured to toggle, configuring TBC = 0000h or TBR 
disables the toggle function .

When the timer is not running (TRB = 0), the initial output starting state of the TBB output is established as low or high, 
respectively, if the reset function (TBCR = 1,TBCS = 0) or set function (TBCR = 0, TBCS = 1) is established . Invoking 
the toggle function does not change the already defined starting state for TBB, thus a fixed high or low starting state 
may be defined for the toggle mode by first passing through the set or reset mode . The initial starting state takes effect 
on the pin when the timer is started (TRB = 1) . Changing the output function to set or reset while the timer is running 
does not affect the current output .

Figure 7-4. Timer B Clock Output Mode

Table 7-2. Timer B PWM Output Function
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7.1.5.1 Timer B Mode: Up-Counting PWM Output Mode
The 16-bit timer/counter with autoreload mode is used for the up-counting PWM output mode to produce edge-aligned 
PWM output . In the 16-bit autoreload timer mode, the Timer B allows an optional external pin (TBB) triggered reload 
event when the EXENB bit is configured to 1 . The external input special function and the PWM output function can 
be enabled at the same time, however the input special function changes slightly when the PWM output is enabled . 
When the PWM output mode is enabled (TBCS:TBCR ≠ 00b) and the external pin input is enabled (EXENB = 1), the 
detection of a output falling edge on TBB should still result in setting of the EXFB interrupt flag, but should not force 
an autoreload . Note that the EXFB flag can be set independent of the state of the TRB bit (e .g ., EXFB can still be set 
on detection of a negative edge when TRB = 0) . While it is most likely that TRB = 1 when EXFB is set, since TRB = 1 
is required to enable the PWM output, a negative edge on the TBB pin while TRB = 0 can still result in setting of EXFB . 
Using the standard GPI/O port controls to generate a negative edge when the PWM is not running, for instance, can 
set EXFB . Example TBB output waveforms for the autoreload up-counting mode are shown in Figure 7-5 .

Figure 7-5. Timer B PWM Output Waveforms (Up Count, DCEN = 0)
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The set and reset functions for the autoreload up-counting mode essentially provide the same functionality . They pro-
vide a 16-bit PWM with the ability to change the frequency using the TBR reload value . The toggle mode allows a 50% 
duty cycle waveform to be created (when the TBC register is configured to a value inside the counting range, i .e ., 0 < 
TBC < TBR, with Timer B running) . With the TBC register outside of the count range, the set and reset functions allow a 
timed clear or set of a given pin without need of polling or interrupting the CPU such that it can manually be performed .

Up-count set, reset PWM duty cycle can be calculated as follows (where period = TBR + 1):

Set mode   = (TBR - TBC)/(TBR + 1)

Reset mode   = TBC/(TBR + 1)

7.1.5.2 Timer B Mode: Up/Down-Count PWM Output Mode
The 16-bit up/down-count timer is utilized for the up/down-count PWM output mode to produce center-aligned PWM 
output . When the Timer B is configured in the up/down-count mode, the external pin (TBB) is used to control the direc-
tion of the timer count . When the Timer B PWM output functionality is enabled at the same time as the up/down-count 
autoreload mode, the TBB pin no longer controls the direction of counting . Instead, the up/count count is controlled 
internally . When the timer is up counting upward and reaches TBR, in the next cycle, it reverses its direction of count-
ing . When the timer is down counting and reaches 0000h, it reverses direction so as to begin up counting (as illustrated 
in Figure 7-6) . When the up/down autoreload and PWM output modes are both enabled, the TBB input function can 
still be enabled by the EXENB = 1 configuration . Enabling the TBB input function during this mode allows detection 
of PWM output negative edges to set the EXFB interrupt flag . Note that the EXFB flag can be set independent of the 
state of the TRB bit (e .g ., EXFB can still be set on detection of a negative edge when TRB = 0) . While it is most likely 
that TRB = 1 when EXFB is set, since TRB = 1 is required to enable the PWM output, a negative edge on the TBB pin 
while TRB = 0 can still result in setting of EXFB . Using the standard GPI/O port controls to generate a negative edge 
when the PWM is not running, for instance, can set EXFB .

Figure 7-6. Timer B PWM Output Up/Down-Count Examples
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Example TBB output waveforms for the autoreload up/down-counting modes are shown below .

Up/down-count PWM duty cycle can be calculated as follows (where period = 2 x TBR):

Set mode   = (TBR + TBC)/(2 x TBR)

Reset mode   = TBC/(2 x TBR)

Toggle mode  = TBC/TBR or (TBR - TBC)/TBR

Note that the toggle mode has two possible duty-cycle calculations and depends upon the initial pin state and start-
ing TBV and TBC values . For example, the TBC/TBR equation would be used if the starting pin state were 1, TBV = 
0, and 0 < TBC < TBR . If the starting pin state were 0, and all other initial conditions were the same, the (TBR - TBC)/
TBR equation would apply .

The set and reset up/down-count PWM modes effectively allow 17-bit resolution since the set mode allows duty-cycle 
variation > 50% with 50% of the period always being high and the reset mode allows duty-cycle variation < 50% with 
50% of the period always being low .

The toggle mode still effectively provides 16-bit PWM resolution with twice the period of the pure up-counting autore-
load mode .

7.1.6 Timer B Input Clock
The Timer B Input Clock can be prescaled using the TBPS[2:0] bits of the TBCN register . The Timer B input clock is 
a divided version of the system clock as per the equation below (which also appears in the register bit descriptions) .

Timer B Clock = System Clock/2(2xTBPS[2:0])

The TBPS[2:0] bits should be configured by the user when the timer is stopped (TRB = 0) . While hardware does not 
prevent changing the TBPS[2:0] bits when the timer is running, the resultant behavior is indeterministic .

7.2 Timer/Counter B Peripheral Registers

7.2.1 Timer B Control Register (TBCN)

Bit 15: (TBCN.15) Counter/Timer Select (C/TB). This bit determines whether Timer B functions as a timer or counter . 
Setting this bit to 1 causes Timer B to count negative transitions on the TBA pin . If this bit is cleared to 0 Timer B func-
tions as a Timer . The speed of Timer B is determined by the TBPS[2:0] bits of TBCN .

Bits 14 and 13: Reserved . Reads return 0 .

Table 7-3. Timer B Input Clock Prescaler Selection
TBPS[2:0] TIMER B INPUT CLOCK

000 Sysclk/1

001 Sysclk/4

010 Sysclk/16

011 Sysclk/64

100 Sysclk/256

101 Sysclk/1024

11x Sysclk/1

15 0

Timer B Control Register (TBCN)

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access
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Bits 12 and 11: TBB Pin Output Reset Mode, Set Mode (TBCS:TBCR). These mode bits define whether the PWM 
Mode output function is enabled on the TBB pin, the initial output starting state, and what compare mode output func-
tion is in effect . Note that the TBB pin still has certain input functionality when the PWM/output function is enabled . See  
the 7.1.5: Timer B Mode: PWM Output Function section for details on this mode .

Bits 10 to 8: Timer B Clock Prescaler Bits 2:0 (TBPS[2:0]. The TBPS[2:0] bits select the clock prescaler applied to 
the system clock input to Timer B . The TBPS[2:0] bits should be configured by the user when the timer is stopped (TRB 
= 0) . While hardware does not prevent changing the TBPS[2:0] bits when the timer is running, the resultant behavior is 
indeterministic . See Timer B input clocks for supported prescaler values .

Bit 7: Timer B Overflow Flag (TFB). This bit is set when Timer B overflows from TBR or the count is equal to 0000h 
in down-count mode . It must be cleared by software .

Bit 6: External Timer B Trigger Flag (EXFB). When configured as a timer (C/TB = 0), a negative transition on the 
TBB pin causes this flag to be set if (CP/RLB = EXENB = 1) or (CP/RLB = DCEN = 0 and EXENB = 1) or (CP/RLB = 0 
and EXENB = 1 and TBCS:TBCR ≠ 00b) . When configured in any of these ways, this flag can be set independent of 
the state of the TRB bit (e .g ., EXFB can still be set on detection of a negative edge when TRB = 0) .When CP/RLB = 0 
and DCEN = 1 and TBCS:TBCR = 00b, EXFB toggles whenever Timer B underflows or overflows . Overflow/underflow 
condition is the same as described in TFB bit description . In this mode, EXFB can be used as the 17th timer bit and 
does not cause an interrupt . This flag must be cleared by software if set by a negative transition . Setting this bit to 1 
forces a timer interrupt if enabled .

Bit 5: Timer B Output Enable (TBOE). Setting this bit to 1 enables the clock output function on the TBA pin if C/TB = 
0 . Timer B rollovers do not cause interrupts . Clearing this bit to 0 allows the TBA pin to function as either a standard 
port pin or a counter input for Timer B .

Bit 4: Down-Count Enable (DCEN). This bit, in conjunction with the TBB pin, controls the direction that Timer B counts 
in 16-bit autoreload mode . Clearing this bit to 0 causes Timer B to count up only . Setting this bit to 1 enables the up/
down-counting mode (i .e ., it causes Timer B to count up if the TBB pin is 1 and to count down if the TBB pin is 0) . When 
Timer B PWM output mode functionality is enabled along with up/down counting (DCEN = 1), the up/down-count con-
trol of Timer B is controlled internally based upon the count in relation to the register settings . In the compare modes, 
the DCEN bit controls whether the timer counts up and resets (DCEN = 0), or counts up and down (DCEN = 1) .

Bit 3: Timer B External Enable (EXENB). Setting this bit to 1 enables the capture/reload function on the TBB pin for 
a negative transition (in up-counting mode) . A reload results in TBV being reset to 0000h . Clearing this bit to 0 causes 
Timer B to ignore all external events on the TBB pin . When operating in autoreload mode (CP/RLB = 0) with the PWM 
output functionality enabled, enabling the TBB input function (EXENB = 1) allows PWM output negative transitions to 
set the EXFB flag, however, no reload occurs as a result of the external negative edge detection .

Bit 2: Timer B Run Control (TRB). This bit enables Timer B operation when set to 1 . Clearing this bit to 0 halts Timer 
B operation and preserves the current count in TBV .

Bit 1: Enable Timer B Interrupt (ETB). Setting this bit to 1 enables the interrupt from the Timer B TFB and EXFB flags 
in TBCN . In Timer B clock output mode (TBOE = 1), the timer overflow flag (TFB) is still set on an overflow, however, 
the TBOE = 1 condition prevents this flag from causing an interrupt when ETB = 1 .

Bit 0: Capture/Reload Select (CP/RLB). This bit determines whether the capture or reload function is used for Timer B . 
Timer B functions in an autoreload mode following each overflow/underflow . See TFB bit description for overflow/under-
flow condition . Setting this bit to 1 causes a Timer B capture to occur when a falling edge is detected on TBB if EXENB 
is 1 . Clearing this bit to 0 causes an autoreload to occur when Timer B overflow or a falling edge is detected on TBB if 
EXENB is 1 . It is not intended that the Timer B compare functionality should be used when operating in capture mode .
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7.2.2 Timer B Value Register (TBV)

7.2.3 Timer B Capture/Reload Value Register (TBR)

7.2.4 Timer B Compare Register (TBC)

15 0

Timer B Value Register (TBV)

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access

The TBV register is a 16-bit register that holds the cur-
rent Timer B value .

15 0

Timer B Compare Register (TBC)

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access

This register is used to compare against TBV when 
Timer B operates in compare mode .

15 0

Timer B Capture/Reload Value Register (TBR)

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access

This 16-bit register is used to capture the TBV value 
when Timer B is configured in capture mode and 
holds the reload value when Timer B is configured in 
autoreload mode .
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SECTION 8: IR TIMER
The MAXQ610 microcontroller provides a dedicated IR timer/counter module to simplify support for low-speed infrared 
(IR) communication . The IR timer implements two pins (IRTX and IRRX) for supporting IR transmit and receive, respec-
tively . The IRTX pin has no corresponding port pin designation, so the standard PD, PO, and PI port control status bits 
are not present . However, the IRTX pin output can be manipulated high or low using the PWCN .IRTXOUT bit when the 
IRTX function is not enabled (i .e ., IREN = 0 or both IREN = 1 and IRMODE = 0) .

The IR timer is composed of two separate timing entities: a carrier generator and a carrier modulator . The carrier gen-
eration module uses the 16-bit IR carrier register (IRCA) to define the high and low time of the carrier through the IR 
carrier high byte (IRCAH) and IR carrier low byte (IRCAL) . The carrier modulator uses the IR data bit (IRDATA) and IR 
modulator time register (IRMT) to determine whether the carrier or the idle condition is present on IRTX .

The IR timer is enabled when the IR enable bit (IREN) is set to 1 .

The IR value register (IRV) defines the beginning value for the carrier modulator . During transmission, the IRV register 
is initially loaded with the IRMT value and begins down counting towards 0000h, whereas in receive mode it counts 
upward from the initial IRV value . During the receive operation, the IRV register can be configured to reload with 0000h 
when capture occurs on detection of selected edges or can be allowed to continue running free throughout the receive 
operation . An overflow occurs when the IR timer value rolls over from 0FFFFh to 0000h . The IR overflow flag (IROV) is 
set to 1 and an interrupt is generated if enabled (IRIE = 1) .

8.1 Carrier Generation Module
The IRCAH byte defines the carrier high time in terms of the number of IR input clock, whereas the IRCAL byte defines 
the carrier low time .

IR Input Clock (fIRCLK)  = fSYS/2IRDIV[1:0]

Carrier Frequency (fCARRIER) = fIRCLK/(IRCAH + IRCAL + 2)

Carrier High Time  = IRCAH +1

Carrier Low Time   = IRCAL+1

Carrier Duty Cycle   = (IRCAH +1)/(IRCAH + IRCAL + 2)

During transmission, the IRCA register is latched for each IRV down-count interval and is sampled along with the 
IRTXPOL and IRDATA bits at the beginning of each new IRV down-count interval so that duty-cycle variation and fre-
quency shifting is possible from one interval to the next . This is illustrated in Figure 8-1 .

Figure 8-2 illustrates the basic carrier generation and its path to the IRTX output pin . The IR transmit polarity bit 
(IRTXPOL) defines the starting/idle state and the carrier polarity of the IRTX pin when the IR timer is enabled .

8.2 IR Transmission
During IR transmission (IRMODE = 1), the carrier generator is used to create the appropriate carrier waveform, while 
the necessary modulation is performed by the carrier modulator .

The carrier modulation can be performed as a function of carrier cycles or as a function of IRCLK cycles dependent on 
the setting of the IRCFME bit . When IRCFME = 0, the IRV down counter is clocked by the carrier frequency and, thus, 
the modulation is a function of carrier cycles . When IRCFME = 1, the IRV down counter is clocked by IRCLK, allowing 
carrier modulation timing with IRCLK resolution .

The IRTXPOL bit defines the starting/idle state as well as the carrier polarity for the IRTX pin . If IRTXPOL = 1, the IRTX 
pin is set to a logic-high when the IR timer module is enabled . If IRTXPOL = 0, the IRTX pin is set to a logic-low when 
the IR timer is enabled .

A separate register bit, IR data (IRDATA), is used to determine whether the carrier generator output is output to the 
IRTX pin for the next IRMT carrier cycles . When IRDATA = 1, the carrier waveform (or inversion of this waveform if 
IRTXPOL = 1) is output on the IRTX pin during the next IRMT cycles . When IRDATA = 0, the idle condition, as defined 
by IRTXPOL, is output on the IRTX pin during the next IRMT cycles .
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Figure 8-1. IR Transmit Frequency Shifting Example (IRCFME = 0)

Figure 8-2. IR Transmit Carrier Generation and Carrier Modulator Control
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The IR timer acts as a down counter in transmit mode . An IR transmission starts when the IREN bit is set to 1 when 
IRMODE = 1; when the IRMODE bit is set to 1 when IREN = 1; or when IREN and IRMODE are both set to 1 in the same 
instruction . The IRMT and IRCA registers, along with the IRDATA and IRTXPOL bits, are sampled at the beginning of 
the transmit process and every time the IR timer value reloads its value . When the IRV reaches 0000h value, on the 
next carrier clock, it does the following:

1)  Reloads IRV with IRMT .

2)  Samples IRCA, IRDATA, and IRTXPOL .

3)  Generates IRTX accordingly .

4)  Sets IRIF to 1 .

5)  Generates an interrupt to the CPU if enabled (IRIE = 1) .

To terminate the current transmission, the user can switch to receive mode (IRMODE = 0) or clear IREN to 0 .

Carrier Modulation Time = IRMT + 1 cycles

8.3 IR Transmit—Independent External Carrier and Modulator Outputs
The normal transmit mode performs internal modulation of the carrier based upon the IRDATA bit .

However, the user has the option to discretely provide the modulator (envelope) on an external pin if desired . If the 
IRENV[1:0] bits are configured to 01b or 10b, the modulator/envelope is output to the IRTXM pin . The IRDATA bit is 
output directly to the IRTXM pin (if IRTXPOL = 0) on each IRV down-count interval boundary just as if it were being 
used to internally modulate the carrier frequency . If IRTXPOL = 1, the inverse of the IRDATA bit is output to the IRTXM 
pin on the IRV interval down-count boundaries . The envelope output is illustrated in Figure 8-4 . When the envelope 
mode is enabled, it is possible to output either the modulated (IRENV[1:0] = 01b) or unmodulated (INENV[1:0] = 10b) 
carrier to the IRTX pin .

Figure 8-3. IR Transmission Waveform (IRCFME = 0)

IRMT = 3

0 1

11 33 22 00

0

IRDATA

IR INTERRUPT

IRTX
IRTXPOL = 1

IRTX
IRTXPOL = 0

CARRIER OUTPUT
(IRV)
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8.4 IR Receive
When configured in receive mode (IRMODE = 0), the IR hardware supports the IRRX capture function . The IRRXSEL[1:0] 
bits define which edge(s) of the IRRX pin should trigger IR timer capture function .

The IR module starts operating in the receive mode when IRMODE = 0 and IREN = 1 . Once started, the IR timer (IRV) 
starts up counting from 0000h when a qualified capture event as defined by IRRXSEL happens . The IRV register will, 
by default, be counting carrier cycles as defined by the IRCA register . However, the IR clock frequency mux enable 
(IRCFME) bit can be set to 1 to allow clocking of the IRV register directly with the IRCLK for finer resolution . When 
IRCFME = 0, the IRCA-defined carrier is counted by IRV . When IRCFME = 1, the IRCLK clocks the IRV register .

Figure 8-4. External IRTXM (Modulator) Output

Figure 8-5. IR Capture

0 0 0 01 1 1 1

IRDATA

IRMT IRMT IRMT IRMT

IR INTERRUPT

IRV INTERVAL

IRTXM
(IRTXPOL = 1)

IRTXM
(IRTXPOL = 0)

0

1

IRCAH + 1
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RESER IRV TO 0000h

IRXRL
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CARRIER GENERATION

EDGE DETECT

CARRIER MODULATION

IR TIMER OVERFLOW

IR INTERRUPT

INTERRUPT TO CPU

IRDATA
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IRCLK
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On the first qualified event, it does the following:

1)   Captures the IRRX pin state and transfers its value to IRDATA . If a falling edge occurs, IRDATA = 0 . If a rising edge 
occurs, IRDATA = 1 .

2)  Transfers its current IRV value to the IRMT .

3)  Resets IRV content to 0000h (if IRXRL = 1) .

4)  Continues counting again until the next qualified event .

If the IR timer value rolls over from 0FFFFh to 0000h before a qualified event happens, the IR timer overflow (IROV) 
flag is set to 1 and an interrupt is generated, if enabled . The IR module continues to operate in receive mode until it is 
stopped by switching into transmit mode (IRMODE = 1) or clearing IREN = 0 .

8.5 Carrier Burst-Count Mode
A special mode has been implemented to reduce the CPU processing burden when performing IR learning functions . 
Typically, when operating in an IR learning capacity, some number of carrier cycles is examined for frequency determi-
nation . Once the frequency has been satisfactorily determined, the IR receive function can be reduced to counting the 
number of carrier pulses in the burst and the duration of the combined mark-space time within the burst . To simplify this 
process, the receive burst-count mode (as enabled by the RXBCNT bit) can be used . When RXBCNT = 0, the standard 
IR receive capture functionality is in place . When RXBCNT = 1, the IRV capture operation is disabled and the interrupt 
flag associated with the capture no longer denotes a capture . In the carrier burst-count mode, the IRMT register is 
now used only to count qualified edges . The IRIF interrupt flag (normally used to signal a capture when RXBCNT = 0) 
now becomes set if ever two IRCA cycles elapse without getting a qualified edge . The IRIF interrupt flag thus denotes 
absence of the carrier and the beginning of a space in the receive signal . When the RXBCNT bit is changed from 0 to 
1, the IRMT register is set to 0001h . The IRCFME bit is still used to define whether the IRV register is counting IRCLKs 
or IRCA-defined carrier cycles . The IRXRL bit is still used to define whether the IRV register is reloaded with 0000h on 
detection of a qualified edge (per the IRXSEL[1:0] bits) .

Figure 8-6 and the descriptive sequence embedded in the figure illustrate the expected usage of the receive burst-
count mode .

8.6 IRV Stand-Alone Count Mode
A special mode has been implemented to allow using the IRV as a simple counter . When IRVCEN = 1 and IRMODE 
= 0, the IRV acts as an up counter counting IRCLK edges (IRCFME = 1) or carrier-generated clock edges (IRCFME = 
0) . If IREN = 1 and IRXRL = 1, a qualifying edge resets the IRV counter and generates an interrupt (if enabled) . Using 
this feature when IREN = 0 allows controlling the IRTX pin with the PWCN IRTX control bits .

This mode should not be used with RXBCNT set and is not operational if IRMODE = 1 .
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Figure 8-6. Receive Burst-Count Example
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IRV ≥ IRMT
IRV = 0 (IF IRXRL = 1) 

TO0 4

SOFTWARE SET IRCA = CARRIER FREQUENCY.
SOFTWARE SETS RXBCNT = 1 (WHICH SETS IRMT = 0001 IN HARDWARE).
SOFTWARE CLEARS IRCFME = 0 SO THAT IRV COUNTS CARRIER CYCLES. IRV IS RESET TO 0 ON QUALIFIED EDGE DETECTION IF IRXRL = 1.
SOFTWARE ADDS TO IRMT THE NUMBER OF PULSES USED FOR CARRIER MEASUREMENT.
IRCA x 2X COUNTER FOR SPACE CAN BEGIN IMMEDIATELY (QUALIFIED EDGE WILL RESET) .

5

QUALIFIED EDGE DETECTED: IRMT++
IRV RESET TO 0 IF IRXRL = 1.

6

IRCA x 2 PERIOD ELAPSES: IRIF = 1; CARRIER ABSENCE = SPACE.
BURST MARK = IRMT PULSES.
SOFTWARE CLEARS RXBCNT = 0 SO THAT WE CAPTURE ON THE NEXT QUALIFIED EDGE. 

7

QUALIFIED EDGE DETECTED: IRIF = 1, CAPTURE ≥ IRMT AS THE BURST SPACE (PLUS UP TO ONE CARRIER CYCLE).8

SOFTWARE SET RXBCNT = 1 AS IN (5).
CONTINUE (5) TO (8) UNTIL LEARNING SPACE EXCEEDS SOME DURATION. IRV ROLLOVERS CAN BE USED.

9
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Figure 8-7. Philips Remote Encoding Example
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Figure 8-8. Sony Remote Encoding Example
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8.7 IR Timer Peripheral Registers

8.7.1 IR Control Register (IRCN)

Bit 13: IRV Count Enable (IRVCEN). Setting this bit to 1, while IRMODE = 0 (receive mode), enables IRV up counting . 
IRCFME is used to select the clock source of the IRV in this mode . To use this mode without affecting the IRTX pin, 
keep IREN = 0 .

Bits 12 to 10: IR Clock Divide Bits [1:0] (IRDIV[2:0]). These two bits select the divide ratio for the IR input clock .

Bits 9 and 8: IR Envelope Mode Bits [1:0] (IRENV[1:0]). Setting either of these bits (but not both) to 1 enables the 
envelope modulation signal (based upon the IRDATA and IRTXPOL bits) to be output separately to the IRTXM pin dur-
ing transmit mode . When these bits are both cleared to 0 or set to 1, the standard internal modulation is performed 
during IR transmit mode and the envelope signal is not output to the IRTXM pin . When the envelope mode is enabled, 
it is possible to output either the modulated or unmodulated carrier to the IRTX pin (see the following table) .

Bit 7: IR Receive Reload Enable (IRXRL). Setting this bit to 1 enables automatic reload of the IRV register with 0000h 
whenever a qualified edge event capture occurs during the IR receive operation . If IRXRL = 0, the IRV register is not 
reloaded with 0000h, but continues running during the IR receive operation .

Bit 6: IR Carrier Frequency Measure Enable (IRCFME). Setting this bit to 1 enables direct clocking of the IRV 
register using the defined IRCLK during the IR receive operation . Clearing this bit to 0 results in IRV counting of the 
IRCA-defined carrier during the receive operation . Using IRCFME = 1 allows system clock resolution when capturing, 
whereas IRCFME = 0 allows only (Sysclk/2) resolution when IRCA = 0000h .

15 0

IR Control Register (IRCN)

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access

IRDIV[2:0] IR INPUT CLOCK-DIVIDE RATIO

000 fSYSCLK/1

001 fSYSCLK/2

010 fSYSCLK/4

011 fSYSCLK/8

100 fSYSCLK/16

101 fSYSCLK/32

110 fSYSCLK/64

111 fSYSCLK/128

IRENV[1:0] IRTX OUTPUT

00 or 11
Envelope mode disabled .
Standard IRTX modulation (default) .

01 Standard IRTX modulation .

10 Constant IRTX carrier (unmodulated) .
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Bits 5 and 4: IR Receive Edge Select Bits (IRRXSEL[1:0]) These bits define which edge of the input signal triggers 
a receive capture function when enabled .

Bit 3: IR Data (IRDATA). This register bit defines how the carrier is modulated in transmit mode, and in receive mode, it 
contains the state of IRRX when a qualified capture event happens . When IR transmit mode is in effect, setting IRDATA 
= 1 enables the output of the carrier module (as affected by IRTXPOL) to be visible on the IRTX pin . When IRDATA = 
0, the IR module is put in the idle state and IRTXPOL is output onto IRTX . In receive mode, the IRDATA bit contains the 
latched state of the IRRX pin each time a capture event occurs .

Bit 2: IR TX Polarity Select (IRTXPOL). When the IR timer is enabled (IREN = 1), this bit selects the starting/idle logic 
state and the carrier polarity for the transmit output . This bit also impacts the polarity of the IRTXM envelope when the 
independent modulator transmit output mode is enabled (IRENV[1:0] =01b or 10b) . When IRENV[1:0] =01b or 10b, 
the latched IRDATA bit is directly output to the IRTXM pin as the envelope when IRTXPOL = 0 . When IRTXPOL = 1, the 
complement of the latched IRDATA bit is output .

Bit 1: IR Mode (IRMODE). This register bit controls the IR module operation mode .

Bit 0: IR Enable (IREN). This register bit enables the IR module . Setting this bit to 1 starts the operating mode as 
defined by IRMODE bit . Clearing this bit to 0 terminates IR operation .

8.7.2 IR Control Register B (IRCNB)

Bit 3: Receive Carrier Burst-Count Enable (RXBCNT). Setting this bit to 1 enables the carrier burst-counting mode 
for the IR timer when operating in receive mode . This bit is not meaningful for the transmit mode . Whenever software 
changes RXBCNT from 0 to 1, the IRMT register is set to 0001h by hardware . When RXBCNT = 1, the IR timer receive 
mode is modified in the following ways:

1)  The IRV register is not captured to the IRMT register on detection of the IRRXSEL[1:0] selected edge(s) .

2)  The IRMT register is incremented on detection of the IRRXSEL[1:0] selected edge(s) .

3)  The IRIF flag is no longer set on capture-edge detection .

4)  An IRCA x 2 interval timer is enabled and upon expiration, the IRIF flag is set .

When RXBCNT = 0, the receive carrier burst-count mode is disabled and normal receive capture functionality can be 
used .

Bit 2: IR Interrupt Enable (IRIE). Setting this bit to 1 enables an interrupt to be generated to the CPU when the IR timer 
overflow (IROV) or IR interrupt flag is set (IRIF) . Clearing this bit to 0 disables IR timer interrupt generation .

IRRXSEL[1:0] IR RECEIVE MODE

00 Trigger on falling edge .

01 Trigger on rising edge .

10 Trigger on both rising and falling edge .

11 Reserved .

IRMODE IR OPERATION MODE

0 Receive Mode

1 Transmit Mode

7 0

IR Control Register B (IRCNB)

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access



8-12

MAXQ610 User’s Guide

Bit 1: IR Interrupt Flag (IRIF). This flag is set to 1 during transmit when the IR timer reloads its value and in receive 
mode (if RXBCNT = 0), when a capture occurs . In receive mode (when RXBCNT = 1), this flag is set whenever the 
IRCA x 2 interval timer expires . This bit must be cleared to 0 by software once it is set .

Bit 0: IR Timer Overflow Flag (IROV). This flag is set to 1 when the IR timer overflows from 0FFFFh to 0000h in receive 
mode . This bit must be cleared to 0 by software once it is set .

8.7.3 IR Value Register (IRV)

The IRV register is a 16-bit register that holds the current IR timer value . The IR timer value starts counting when the 
IREN bit is set to 1 . It stops counting when the IREN bit is cleared to 0 and retains the current timer value .

8.7.4 IR Carrier Register (IRCA)

Bits 15 to 8: IR Carrier High Byte Bits [7:0] (IRCAH[7:0]). The IRCAH byte defines the number of IR input clocks 
during carrier high time . The carrier high time = IRCAH[7:0] + 1 .

Bits 7 to 0: IR Carrier Low Byte Bits [7:0] (IRCAL[7:0]). The IRCAL byte defines the number of IR input clocks during 
carrier low time . The carrier low time = IRCAL[7:0] + 1 .

8.7.5 IR Modulator Time Register (IRMT)

The IRMT register is a 16-bit register that defines the IRDATA active time during transmit mode . In receive mode (when 
RXBCNT = 0), it is used to capture the IRV value on qualified IRRXSEL edges . In receive mode (when RXBCNT = 1), 
the IRMT register increments on detection of selected IRRXSEL edge(s) . When RXBCNT is changed from 0 to 1, the 
IRMT register is set to 0001h by hardware .
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SECTION 9: SERIAL I/O MODULE
The serial I/O module provides the MAXQ610 access to a universal synchronous/asynchronous receiver-transmitter 
(USART) for serial communication with framing error detection .

9.1 USART Modes
The USART supports four basic modes of operation and is capable of both synchronous and asynchronous modes, 
with different protocols and baud rates . In the synchronous mode, the microcontroller supplies the clock and commu-
nication takes place in a half-duplex manner, while the asynchronous mode supports full-duplex operation . The four 
serial operating modes are shown in Table 9-1, followed by detailed descriptions of each mode .

The USART has a control register (SCON) and a transmit/receive buffer register (SBUF) . Transmit or receive buffer 
access depends upon whether SBUF is used contextually as a source or destination . When SBUF is used as a source 
(read operation), the receive buffer is accessed . When SBUF is used as a destination (write operation), the transmit 
buffer is accessed . The USART receiver incorporates a holding buffer so that it can receive an incoming word before 
software has read the previous one .

Note that there is no single register bit that explicitly enables the USART for transmission . This means that the port 
pin(s) associated with USART transmission (i .e ., TXD and RXD for mode 0) is controlled by the PDn and POn port 
control register bits when the USART is not actively transmitting a character .

9.1.1 USART Mode 0
This mode is used to communicate in synchronous, half-duplex format with devices that accept the MAXQ610 micro-
controller as a master . A functional diagram and basic timing of this mode is shown in Figure 9-1 . As can be seen, 
there is one bidirectional data line (RXD) and one shift clock line (TXD) used for communication . Mode 0 requires that 
the MAXQ610 microcontroller be the master since it generates the serial shift clock for data transfers that occur in 
either direction .

The RXD signal is used for both transmission and reception . Data bits enter and exit LSB first . TXD provides the shift 
clock . The baud rate is equal to the shift clock frequency . When not using power-management mode, the baud rate 
in mode 0 is equivalent to the clock input divided by either 12 or 4, as selected by SM2 bit (SCON .5) for the USART .

The USART begins transmitting when any instruction writes to SBUF . The internal shift register then begins to shift data 
out . The clock is activated and transfers data until the 8-bit value is complete . Data is presented just prior to the falling 
edge of the shift clock (TXD) so that an external device can latch the data using the rising edge .

The USART begins to receive data when the REN bit in the SCON register (SCON .4) is set to 1 and the RI bit (SCON .0) 
is set to 0 . This condition tells the USART that there is data to be shifted in . The shift clock (TXD) activates, and the 
USART latches incoming data on the rising edge . The external device should therefore present data on the falling 
edge . This process continues until 8 bits have been received . The RI bit automatically is set to 1 immediately following 
the last rising edge of the shift clock on TXD . This causes reception to stop until the SBUF has been read and the RI 
bit cleared . When RI is cleared, another byte can be shifted in .

Table 9-1. USART Mode Summary

*Use of any system clock-divide modes or power-management mode affects the baud clock.

MODE
SYNCHRONOUS/
ASYNCHRONOUS

BAUD CLOCK*
DATA 
BITS

START/STOP
9TH BIT 

FUNCTION

0 Synchronous 4 or 12 clocks 8 None None

1 Asynchronous Baud-clock generator 8 1 start, 1 stop None

2 Asynchronous 32 or 64 clocks 9 1 start, 1 stop 0, 1, parity

3 Asynchronous Baud-clock generator 9 1 start, 1 stop 0, 1, parity
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Figure 9-1. USART Mode 0
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9.1.2 USART Mode 1
This mode provides asynchronous, full-duplex communication . A total of 10 bits is transmitted, consisting of a start bit 
(logic 0), 8 data bits, and 1 stop bit (logic 1) as illustrated in Figure 9-2 . The data is transferred LSB first . The baud 
rate is programmable through the baud-clock generator . Following a write to SBUF, the USART begins transmission 
five cycles after the first baud clock from the baud-clock generator . Transmission takes place on the TXD pin . It begins 
with the start bit being placed on the pin . Data is then shifted out onto the pin, LSB first . The stop bit follows . The TI bit 
is set by hardware after the stop bit is placed on the pin . All bits are shifted out at the rate determined by the baud-
clock generator .

Once the baud-clock generator is active, reception can begin at any time . The REN bit (SCON .4) must be set to 1 to 
allow reception . The detection of a falling edge on the RXD pin is interpreted as the beginning of a start bit and begins 
the reception process . Data is shifted in at the selected baud rate . At the middle of the stop bit time, certain conditions 
must be met to load SBUF with the received data:

RI must be 0, and either

If SM2 = 0, the state of the stop bit does not matter .

or

If SM2 = 1, the state of the stop bit must be 1 .

If these conditions are true, then SBUF (address) is loaded with the received byte, the RB8 bit (SCON .2) is loaded with 
the stop bit, and the RI bit (SCON .0) is set . If these conditions are false, then the received data is lost (SBUF and RB8 
not loaded) and RI is not set . Regardless of the receive word status, after the middle of the stop bit time, the receiver 
goes back to looking for a 1-to-0 transition on the RXD pin .

Each data bit received is sampled on the 7th, 8th, and 9th clock used by the divide-by-16 counter . Using majority vot-
ing, two equal samples out of the three, determines the logic level for each received bit . If the start bit was determined 
to be invalid (= 1), then the receiver goes back to looking for a 1-to-0 transition on the RXD pin in order to start the 
reception of data .

9.1.3 USART Mode 2
This mode uses a total of 11 bits in asynchronous full-duplex communication as illustrated in Figure 9-3 . The 11 bits 
consist of one start bit (a logic 0), 8 data bits, a programmable 9th bit, and one stop bit (a logic 1) . Like mode 1, the 
transmissions occur on the TXD signal pin and receptions on RXD .

For transmission purposes, the 9th bit can be stuffed as a 0 or 1 . The 9th bit is transferred from the TB8 bit position in 
the SCON register (SCON .3) following a write to SBUF to initiate a transmission . Transmission begins five clock cycles 
after the first rollover of the divide-by-16 counter following a software write to SBUF . It begins with the start bit being 
placed on the TXD pin . The data is then shifted out onto the pin, LSb first, followed by the 9th bit, and finally the stop 
bit . The TI bit (SCON .1) is set when the stop bit is placed on the pin .

Once the baud-rate generator is active and the REN bit (SCON .4) has been set to 1, reception can begin at any time . 
Reception begins when a falling edge is detected as part of the incoming start bit on the RXD pin . The RXD pin is then 
sampled according to the baud rate speed . The 9th bit is placed in the RB8 bit location in SCON (SCON .2) . At the 
middle of the 9th bit time, certain conditions must be met to load SBUF with the received data .

RI must be 0, and either

If SM2 = 0, the state of the 9th bit does not matter .

or

If SM2 = 1, the state of the 9th bit must be 1 .

If these conditions are true, then SBUF is loaded with the received byte, RB8 is loaded with the 9th bit, and RI is set . 
If these conditions are false, then the received data is lost (SBUF and RB8 not loaded) and RI is not set . Regardless 
of the receive word status, after the middle of the stop bit time, the receiver goes back to looking for a 1-to-0 transition 
on RXD .
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Figure 9-2. USART Mode 1
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Data is sampled in a similar fashion to mode 1 with the majority voting on three consecutive samples . Mode 2 uses 
the sample divide-by-16 counter with either the clock divided by 2 or 4, thus resulting in a baud clock of either system 
clock/32 or system clock/64 .

Figure 9-3. USART Mode 2
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9.1.4 USART Mode 3
This mode has the same operation as mode 2, except for the baud rate source . As shown in Figure 9-4, mode 3 gener-
ates baud rates through the baud-clock generator . The bit shifting and protocol are the same .

Figure 9-4. USART Mode 3
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9.2 Baud-Rate Generation
Each mode of operation has a baud-rate generator associated with it . The baud-rate generation techniques are impact-
ed by certain user options such as the power-management mode enable (PMME), serial mode 2 (SM2) select bit, and 
baud-rate doubler (SMOD) bit . Table 9-2 summarizes the effects of the various user options on the USART baud clock .

9.2.1 Mode 0 Baud Rate
Baud rates for mode 0 are driven directly from the system clock source divided by either 12 or 4, with the default case 
being divided by 12 . The user can select the shift clock frequency using the SM2 bit in the SCON register . When SM2 
is set to 0, the baud rate is fixed at a divide by 12 of the system clock . When SM2 is set to 1, the baud rate is fixed at 
a divide by 4 of the system clock .

Mode 0 Baud Rate = System Clock Frequency x 
SM23
12

9.2.2 Mode 2 Baud Rate
In this asynchronous mode, baud rates are also generated from the system clock source . The user can effectively 
double the USART baud clock frequency by setting the SMOD bit to 1 . The SMOD bit is set to 0 on all resets, thus 
making divide by 64 the default setting . The baud rate is given by the following formula:

Mode 2 Baud Rate = System Clock Frequency x 
SMOD2
64

9.2.3 Mode 1 or 3 Baud Rate
These asynchronous modes are commonly used for communication with PCs, modems, and other similar interfaces . 
The baud rates are programmable using the baud-clock generator in the USART module . The baud-clock generator 
is basically a phase accumulator that generates a baud clock as the result of phase overflow into the most significant 
bit of the phase shifter . This baud-clock generator is driven by the system clock or system clock divided-by-4 source 
(depending upon the state of the SMOD bit) . The baud-clock generator output is always divided by 16 to generate the 
exact baud rate .

9.2.4 Baud-Clock Generator
The baud-clock generator is essentially a phase accumulator that produces a baud clock as the result of phase over-
flow from the most significant bit of the phase shift circuitry . A 16-bit phase register (PR) is programmable by the user 
to select a suitable phase value for its baud clock . The phase value dictates the phase period of the accumulation 
process . The phase value is added to the current phase accumulator value on each system clock (SMOD = 1) or every 
fourth system clock (SMOD = 0) . The baud clock is the result of addition overflow out of the most significant bit of the 
phase accumulator (bit 16) . The baud-clock generator output is always divided by 16 to produce the exact baud rate .

Table 9-2. USART Baud-Clock Summary

*The BAUD frequency is determined by the baud-clock generator (described later in this section).

SYSTEM CLOCK MODE

BAUD-CLOCK FREQUENCY

MODE 0 MODE 2 MODE 1, 3*

SM2 = 0 SM2 = 1 SMOD = 0 SMOD = 1 SMOD = 0 SMOD = 1

Divide by 1 (default) CLK/12 CLK/4 CLK/64 CLK/32 BAUD/64 BAUD/16

Divide by 2 CLK/24 CLK/8 CLK/128 CLK/64 BAUD/64 BAUD/16

Divide by 4 CLK/48 CLK/16 CLK/256 CLK/128 BAUD/64 BAUD/16

Divide by 8 CLK/96 CLK/32 CLK/512 CLK/256 BAUD/64 BAUD/16

Power-Management 
Mode (Divide by 256)

CLK/3072 CLK/1024 CLK/16384 CLK/8192 BAUD/64 BAUD/16
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The below formulas can be used to calculate the output of the baud-clock generator and the resultant mode 1, 3 baud 
rates . Additionally, a table has been provided giving example phase register (PR) settings needed to produce some 
more common baud rates at certain system clock frequencies (assuming SMOD = 1) .

Baud-Clock Generator Output (BAUD) = System Clock Frequency x PR/217

Baud Rate for Modes 1 and 3 = BAUD x 2(SMODx2)/26

9.3 Framing Error Detection
A framing error occurs when a valid stop bit is not detected . This results in the possible improper reception of the serial 
word . The USART can detect a framing error and notify the software . Typical causes of framing errors are noise and 
contention . The framing error condition is reported in the SCON register for the USART .

The framing error bit, FE, is located in SCON .7 . Note that this bit normally serves as SM0 and is described as SM0/FE_0 
in the register description . Framing error information is made accessible by the FEDE (framing error-detection enable) 
bit located at SMD .0 . When FEDE is set to 1, the framing error information is shown in SM0/FE (SCON .7) . When FEDE 
is set to 0, the SM0 function is accessible . The information for bits SM0 and FE is actually stored in different registers . 
Changing FEDE only modifies which register is accessed, not the contents of either .

Table 9-3. Example Baud-Clock Generator Settings (SMOD = 1)

Figure 9-5. Baud-Clock Generator

0

15 0

PR

16

ADDITION

BAUD-CLOCK OUTPUT =
CARRY OUT FROM PHASE ACCUMULATOR [16]

0

PHASE ACCUMULATOR

SYSTEM CLOCK 
FREQUENCY (MHz)

BAUD RATE
(PR SETTING)

SYSTEM CLOCK 
FREQUENCy (MHz)

BAUD RATE
(PR SETTING)

10

115200 (5E5F)
57600 (2F30)
19200 (0FBB)
9600 (07DD)
2400 (01FF)

3 .579545

57600 (83D2)
19200 (2BF1)
9600 (15F8)
2400 (057E)

8

115200 (75F7)
57600 (3AFB)
19200 (13A9)
9600 (09D5)
2400 (0275)

2 .4576

57600 (C000)
19200 (4000)
9600 (2000)
2400 (0800)

3 .6864

115200 (FFFF)
57600 (8000)
19200 (2AAB)
9600 (1555)
2400 (0555)

1
19200 (9D49)
9600 (4EA5)
2400 (13A9)
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The FE bit is set to a 1 when a framing error occurs . It must be cleared by software . Note that the FEDE state must be 
1 while reading or writing the FE bit . Also note that receiving a properly framed serial word does not clear the FE bit . 
This must be done in software .

9.4 USART Peripheral Registers

9.4.1 Serial Control Register (SCON)

Bit 7: Framing Error Flag (FE) (FEDE = 1). This bit is set upon detection of an invalid stop bit . It must be cleared by 
software . Modification of this bit when FEDE is set has no effect on the serial mode setting .

Bit 7: Serial Port 0 Mode Bit 0 (SM0) (FEDE = 0). This bit is used in conjunction with the SM2 and SM1 bits to define 
the serial mode .

Bits 6:5: Serial Port 0 Mode Bits 2:1 (SM[2:1]). Setting this bit in mode 1 ignores reception if an invalid stop bit is 
detected . Setting this bit in mode 2 or 3 enables multiprocessor communications, and prevents the RI bit from being 
set and the interrupt from being asserted if the 9th bit received is 0 .

This bit also used to support mode 0 for clock selection:

0 = serial clock is system clock divided by 12

1 = serial clock is system clock divided by 4

Bit 4: Receive Enable (REN)

0 = serial port receiver disabled

1 = serial port receiver enabled for modes 1, 2, and 3 . Initiate synchronous reception for mode 0 (if RI = 0) .

Bit 3: 9th Transmission Bit State (TB8). This bit defines the state of the 9th transmission bit in serial port modes 2 
and 3 .

Bit 2: 9th Received Bit State (RB8). This bit identifies the state of the 9th bit of received data in serial port modes 2 
and 3 . When SM2 is 0, it is the state of the stop bit in mode 1 . This bit has no meaning in mode 0 .

Bit 1: Transmit Interrupt Flag (TI). This bit indicates that the data in the serial port data buffer has been completely 
shifted out . It is set at the end of the last data bit for all modes of operation and must be cleared by software once set .

7 0

Serial Control Register (SCON)

0 0 0 0 0 0 0 0 Power-On Reset and System Resets

rw rw rw rw rw rw rw rw Read (r), Write (w), or Special (s) access

MODE SM2 SM1 SM0 FUNCTION LENGTH (BITS) PERIOD

0 0 0 0 Synchronous 8 12 system clock

0 1 0 0 Synchronous 8 4 system clock

1 X 1 0 Asynchronous 10
64/16 baud clock
(SMOD = 0/1)

2 0 0 1 Asynchronous 11
64/32 system clock
(SMOD = 0/1)

2 1 0 1 Asynchronous (MP) 11
64/32 system clock
(SMOD = 0/1)

3 0 1 1 Asynchronous 11
64/16 baud clock
(SMOD = 0/1)

3 1 1 1 Asynchronous (MP) 11
64/16 baud clock
(SMOD = 0/1)
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Bit 0: Receive Interrupt Flag (RI). This bit indicates that a data byte has been received in the serial port buffer . The 
bit is set at the end of the 8th bit for mode 0, after the last sample of the incoming stop bit for mode 1 subject to the 
value of the SM2 bit, or after the last sample of RB8 for modes 2 and 3 . This bit must be cleared by software once set .

9.4.2 Serial Port Mode Register (SMD)

Bit 3: Enable Serial Port Interrupt (ESI). Setting this bit to 1 enables interrupt requests generated by the RI or TI flags 
in SCON . Clearing this bit to 0 disables the serial port interrupt .

Bit 2: Serial-Port Baud-Rate Select (SMOD). The SMOD selects the final baud rate for the asynchronous mode:

1 = 16 times the baud clock for mode 1 and 3

 32 times the system clock for mode 2

0 = 64 times the baud clock for mode 1 and 3

 64 times the system clock for mode 2

Bit 0: Framing Error Detection Enable (FEDE). This bit selects the function of SM0 (SCON .7):

0 = SCON .7 functions as SM0 for serial-port mode selection

1 = SCON .7 is converted to the framing error (FE) flag

9.4.3 Serial Port Data Buffer Register (SBUF)

Data for serial port is read from or written to this location . The serial transmit and receive buffers are separate but both 
are addressed at this location .

9.4.4 Serial Port Phase Register (PR)

This register is used to load and read the value in the phase register .

7 0

— — — — —- Serial Port Mode Register (SMD)

0 0 0 0 0 0 0 0 Power-On Reset and System Resets

r r r r r rw rw rw Read (r), Write (w), or Special (s) access

7 0

Serial Port Data Buffer Register (SBUF)

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access

15 0

Serial Port Phase Register (PR)

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

0
rw

Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access
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SECTION 10: SERIAL PERIPHERAL INTERFACE (SPI) MODULE
The serial peripheral interface (SPI) module of the MAXQ610 microcontroller provides an independent serial commu-
nication channel to communicate synchronously with peripheral devices in a multiple master or multiple slave system . 
The interface allows access to a 4-wire full-duplex serial bus that can be operated in either master mode or slave 
mode . The SPI functionality must be enabled by setting the SPI enable (SPIEN) bit of the SPI control register to 1 . The 
maximum data rate of the SPI interface is 1/2 the system clock frequency for master mode operation and 1/4 the system 
clock frequency for slave mode operation .

The four external interface signals used by the SPI module are MISO, MOSI, SPICK, and SSEL . Table 10-1 shows the 
function of each of these signals .

Figure 10-1 shows the SPI external interface signals, control unit, read buffer, and single shift register common to the 
transmit and receive data path . Each time that an SPI transfer completes, the received character is transferred to the 
read buffer, giving double buffering on the receive side . The CPU has read/write access to the control unit and the SPI 
data buffer (SPIB) . Writes to SPIB are always directed to the shift register while reads always come from the receive 
holding buffer .

10.1 SPI Transfer Formats
During an SPI transfer, data is simultaneously transmitted and received over two serial data lines with respect to a sin-
gle serial shift clock . The polarity and phase of the serial shift clock are the primary components in defining the SPI data 

Table 10-1. SPI Module Signal Functions

Figure 10-1. SPI Block Diagram

SPIEN =
SPICN.0

MSTM = SPICN.1

SHIFT REGISTER

MOSI

SPIB WRITES

RECEIVE DATA
BUFFER

SPIB READS

0

0

1

15/7

15/7

MISO0

1

SPI STATUS AND CONTROL UNIT

0

SPICK1

0

SSEL

EXTERNAL PIN SIGNAL MASTER MODE USE SLAVE MODE USE

MISO: Master In/Slave Out Input to serial shift register Output from serial shift register when selected

MOSI: Master Out/Slave In Output from serial shift register Input to serial shift register when selected

SPICK: SPI Clock Serial shift clock sourced to slave device(s) Serial shift clock from an external master

SSEL: Slave Select
(Optional) Mode fault-detection input if enabled 
(MODFE = 1)

Slave-select input
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transfer format . The polarity of the serial clock corresponds to the idle logic state of the clock line and therefore also 
defines which clock edge is the active edge . To define a serial shift clock signal that idles in a logic-low state (active 
clock edge = rising), the clock polarity select bit (CKPOL; SPICF .0) should be configured to a 0, while setting CKPOL 
= 1 causes the shift clock to idle in a logic-high state (active clock edge = falling) . The phase of the serial clock selects 
which edge is used to sample the serial shift data . The clock phase select bit (CKPHA; SPICF .1) controls whether the 
active or inactive clock edge is used to latch the data . When CKPHA is set to 1, data is sampled on the inactive clock 
edge (clock returning to the idle state) . When CKPHA is set to 0, data is sampled on the active clock edge (clock 
transition to the active state) . Together, the CKPOL and CKPHA bits allow the four possible SPI data transfer formats 
illustrated in Figure 10-2 and Figure 10-3 . The SSEL signal can remain asserted between successive transfers .

Figure 10-2. SPI Transfer Formats (CKPHA = 1)

Figure 10-3. SPI Transfer Formats (CKPHA = 0)
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10.2 SPI Slave Select
The SPI slave-select SSEL can be configured to accept either an active-low or active-high SSEL signal through the 
slave active select bit (SAS) in the SPI configuration register . The SAS bit allows the selection of the SSEL asserted 
state .

When SAS is cleared to 0, SSEL is configured to be asserted low . When SAS is set to 1, SSEL is configured to be 
asserted high .

10.3 SPI Character Lengths
To flexibly accommodate different SPI transfer data lengths, the character length for any transfer is user configurable 
through the character length bit (CHR) in the SPI configuration register . The CHR bit allows selection of either 8-bit or 
16-bit transfers .

When loading 8-bit characters into the SPIB data buffer, the byte for transmission should be right-justified or placed 
in the least significant byte of the word . When a byte transfer completes, the received byte is right-justified and can 
be read from the least significant byte of the SPIB word . The most significant byte of the SPIB data buffer is not used 
when transmitting and receiving 8-bit characters .

10.4 SPI Transfer Baud Rates
When operating as a slave device, the SPI serial clock is driven by an external master . For proper slave operation, the 
serial clock provided by the external master should not exceed the system clock frequency divided by 4 .

When operating in the master mode, the SPI serial clock is sourced to the external slave device(s) . The serial clock 
baud rate is determined by the clock divide ratio specified in the SPI clock divider ratio (SPICK) register . The SPI mod-
ule supports 256 different clock divide ratio selections for serial clock generation . The SPICK clock rate is determined 
by the following formula:

SPI Baud Rate = System Clock Frequency/2 x Clock Divider Ratio

where clock divider ratio = (SPICK[7:0]) + 1

Since the SPI baud rate is a function of the system clock frequency, using any of the system clock divide modes 
(including power-management mode) alters the baud rate . Attempts to invoke the power-management mode while an 
SPI transfer in is progress (STBY = 1) are ignored .

Note, however, that once in power-management mode (PMME = 1), writes to SPIB in master mode and assertion of the 
SSEL pin in slave mode both qualify as switchback sources if enabled (SWB = 1) . The SPI module clocks are halted if 
the device is placed into stop mode .

10.5 SPI System Errors
Three types of SPI system errors can be detected by the SPI module . A mode fault error arises in a multiple master 
system when more than one SPI device simultaneously tries to be a master . A receive overrun error occurs when an SPI 
transfer completes before the previous character has been read from the receive holding buffer . The third kind of error, 
write collision, indicates that an attempted write to SPIB was detected while a transfer was in progress (STBY = 1) .

10.5.1 Mode Fault
When an SPI device is configured as a master and its mode fault enable bit (SPICN .2: MODFE) is also set, a mode fault 
error occurs if the SSEL input signal is asserted by an external device . The asserted state of SSEL is defined by slave 
active select bit (SPICN .6: SAS) . If SAS is cleared to 0 and a low SSEL input signal is detected while MODFE is set, 
a mode fault error has occurred . If SAS is set to 1, a high SSEL signal indicates that a mode fault error has occurred . 
The mode fault error detection is to provide protection from such damage by disabling the bus drivers . When a mode 
fault is detected, the following actions are taken immediately:

1)  The MSTM bit is forced to 0 to reconfigure the SPI device as a slave .

2)  The SPIEN bit is forced to 0 to disable the SPI module .

3)  The mode fault status flag (SPICN .3: MODF) is set . Setting the MODF bit can generate an interrupt if it is enabled .
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The application software must correct the system conflict before resuming its normal operation . The MODF flag is set 
automatically by hardware, but must be cleared by software or a reset once set . Setting the MODF bit to 1 by software 
causes an interrupt if enabled .

Mode fault detection is optional and can be disabled by clearing the MODFE bit to 0 . Disabling the mode fault detection 
disables the function of the SSEL signal during master mode operation, allowing the associated port pin to be used as 
a general-purpose I/O .

Note that the mode fault mechanism does not provide full protection from bus contention in multiple master, multiple 
slave systems . For example, if two devices are configured as master at the same time, the mode fault-detect circuitry 
offers protection only when one of them selects the other as slave by asserting its SSEL signal . Also, if a master acci-
dentally activates more than one slave and those devices try to simultaneously drive their output pins, bus contention 
can occur without and a mode fault error being generated .

10.5.2 Receive Overrun
Since the receive direction of SPI is double buffered, there is no overrun condition as long as the received character in 
the read buffer is read before the next character in the shift register ready to be transferred to the read buffer . However, 
if previous data in the read buffer has not been read out when a transfer cycle is completed and the new character 
is loaded into the read buffer, a receive overrun occurs and the receive overrun flag (SPICN .5: ROVR) is set . Setting 
the ROVR flag indicates that the oldest received character has been overwritten and is lost . Setting the ROVR bit to 1 
causes an interrupt if enabled . Once set, the ROVR bit is cleared only by software or a reset .

10.5.3 Write Collision While Busy
A write collision occurs if an attempt to write the SPIB data buffer is made during a transfer cycle (STBY = 1) . Since the 
shift register is single buffered in the transmit direction, writes to SPIB are made directly into the shift register . Allowing 
the write to SPIB while another transfer is in progress could easily corrupt the transmit/receive data . When such a write 
attempt is made, the current transfer continues undisturbed, the attempted write data is not transferred to the shift reg-
ister, and the control unit sets the write collision flag (SPICN .4: WCOL) . Setting the WCOL bit to 1 causes an interrupt 
if SPI interrupt sources are enabled . Once set, the WCOL bit is cleared only by software or a reset .

Normally, write collisions are associated solely with slave devices since they do not control initiation of transfers and 
do not have access to as much information about the SPICK clock as the master . As a master, write collisions are 
completely avoidable, however, the control unit detects write collisions for both master and slave modes .

10.6 SPI Master Operation
The SPI module is placed in master mode by setting the master mode enable bit (MSTM) in the SPI control register to 
1 . Only an SPI master device can initiate a data transfer . The master is responsible for manually selecting/deselecting 
slave(s) through the SSEL slave input signals . Writing a data character to the SPI shift register (SPIB) while in master 
mode starts a data transfer . The SPI master immediately shifts out the data serially on the MOSI pin, most significant 
bit first, while providing the serial clock on SPICK output . New data is simultaneously received on the MISO pin into the 
least significant bit of the shift register . The data transfer format (clock polarity and phase), character length, and baud 
rate are all configurable as described earlier in the section . During the transfer, the SPI transfer busy flag (SPICN .7: 
STBY) is set to indicate that a transfer is in process . At the end of the transfer, the data contained in the shift register is 
moved into the receive data buffer, the STBY bit is cleared by hardware, and the SPI transfer complete flag (SPICN .6: 
SPIC) is set . Setting of the SPIC bit generates an interrupt request if SPI interrupt sources are enabled (ESPII = 1) .

10.7 SPI Slave Operation
The SPI module operates in slave mode when the MSTM bit is cleared to 0 . In slave mode, the SPI is dependent on 
the SPICK sourced from the master to control the data transfer . The SPICK input frequency should be no greater than 
the system clock of the slave device frequency divided by 4 .

The slave-select SSEL input must be externally asserted by a master before data exchange can take place . SSEL 
must be asserted before data transaction begin and must remain asserted for the duration of the transaction . If data 
is to be transmitted by the slave device, it must be written to its shift register before the beginning of a transfer cycle, 
otherwise the character already in the shift register is transferred . The slave device considers a transfer to begin with 



10-6

MAXQ610 User’s Guide

the first clock edge or the active SSEL edge, dependent on the data transfer format . When SAS is cleared to 0, the 
active SSEL edge is the falling edge of SSEL, while if SAS is set to 1, the active SSEL edge is the rising edge of SSEL .

The SPI slave receives data from the external master MOSI pin, most significant bit first, while simultaneously transfer-
ring the contents of its shift register to the master on the MISO pin, also most significant bit first . Data received from the 
external master replaces data in the internal shift register until the transfer completes . Just like in the master mode of 
operation, received data is loaded into the read buffer and the SPI transfer complete flag is set at the end of transfer . 
The setting of the transfer complete flag generates an interrupt request if enabled . Note also that when CKPHA = 0, 
the most significant bit of the SPI data buffer is shifted out on the 8th shift clock edge .

When SSEL is not asserted, the slave device ignores the SPICK clock and the shift register is disabled . Under this 
condition, the device is basically idle, no data is shifted out from the shift register and no data is sampled from the 
MOSI pin . The MISO pin is placed in an input mode and is weakly pulled high to allow other devices on the bus to drive 
the bus . Deassertion of the SSEL signal by the master during a transfer (before a full character, as defined by CHR, is 
received) aborts the current transfer . When the transfer is aborted, no data is loaded into the read buffer, the SPIC flag 
is not set, and the slave logic and the bit counter are reset .

In slave mode, the clock divider ratio bits (CKR[7:0]) have no function since the serial clock is supplied by an external 
master . The transfer format (CKPOL, CKPHA settings) and the character length selection (CHR) for the slave device, 
however, should match the master for a proper communication .

10.8 SPI Peripheral Registers

10.8.1 SPI Control Register (SPICN)
Bit 7: SPI Transfer Busy Flag (STBY). This bit is used to indicate the current transmit/receive activity of the SPI mod-

ule . STBY is set to 1 when an SPI transfer cycle starts, and is cleared to 0 when the transfer cycle is completed . This 
bit is controlled by hardware and is read only for user software .

0 = SPI module is idle—no transfer in process

1 = SPI transfer in process

Bit 6: SPI Transfer Complete Flag (SPIC). This bit signals the completion of an SPI transfer cycle . This bit must be 
cleared to 0 by software once set . Setting this bit to 1 causes an interrupt if enabled .

0 = No SPI transfers have completed since the bit was last cleared .

1 = SPI transfer complete

Bit 5: Receive Overrun Flag (ROVR). This bit indicates when a receive overrun has occurred . A receive overrun 
results when a received character is ready to be transferred to the SPI receive data buffer before the previous charac-
ter in the data buffer is read . The most recent receive data is lost . This bit must be cleared to 0 by software once set . 
Setting this bit to 1 causes an interrupt if enabled .

0 = No receive overrun has occurred

1 = Receive overrun occurred

Bit 4: Write Collision Flag (WCOL). This bit signifies that an attempt was made by software to write the SPI buffer 
(SPIB) while a transfer was in progress (STBY = 1) . Such attempts are always blocked . This bit must be cleared to 0 
by software once set . Setting this bit to 1 causes an interrupt if enabled .

0 = No write collision has been detected

1 = Write collision detected

7 0

SPI Control Register (SPICN)

0 0 0 0 0 0 0 0 Power-On Reset and System Resets

r rw rw rw rw rw rw rw Read (r), Write (w), or Special (s) access
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Bit 3: Mode Fault Flag (MODF). This bit is the mode fault flag for SPI master mode operation . When mode fault detec-
tion is enabled (MODFE = 1) in master mode, detection of high to low transition on the SSEL pin signifies a mode fault 
causes MODF to be set to 1 . This bit must be cleared to 0 by software once set . Setting this bit to 1 causes an interrupt 
if enabled . This flag has no meaning in slave mode .

0 = No mode fault has been detected

1 = Mode fault detected while operating as a master (MSTM = 1)

Bit 2: Mode Fault Enable (MODFE). When set to 1, the SSEL input pin is used for mode fault detection during SPI 
master mode operation . When cleared to 0, the SSEL input has no function and its pin can be used for general-purpose 
I/O . In slave mode, the SSEL pin always functions as a slave-select input signal to the SPI module, independent of the 
setting of the MODFE bit .

Bit 1: Master Mode Enable (MSTM). The MSTM bit functions as a master mode enable bit for the SPI module .

0 = SPI module operates in slave mode when enabled (SPIEN = 1)

1 = SPI module operates in master mode when enabled (SPIEN = 1)

Note that this bit can be set from 0 to 1 only when the SSEL signal is deasserted . This bit can be automatically cleared 
to 0 by hardware if a mode fault is detected .

Bit 0: SPI Enable (SPIEN)

0 = SPI module and its baud-rate generator are disabled

1 = SPI module and its baud-rate generator are enabled

10.8.2 SPI Configuration Register (SPICF)

Bit 7: SPI Interrupt Enable (ESPII). This bit enables any of the SPI interrupt source flags (MODF, WCOL, ROVR, SPIC) 
to generate interrupt requests .

0 = SPI interrupt sources disabled

1 = SPI interrupt sources enabled

Bit 6: SPI Slave Active Select (SAS). This bit selects SSEL asserted state .

0 = SSEL is active low

1 = SSEL is active high

Bit 2: Character Length Bit (CHR). This bit determines the character length for a SPI transfer cycle . A character can 
be 8 bits in length or 16 bits in length .

0 = 8-bit character length specified

1= 16-bit character length specified

Bit 1: Clock Phase Select (CKPHA). This bit selects the clock phase and is used in conjunction with the CKPOL bit 
to define the SPI data transfer format .

0 = data sampled on the active clock edge

1 = data sampled on the inactive clock edge

Bit 0: Clock Polarity Select (CKPOL). This bit selects the clock polarity and is used in conjunction with the CKPHA 
bit to define the SPI data transfer format .

0 = clock idles in the 0 state (rising = active clock edge)

1 = clock idles in the 1 state (falling = active clock edge)

7 0

— — — SPI Configuration Register (SPICF)

0 0 0 0 0 0 0 0 Power-On Reset and System Resets

rw rw r r r rw rw rw Read (r), Write (w), or Special (s) access
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10.8.3 SPI Clock Register (SPICK)

Bits 7:0: Clock Divider Ratio Bits 7:0 (CKR[7:0]). This 8-bit value determines the system clock divide ratio to be 
used for SPI master mode baud-clock generation . This register has no function when operating in slave mode as the 
SPI clock generation circuitry is disabled . The frequency of the SPI master-mode baud rate is calculated using the 
following equation:

SPI Baud Rate = (0 .5 x System Clock Frequency)/(CKR[7:0] + 1)

10.8.4 SPI Data Buffer Register (SPIB)

Data for SPI is read from or written to this location . The serial transmit and receive buffers are separate, but both are 
addressed at this location . Write access is allowed only outside the transfer cycle . When the STBY bit is set, write 
attempts are blocked and cause a write collision error .

7 0
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rw
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SECTION 11: TEST ACCESS PORT (TAP)
The MAXQ610 microcontroller incorporates a test access port (TAP) and TAP controller for communication with a host 
device across a 4-wire synchronous serial interface . The TAP can be used by MAXQ610 microcontrollers to support in-
system programming and/or in-circuit debug . The TAP is compatible with the JTAG IEEE standard 1149 and is formed 
by four interface signals as described in Table 11-1 . For detailed information on the TAP and TAP controller, refer to 
IEEE Std 1149 .1 “IEEE Standard Test Access Port and Boundary-Scan Architecture .”

11.1 TAP Controller
The TAP controller is a synchronous state machine that responds to changes at the TMS and TCK signals . Based on 
its state transition, the controller provides the clock and control sequence for TAP operation .

The performance of the TAP is dependent on the TCK clock frequency . The maximum TCK clock frequency should be 
limited to 1/8th the system clock frequency . This section provides a brief description of the state machine and its state 
transitions . The state diagram in Figure 11-1 summarizes the transitions caused by the TMS signal sampling on the 
rising edge at TCK . The TMS signal value is presented adjacent to each state transition in the figure .

11.2 TAP State Control
The TAP provides an independent serial channel to communicate synchronously with the host system . The TAP state 
control is achieved through host manipulation of the test-mode select (TMS) and test clock (TCK) signals . The TMS 
signal is sampled at the rising edge of TCK and decoded by the TAP controller to control movement between the TAP 
states . The TDI input and TDO output are meaningful once the TAP is in a serial shift state (i .e ., shift-IR or shift-DR) .

11.2.1 Test-Logic-Reset
On a power-on reset, the TAP controller is initialized to the test-logic-reset state and the instruction register (IR[2:0]) is 
initialized to the bypass instruction so that it does not affect normal system operation . No matter what the state of the 
controller, it enters test-logic-reset when TMS is held high for at least five rising edges of TCK . The controller remains 
in the test-logic-reset state if TMS remains high . An erroneous low signal on the TMS may cause the controller to move 
into the run-test-idle state, but no disturbance is caused to system operation if the TMS signal is returned and kept at 
the intended logic high for three rising edges of TCK since this returns the controller to the test-logic-reset state .

Table 11-1. TAP Signals
EXTERNAL PIN 

SIGNAL
DESCRIPTION

TDO: Test Data Output
Serial Data Output Pin . This signal is used to serially transfer internal data to the external host . Data 
is transferred least significant bit first . Data is driven out only on the falling edge of TCK, only during 
TAP shift-IR or shift-DR states and is otherwise inactive .

TDI: Test Data Input
Serial Data Input Pin . This signal is used to receive data serially transferred by the host . Data is 
received least significant bit first and is sampled on the rising edge of TCK . TDI is weakly pulled high 
internally when TAP = 1 .

TCK: Test Clock Input
Serial Shift Clock Provided by the Host . When this signal is stopped at 0, storage elements in the TAP 
logic must retain their data indefinitely . TCK is weakly pulled high internally when TAP = 1 .

TMS: Test-Mode Select 
Input

Mode Select Input Pin . This signal is sampled at the rising edge of TCK and controls movement 
between TAP states . TMS is weakly pulled high internally when TAP = 1 .
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11.2.2 Run-Test-Idle
As illustrated in Figure 11-1, the run-test-idle state is simply an intermediate state for getting to one of the two state 
sequences in which the controller performs meaningful operations:

•  Controller state sequence (IR-scan) or

•  Data register state sequence (DR-scan)

11.2.3 IR-Scan Sequence
The controller state sequence allows instructions (e .g ., debug and system programming) to be shifted into the instruc-
tion register starting from the select-IR-scan state . In the TAP, the instruction register is connected between the TDI 
input and the TDO output . Inside the IR-scan sequence, the capture-IR state loads a fixed binary pattern (001b) into the 
3-bit shift register and the shift-IR state causes shifting of TDI data into the shift register and serial output to TDO, least 
significant bit first . Once the desired instruction is in the shift register, the instruction can be latched into the parallel 
instruction register (IR[2:0]) on the falling edge of TCK in the update-IR state . The contents of the 3-bit instruction shift 
register and parallel instruction register (IR[2:0]) are summarized with respect to the TAP controller states in Table 11-2 .

Figure 11-1. TAP Controller State Diagram
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When the parallel instruction register (IR[2:0]) is updated, the TAP controller decodes the instruction and performs any 
necessary operations, including activation of the data shift register to be used for the particular instruction during data 
register shift sequences (DR-scan) . The length of the activated shift register depends upon the value loaded to the 
instruction register (IR[2:0]) . The supported instruction register encodings and associated data register selections are 
shown in Table 11-3 .

The extest (IR[2:0] = 000b) and sample/preload (IR[2:0] = 001b) instructions are mandated by the JTAG standard, 
however, the MAXQ610 microcontroller does not intend to make practical use of these instructions . Hence, these 
instructions are treated as no operations but can be entered into the instruction register without affecting the on-chip 
system logic or pins, and does not change the existing serial data register selection between TDI and TDO .

The bypass (IR[2:0] = 011b, 101b, or 111b) instruction is also mandated by the JTAG standard . The bypass instruction 
is fully implemented by the MAXQ610 microcontroller to provide a minimum length serial data path between the TDI 
and the TDO pins . This is accomplished by providing a single-cell bypass shift register . When the instruction register 
is updated with the bypass instruction, a single bypass register bit is connected serially between TDI and TDO in the 
shift-DR state . The instruction register automatically defaults to the bypass instruction when the TAP is in the test-logic-
reset state . The bypass instruction has no effect on the operation of the on-chip system logic .

The debug (IR[2:0] = 010b) and system programming (IR[2:0] = 100b) instructions are private instructions that are 
intended solely for in-circuit debug and in-system programming operations, respectively . If the instruction register is 
updated with the debug instruction, a 10-bit serial shift register is formed between the TDI and TDO pins in the shift-
DR state . If the system programming instruction is entered into the instruction register (IR[2:0]), a 3-bit serial data shift 
register is formed between the TDI and TDO pins in the shift-DR state .

Table 11-2. Instruction Register Content vs. TAP Controller State

Table 11-3. Instruction Register (IR[2:0]) Encodings

TAP CONTROLLER 
STATE

INSTRUCTION SHIFT REGISTER
PARALLEL (3-BIT) INSTRUCTION REGISTER 

(IR[2:0])

Test-Logic-Reset Undefined Set to bypass (011b) instruction

Capture-IR Load 001b at the rising edge of TCK Retain last state

Shift-IR
Input data through TDI and shift towards TDO at 
the rising edge of TCK

Retain last state

Exit1-IR
Exit2-IR

Pause-IR
Retain last state Retain last state

Update-IR Retain last state Load from shift register at the falling edge of TCK

All other states Undefined Retain last state

IR[2:0] INSTRUCTION FUNCTION
SERIAL DATA SHIFT REGISTER 

SELECTION

000 Extest No operation Unchanged; retain previous selection

001 Sample/Preload No operation Unchanged; retain previous selection

010 Debug In-circuit debug mode 10-bit shift register

011 Bypass No operation (default) 1-bit shift register

100 System Programming Bootstrap function 3-bit shift register

101 Bypass No operation (default) 1-bit shift register

110 Reserved Reserved Reserved

111 Bypass No operation (default) 1-bit shift register
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Instruction register (IR[2:0]) settings other than those listed and described above are reserved for internal use . As can 
be seen in Figure 11-2, the instruction register serves to select the length of the serial data register between TDI and 
TDO during the shift-DR state .

11.2.4 DR-Scan Sequence
Once the instruction register has been configured to a desired state (mode), transactions are performed via a data 
buffer register associated with that mode . These data transactions are executed serially in a manner analogous to the 
process used to load the instruction register and are grouped in the TAP controller state sequence starting from the 
select-DR-scan state . In the TAP controller state sequence, the shift-DR state allows internal data to be shifted out 
through the TDO pin, while the external data is shifted in simultaneously through the TDI pin . Once a complete data 
pattern is shifted in, input data can be latched into the parallel buffer of the selected register on the falling edge of TCK 
in the update-DR state . On the same TCK falling edge, in the update-DR state, the internal parallel buffer is loaded to 
the data shift register for output . This shift-DR/update-DR process serves as the basis for passing information between 
the external host and the MAXQ610 microcontroller . These data register transactions occur in the data register portion 
of the TAP controller state sequence diagram and have no effect on the instruction register .

11.3 Communication Through TAP
The TAP controller is in test-logic-reset state after a power-on-reset . During this initial state, the instruction register 
contains bypass instruction and the serial path defined between the TDI and TDO pins for the shift-DR state is the 1-bit 
bypass register . All TAP signals (TCK, TMS, TDI, and TDO) default to being weakly pulled high internally on any reset . 
The TAP controller remains in the test-logic-reset state as long as TMS is held high . The TCK and TMS signals can be 
manipulated by the host to transition to other TAP states . The TAP controller remains in a given state whenever TCK 
is held low .

Figure 11-2. TAP and TAP Controller
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For the host to establish a specific data communication link, a private instruction must be loaded into the IR[2:0] reg-
ister . Once the instruction is latched in the instruction parallel buffer at the update-IR state, it is recognized by the TAP 
controller and the communication channel is established . In-circuit debug or in-system programming commands and 
data can be exchanged between the host and the MAXQ610 microcontroller by operating in the data register portion 
of the state sequence (i .e ., DR-scan) . The TAP retains the private instruction that was loaded into IR[2:0] until a new 
instruction is shifted in or until the TAP controller returns to the test-logic-reset state .

11.3.1 TAP Communication Examples—IR-Scan and DR-Scan
Figure 11-3 and Figure 11-4 illustrate examples of communication between the host JTAG controller and the TAP of the 
MAXQ610 microcontroller . The host controls the TCK and TMS signals to move through the desired TAP states while 
accessing the selected shift register through the TDI input and TDO output pair .

Figure 11-3. TAP Controller Debug Mode IR-Scan Example
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Figure 11-4. TAP Controller Debug Mode DR-Scan Example
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SECTION 12: IN-CIRCUIT DEBUG MODE
Flash-based MAXQ610 microcontroller devices are equipped with embedded debug hardware and embedded utility 
ROM firmware developed for the purpose of providing in-circuit debugging capability to the user application . The in-
circuit debug mode uses the JTAG-compatible TAP as its means of communication between the host and MAXQ610 
microcontroller . Figure 12-1 shows a block diagram of the in-circuit debugger . The in-circuit debug hardware and 
software features include the following:

•  Debug engine

•  Set of registers providing the ability to set breakpoints on register, code, or data

•  Set of debug service routines stored in a utility ROM

Collectively, these hardware and software features allow two basic modes of in-circuit debugging:

•   Background mode allows the host to configure and set up the in-circuit debugger while the CPU continues to 
execute the normal program . Debug mode can be invoked from background mode .

•   Debug mode allows the debug engine to take control of the CPU, providing read write access to internal registers 
and memory, and single-step trace operation .

Note: The in-circuit debug peripheral registers ICDTn, ICDA, ICDB, ICDD, ICDC, and ICDF are used only by the utility 
ROM . The user does not have access to these registers .

The embedded hardware debug engine is implemented as a stand-alone hardware block in the MAXQ610 micro-
controller . The debug engine can be enabled for monitoring internal activities and interacting with selected internal 
registers while the CPU is executing user code . This capability allows the user to employ the embedded debug engine 
to debug the actual system, in place of the in-circuit emulator, which uses external hardware to duplicate operation of 
the microcontroller outside of the real application environment .

To enable a communication link between the host and the microcontroller debug engine, the debug instruction (010b) 
must be loaded into the TAP instruction register using the IR-scan sequence . Once the instruction is latched in the 
instruction parallel buffer (IR[2:0]) and is recognized by the TAP controller in the update-IR state, the 10-bit data shift 
register is activated as the communication channel for DR-scan sequences . The TAP instruction register retains the 
debug instruction until a new instruction is shifted through an IR-scan or the TAP controller returns to the test-logic-
reset state .

Figure 12-1. In-Circuit Debugger
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The host now can transmit and receive serial data through the 10-bit data shift register that exists between the TDI 
input and TDO output during DR-scan sequences . All background and debug mode communication (commands, data 
input/output, and status) occurs through this serial channel . Each 10-bit exchange of data between the host and the 
MAXQ610 internal hardware is composed of two status bits and a single byte of command or data .

The 10-bit word is always transmitted least significant bit first with the format shown below .

The data byte portion of the 10-bit shift register is interfaced directly to the ICDB parallel register . The ICDB register 
functions as the holding data register for both transmit and receive operations . On the falling edge of TCK in the 
update-DR state, the outgoing data is loaded from the ICDB parallel register to the debug shift register and the incom-
ing shift register data is latched in the ICDB parallel register .

12.1 Background Mode Operation
When the instruction register is loaded with the debug instruction (IR[2:0] = 010b), the host can communicate with the 
MAXQ610 microcontroller in a background mode using TAP DR-scan sequences without disturbing CPU operation . 
Note, however, that JTAG in-system programming also requires use of the 10-bit debug shift register and, if enabled 
(SPE, PSS[1:0] = 100b), takes precedence over background mode communication . When operating in background 
mode, the status bits are always cleared to 00b (nondebug), which indicates that the MAXQ610 microcontroller is 
ready to receive background mode commands .

The host can perform the following operations from background mode:

•  Read/write internal breakpoint registers (BP0 to BP5)

•  Read/write internal in-circuit debug registers (ICDC, ICDF, ICDA, ICDD)

•  Monitor to determine when a breakpoint match has occurred

•  Directly invoke debug mode

The background mode commands supported by the MAXQ610 microcontroller are shown in Table 12-1 . Encodings 
not listed in this table are not supported in background mode and are treated as no operations .

TDI TDO

MAXQ610

x x

09 09

HOST COMMAND/DATA INPUT MAXQ610 DATA OUTPUT

s[1:0]

00 NONDEBUG. DEFAULT CONDITION,
 BACKGROUND MODE, OR DEBUG ENGINE
 INACTIVE.

01 DEBUG IDLE. DEBUG ENGINE IS READY TO
 RECEIVE DATA FROM THE HOST (COMMAND, DATA).

10 DEBUG BUSY. DEBUG ENGINE IS BUSY WITHOUT
 VALID DATA (i.e., ROM CODE EXECUTION, TRADE
 OPERATIONS).

11 DEBUG VALID. DEBUG ENGINE IS BUSY WITH
 VALID DATA.

STATUS CONDITION
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Table 12-1. Background Mode Commands
OP CODE COMMAND OPERATION

0000–0000 No Operation No operation (default state for debug shift register) .

0000–0001 Read ICDC
Read control data from the ICDC . The contents of the ICDC register are loaded into the debug 
shift register through the ICDB register for host read . This command requires one follow-on 
transfer cycle .

0000–0010 Read ICDF
Read flags from the ICDF . The contents of the ICDF register (1 byte) are loaded into the debug 
shift register through the ICDB register for host read . This command requires one follow-on 
transfer cycle .

0000–0011 Read ICDA
Read data from the ICDA . The contents of the ICDA register are loaded into the debug shift 
register through the ICDB register for host read . This command requires two follow-on transfer 
cycles with the least significant byte first .

0000–0100 Read ICDD
Read data from the ICDD . The contents of the ICDD register are loaded into the debug shift 
register through the ICDB register for host read . This command requires two follow-on transfer 
cycles with the least significant byte first .

0000–0101 Read BP0
Read data from the BP0 . The contents of the BP0 register are loaded into the debug shift reg-
ister through the ICDB register for host read . This command requires two follow-on transfer 
cycles with the least significant byte first .

0000–0110 Read BP1
Read data from the BP1 . The contents of the BP1 register are loaded into the debug shift reg-
ister through the ICDB register for host read . This command requires two follow-on transfer 
cycles with the least significant byte first .

0000–0111 Read BP2
Read data from the BP2 . The contents of the BP2 register are loaded into the debug shift reg-
ister through the ICDB register for host read . This command requires two follow-on transfer 
cycles with the least significant byte first .

0000–1000 Read BP3
Read data from the BP3 . The contents of the BP3 register are loaded into the debug shift reg-
ister through the ICDB register for host read . This command requires two follow-on transfer 
cycles with the least significant byte first .

0000–1001 Read BP4
Read data from the BP4 . The contents of the BP4 register are loaded into the debug shift reg-
ister through the ICDB register for host read . This command requires two follow-on transfer 
cycles with the least significant byte first .

0000–1010 Read BP5
Read data from the BP5 . The contents of the BP5 register are loaded into the debug shift reg-
ister through the ICDB register for host read . This command requires two follow-on transfer 
cycles with the least significant byte first .

0001–0001 Write ICDC
Write control data to the ICDC . The contents of ICDB are loaded into the ICDC register by the 
debug engine at the end of the data transfer cycle .

0001–0011 Write ICDA
Write data to the ICDA . The contents of ICDB are loaded into the ICDA register by the debug 
engine at the end of the data transfer cycles . Data is transferred with the least significant byte 
first .

0001–0100 Write ICDD
Write data to the ICDD . The contents of ICDB are loaded into the ICDD register by the debug 
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–0101 Write BP0
Write data to the BP0 . The contents of ICDB are loaded into the BP0 register by the debug 
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–0110 Write BP1
Write data to the BP1 . The contents of ICDB are loaded into the BP1 register by the debug 
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–0111 Write BP2
Write data to the BP2 . The contents of ICDB are loaded into the BP2 register by the debug 
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .
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12.2 Breakpoint Registers
The MAXQ610 microcontroller incorporates six breakpoint registers (BP0 to BP5) that are configurable by the host 
for establishing different types of breakpoint mechanisms . The first four breakpoint registers (BP0 to BP3) are 16-bit 
registers that are configurable as program memory address breakpoints . When enabled, the debug engine forces a 
break when a match between the breakpoint register and the program memory execution address occurs . The final 
two 16-bit breakpoint registers (BP4, BP5) are configurable in one of two possible capacities . They can be configured 
as data memory address breakpoints or can be configured to support register access breakpoints . In either case, if 
breakpoints are enabled and the defined breakpoint match occurs, the debug engine generates a break condition .

12.2.1 Breakpoint n Register (BPn, n = 0 to 3)

These registers are accessible only through background mode read/write commands . These four registers serve as 
program memory address breakpoints . When DME bit is set in background mode, the debug engine monitors the 
program address bus activity while the CPU is executing the user program . If an address match is detected, a break 
occurs, allowing the debug engine to take control of the CPU and enter debug mode .

12.2.2 Breakpoint 4 Register (BP4)

This register is accessible only through background mode read/write commands .

When (REGE = 0): This register serves as one of the two data memory address breakpoints . When DME is set in 
background mode, the debug engine monitors the data memory address bus activity while the CPU is executing the 

Table 12-1. Background Mode Commands (continued)

**Module Specifier 3:0 {0 to 15}

*Register Index within Module {0 to 31}

OP CODE COMMAND OPERATION

0001–1000 Write BP3
Write data to the BP3 . The contents of ICDB are loaded into the BP3 register by the debug 
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–1001 Write BP4
Write data to the BP4 . The contents of ICDB are loaded into the BP4 register by the debug 
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–1010 Write BP5
Write data to the BP5 . The contents of ICDB are loaded into the BP5 register by the debug 
engine at the end of data transfer cycles . Data is transferred with the least significant byte first .

0001–1111 Debug
Debug command . This command forces the debug engine into debug mode and halts the 
CPU operation at the completion of the current instruction after the debug command is recog-
nized by the debug engine .
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user program . If an address match is detected, a break occurs, allowing the debug engine to take over control of the 
CPU and enter debug mode .

When (REGE = 1): This register serves as one of the two register breakpoints . A break occurs when the destination 
register address for the executed instruction matches with the specified module and index .

12.2.3 Breakpoint 5 Register (BP5)

This register is accessible only through background mode read/write commands .

When (REGE = 0): This register serves as one of the two data memory address breakpoints . When DME is set in 
background mode, the debug engine monitors the data memory address bus activity while the CPU is executing the 
user program . If an address match is detected, a break occurs, allowing the debug engine to take over control of the 
CPU and enter debug mode .

When (REGE = 1): This register serves as one of the two register breakpoints . A break occurs when two conditions 
are met:

Condition 1: The destination register address for the executed instruction matches with the specified module and 
index .

Condition 2: The bit pattern written to the destination register matches those bits specified for comparison by the 
ICDD data register and ICDA mask register . Only those ICDD data bits with their corresponding ICDA mask bits are 
compared . When all bits in the ICDA register are cleared, Condition 2 becomes a don’t care .

12.2.4 Using Breakpoints
All breakpoint registers (BP0 to BP5) default to the 0FFFFh state on power-on reset or when the test-logic-reset TAP 
state is entered . The breakpoint registers are accessible only with background mode read/write commands issued over 
the TAP communication link . The breakpoint registers are not read/write accessible to the CPU .

Setting the debug mode enable (DME) bit in the ICDC register to 1 enables all six breakpoint registers for breakpoint 
match comparison . The state of the break-on register enable (REGE) bit in the ICDC register determines whether the 
BP4 and BP5 breakpoints should be used as data memory address breakpoints (REGE = 0) or as register breakpoints 
(REGE = 1) .

When using the register matching breakpoints, it is important to realize that debug mode operations (e .g ., read data 
memory, write data memory, etc .) require use of ICDA and ICDD for passing of information between the host and 
MAXQ610 microcontroller utility ROM routines . It is advised that these registers be saved and restored or be reconfig-
ured before returning to the background mode if register breakpoints are to remain enabled .

When a breakpoint match occurs, the debug engine forces a break and the MAXQ610 microcontroller enters debug 
mode . If a breakpoint match occurs on an instruction that activates the PFX register, the break is held off until the 
prefixed operation completes . The host can assess whether debug mode has been entered by monitoring the status 
bits of the 10-bit word shifted out of the TDO pin . The status bits change from the nondebug (00b) state associated 
with background mode to the debug-idle (01b) state when debug mode is entered . Debug mode can also be manually 
invoked by host issuance of the debug background command .

**Module Specifier 3:0 {0 to 15}

*Register Index within Module {0 to 31}
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12.3 Debug Mode
There are two ways to enter the debug mode from background mode:

•  Issuance of the debug command directly by the host through the TAP communication port

or

•  Breakpoint matching mechanism

The host can issue the debug background command to the debug engine . This direct debug mode entry is indeter-
ministic . The response time varies dependent on system conditions when the command is issued . The breakpoint 
mechanism provides a more controllable response, but requires that the breakpoints be initially configured in back-
ground mode . No matter the method of entry, the debug engine takes control of the CPU in the same manner . Debug 
mode entry is similar to the state machine flow of an interrupt except that the target execution address is 8010h in 
utility ROM instead of the address specified by the IV register that is used for interrupts . On debug mode entry, the 
following actions occur:

1)  Block the next instruction fetch from program memory .

2)  Push the return address onto the stack .

3)  Save the state of the UPA bit and clear it .

4)  Set the contents of IP to 8010h .

5)  Clear the IGE bit to 0 to disable interrupt handler if it is not already clear .

6)  Halt CPU operation .

Once in debug mode, further breakpoint matches or host issuance of the debug command are treated as no operations 
and do not disturb debug engine operation . Entering debug mode also stops the clocks to all timers, including the 
watchdog timer . Temporarily disabling these functions allows debug mode operations without disrupting the relation-
ship between the original user program code and hardware timed functions . No interrupt request can be granted since 
the interrupt handler is also halted as a result of IGE = 0 .

12.3.1 Debug Mode Commands
The debug engine sets the data shift register status bits to 01b (debug-idle) to indicate that it is ready to accept debug 
commands from the host .

The host can perform the following operations from debug mode:

•  Read register map

•  Read program stack

•  Read/write register

•  Read/write data memory

•  Single step of CPU (trace)

•  Return to background mode

•  Unlock password

The only operations directly controlled by the debug engine are single step and return . All other operations are assisted 
by debug service routines contained in the utility ROM . These operations require that multiple bytes be transmitted 
and/or received by the host, however each operation always begins with host transmission of a command byte . This 
command byte is decoded by the debug engine in order to determine the quantity, sequence, and destination for 
follow-on bytes received from the host . Even though there is no timing window specified for receiving the complete 
command and follow-on data, the debug engine must receive the correct number of bytes for a particular command 
before executing that command . If command and follow-on data are transmitted out of byte order or proper sequence, 
the only way to resolve this situation is to disable the debug engine by changing the instruction regsiter (IR[2:0]) and 
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reloading the debug instruction . Once the debug engine has received the proper number of command and follow-on 
bytes for a given utility ROM assisted operation, it responds with the following actions:

•  Update the command bits (CMD[3:0]) in the ICDC register to reflect the host request

•  Enable the utility ROM if it is not enabled

•  Force a jump to utility ROM address 8010h

•  Set the data shift register status bits to 10b (debug-busy)

The utility ROM code performs a read to the ICDC register CMD[3:0] bits to determine its course of action . Some 
commands can be processed by the utility ROM without receiving data from the host beyond the initially supplied 
follow-on bytes, while others (e .g ., unlock password) require additional data from the host . Some commands need 
only to provide an indication of completion to the host, while others (read register map) need to supply multiple bytes 
of output data . In order to accomplish data flow control between the host and utility ROM, the status bits should be 
used by the host to assess when the utility ROM is ready for additional data and/or when the utility ROM is providing 
valid data output . Internally, the utility ROM can ascertain when new data is available or when it may output the next 
data byte through the TXC flag . The TXC flag is an important indicator between the debug engine and the utility ROM 
debug routines . The utility ROM firmware sets the TXC flag to 1 to indicate that valid data has been loaded to the ICDB 
register . The debug engine clears the TXC flag to 0 to indicate completion of a data shift cycle, thus allowing the utility 
ROM to continue execution of a requested task that is still in progress . The utility ROM signals that it has completed a 
requested task by setting the utility ROM operation done (ROD) bit of the SC register to 1 . The ROD bit is reset by the 
debug engine when it recognizes the done condition .

The debug mode commands supported by the MAXQ610 microcontroller are shown in Table 12-2 . Note that back-
ground mode commands are supported inside debug mode, however, the documentation of these commands can be 
found in the Background mode section of the document . Encodings not listed in this table are not supported in debug 
mode and are treated as no operations .

Table 12-2. Debug Mode Commands
OP CODE COMMAND OPERATION

0010–0000 No Operation No operation .

0010–0001
Read register 

map

Read data from internal registers . This command forces the debug engine to update the 
CMD[3:0] bits in the ICDC to 0001b and perform a jump to utility ROM code at 8010h . The util-
ity ROM debug service routine loads register data to ICDB for host capture/read, starting at the 
lowest register location in module 0, one byte at a time in a successive order until all internal 
registers are read and output to the host . 

0010–0010
Read data 
memory

Read data from data memory . This command requires four follow-on transfer cycles, two for 
the starting address and two for the word read count, starting with the LSB address and end-
ing with the MSB read count . The address is moved to the ICDA register and the word read 
count is moved to the ICDD register by the debug engine . This information is directly acces-
sible by the utility ROM code . At the completion of this command period, the debug engine 
updates the CMD[3:0] bits to 0010b and performs a jump to utility ROM code at 8010h . The 
utility ROM debug service routine loads ICDB from data memory according to address and 
count information provided by the host .

0010–0011
Read program 

stack

Read data from program stack . This command requires four follow-on transfer cycles, two 
for the starting address and two for the read count, starting with the LSB address and end-
ing with the MSB read count . The address is moved to the ICDA register and the read count 
is moved to the ICDD register by the debug engine . This information is directly accessible by 
the utility ROM code . At the completion of this command period, the debug engine updates 
the CMD[3:0] bits to 0011b and performs a jump to utility ROM code at 8010h . The utility ROM 
debug service routine pops data out from the stack according to the information received in 
the ICDA and ICDD register . The stack pointer is postincremented for each pop operation .



12-9

MAXQ610 User’s Guide

12.3.2 Read Register Map Command Host-Utility ROM Interaction
A read register map command reads out data contents for all implemented system and peripheral registers . The host 
does not specify a target register, but instead should expect register data output in successive order, starting with the 
lowest order register in register module 0 . Data is loaded by the utility ROM to the 8-bit ICDB register and is output 1 
byte per transfer cycle . Thus, for a 16-bit register, two transfer cycles are necessary . The host initiates each transfer 
cycle to shift out the data bytes and finds valid data output tagged with a debug-valid (status = 11b) . At the end of 
each transfer cycle, the debug engine clears the TXC flag to signal the utility ROM service routine that another byte 
can be loaded to ICDB . The utility ROM service routine sets the TXC flag each time after loading data to the ICDB 
register . This process is repeated until all registers have been read and output to the host . The host system recognizes 
the completion of the register read when the status debug-idle is presented . This indicates that the debug engine is 
ready for another operation .

Table 12-2. Debug Mode Commands (continued)
OP CODE COMMAND OPERATION

0010–0100 Write register

Write data to a selected register . This command requires four follow-on transfer cycles, two 
for the register address and two for the data, starting with the LSB address and ending with 
the MSB data . The address is moved to the ICDA register and the data is moved to the ICDD 
register by the debug engine . This information is directly accessible by the utility ROM code . 
At the completion of this command period, the debug engine updates the CMD[3:0] bits to 
0100b and performs a jump to utility ROM code at 8010h . The utility ROM debug service rou-
tine updates the select register according to the information received in the ICDA and ICDD 
registers .

0010–0101
Write data 
memory

Write data to a selected data memory location . This command requires four follow-on transfer 
cycles, two for the memory address and two for the data, starting with the LSB address and 
ending with the MSB data . The address is moved to the ICDA register and the data is moved 
to the ICDD register by the debug engine . This information is directly accessible by the util-
ity ROM code . At the completion of this command period, the debug engine updates the 
CMD[3:0] bits to 0101b and performs a jump to utility ROM code at 8010h . The utility ROM 
debug service routine updates the selected data memory location according to the information 
received in the ICDA and ICDD registers .

0010–0110 Trace
Trace command . This command allows single stepping the CPU and requires no follow-on 
transfer cycle . The trace operation is a ‘debug mode exit, one cycle CPU execution, debug 
mode entry’ sequence .

0010–0111 Return
Return command . This command terminates the debug mode and returns the debug engine 
to background mode . This allows the CPU to resume its normal operation at the point where it 
has been last interrupted .

0010–1000
Unlock 

password

Unlock the password lock . This command requires 32 follow-on transfer cycles each contain-
ing a byte value to be compared with the program memory password for the purpose of clear-
ing the PWL/PWLL/PWLS bits and granting access to protected debug and loader functions . 
When this command is received, the debug engine updates the CMD[3:0] bit to 1000b and 
performs a jump to utility ROM code at 8010h . Data is loaded to the ICDB register when each 
byte of data is received, beginning with the LSB of the least significant word first and end with 
the MSB of the most significant word .

0010–1001 Read register

Read from a selected internal register . This command requires two follow-on transfer cycles, 
starting with the LSB address and ending with the MSB address . The address is moved to 
ICDA register by the debug engine . This information is directly accessible by the utility ROM 
code . At the completion of this command period, the debug engine updates the CMD[3:0] bits 
to 1001b and performs a jump to utility ROM code at 8010h . The utility ROM debug service 
routine always assumes a 16-bit register length and returns the requested data LSB first . 
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12.3.3 Single-Step Operation (Trace)
The debug engine supports single step operation in debug mode by executing a Trace command from the host . The 
debug engine allows the CPU to return to its normal program execution for one cycle and then forces a debug mode 
re-entry:

1) Set status to 10b (debug-busy) .

2) Pop the return address from the stack .

3) Set the IGE bit to 1 if debug mode was activated when IGE = 1 .

4) Supply the CPU with an instruction addressed by the return address .

5) Stall the CPU at the end of the instruction execution .

6) Block the next instruction fetch from program memory .

7) Push the return address onto the stack .

8) Save and clear the UPA bit .

9) Set the contents of IP to 8010h .

10) Clear the IGE bit to 0 to disable the interrupt handler .

11) Halt CPU operation .

12) Set the status to debug-idle .

Note that the trace operation uses a return address from the stack as a legitimate address for program fetching . The 
host must maintain consistency of program flow during the debug process . The instruction pointer is automatically 
incremented after each trace operation, thus a new return address is pushed onto the stack before returning the con-
trol to the debug engine . Also, note that the interrupt handler is an essential part of the CPU and a pending interrupt 
could be granted during single-step operation since the IGE bit state present on debug mode entry is restored for the 
single step .

However, single tracing through program in system memory is prohibited by hardware if multiple memory regions are 
defined .

12.3.4 Return
To terminate the debug mode and return the debug engine to background mode, the host must issue a return com-
mand to the debug engine . This command causes the following actions:

1) Pop the return address from the stack .

2) Restore the state of the UPA bit .

3) Set the IGE bit to 1 if debug mode was activated when IGE = 1 .

4) Supply the CPU with an instruction addressed by the return address .

5) Allow the CPU to execute the normal user program .

6) Set the status to 00b (nondebug) .

To prevent a possible endless breakpoint matching loop, no break occurs for a breakpoint match on the first instruc-
tion after returning from debug mode to background mode . Returning to background mode also enables all internal 
timer functions .

12.3.5 Debug Mode Special Considerations
•   The debug engine does not operate reliably when the CPU is in power-management mode (divide-by-256 system 

clock mode) . To allow for proper execution of debug mode commands when invoked during PMM, the switchback 
enable (SWB) bit should be configured to 1 . With SWB = 1, entering active debug mode (whether by breakpoint 
match or issuance of the debug command) forces a switchback to the divide-by-1 system clock mode and allows 
the debug engine to function correctly . This allows user code to configure breakpoints that occur inside PMM, thus 
providing reliable use of debug commands . However, it does not allow a good means for re-entering PMM .
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•   Special caution should be exercised when using the write register command on register bits that globally affect 
system operation (e .g ., IGE, STOP) . If the write register command is used to invoke stop mode (setting STOP = 1), 
the RESET pin can be asserted to reset the debug engine and return to the background mode of operation .

•   Single stepping (trace) through any operation that changes the state of the IGE bit results in the debug engine over-
riding the bit change since it retains the IGE bit setting captured when active debug mode was entered .

•   Single stepping (trace) into an operation that sets STOP = 1 when IGE = 1 effectively allows enabled interrupts nor-
mally capable of causing exit from stop mode to do so .

•   Data memory allocation is important during system development if in-circuit debug is planned. The top 32 bytes 
(16 words) of data memory are used by the debug service routine during debug mode . The data contents in these 
locations can be altered and cannot be recovered .

•   One available stack location is needed for debug mode. If the stack is full when entering debug mode, the oldest 
data in the stack is overwritten .The crystal warmup counter is the only counter not disabled when active debug 
mode is entered . If the crystal warmup counter completes while in active debug mode, a glitchless switch is made 
to selected clock source (which was being counted) . It is important that the user recognize that this action occurs 
since the TAP clock should be run no faster than 1/8th the system clock frequency .

•   Any signal sampling that relies upon the internal system clock (e.g., counter inputs) can be unreliable since the 
system clock is turned off inside active debug mode between debug mode commands .

•   To debug UAPP/ULDR regions their passwords should not be cleared. The following methods can be used for this 
purpose:

 1)  Place the application startup code at the start of the UAPP segment (or)

 2)   Explicitly add a password to be located at word address 0x2010 (byte address 0x4020) . Only one of the 
32 bytes of the password field needs to be programmed to something other than 0xFF or 0x00 .

•   The stack plug-in should be disabled for debug commands to be effective.

12.4 In-Circuit Debug Peripheral Registers

12.4.1 In Circuit Debug Temp 0/1 Register (ICDT0/ICDT1)

These registers are read/write accessible by the CPU only in background mode or debug mode . These registers are 
intended for use by the utility ROM routines as temporary storage to save registers that might otherwise have to be 
placed in the stack .

12.4.2 In-Circuit Debug Control Register (ICDC)

Bit 7: Debug Mode Enable (DME). When this bit is cleared to 0, background mode commands can be executed, but 
breakpoints are disabled . When this bit is set to 1, breakpoints are enabled while background mode commands still 
can be entered . This bit cany only be set or cleared from background debug mode . This bit has no meaning for the 
utility ROM code .
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Bit 5: Break-On Register Enable (REGE). The REGE bit is used to enable the break on register function . When REGE 
bit is set to 1, BP4 and BP 5 are used as register breakpoints . A break occurs when the content of BP4 is matched with 
the destination address of the current instruction . For BP5, a break occurs only on a selected data pattern for a selected 
destination register addressed by BP5 . The data pattern is determined by the contents in the ICDA and ICDD register . 
The REGE bit alone does not enable register breakpoints, but simply changes the manner in which BP4, BP5 are used . 
The DME bit still must be set to a logic 1 for any breakpoint to occur . This bit has no meaning for the utility ROM code .

Bits 3:0: Command Bits (CMD[3:0]). These bits reflect the current host command in debug mode . These bits are set 
by the debug engine and allow the utility ROM code to determine the course of action .

12.4.3 In-Circuit Debug Flag Register (ICDF)

Bits 3:2: Programming Source Select Bits 1:0 (PSS[1:0]). These bits are used to select a programming interface 
during in-system programming when SPE is set to 1 . Otherwise, the logic values of these bits have no meaning . The 
logical states of these bits, when read by the CPU, reflect the logical-OR of the PSS bits that are write accessible by 
the CPU and those in the system programming buffer (SPB) register of the TAP module (which are accessible through 
JTAG) . These bits are read/write accessible for the CPU and are cleared to 0 by a power-on reset or test-logic-reset . 
CPU writes to the PSS bits result in clearing of the JTAG PSS[1:0] bits .

Bit 1: System Program Enable (SPE). The SPE bit is used for in-system programming support and its logical state, 
when read by the CPU, always reflects the logical-OR of the SPE bit that is write accessible by the CPU and the SPE 
bit of the system programming buffer (SPB) register in the TAP module (which is accessible through JTAG) . The logical 
state of this bit determines the program flow after a reset . When it is set to 1, in-system programming is executed by 
the utility ROM . When it is cleared to 0, execution is transferred to user code . This bit allows read/write access by the 
CPU and is cleared to 0 only on a power-on reset or test-logic-reset . The JTAG SPE bit is cleared by hardware when 
the ROD bit is set . CPU writes to the SPE bit result in the clearing of the JTAG PSS[1:0] bits .

Bit 0: Serial Transfer Complete (TXC). This bit is set by hardware at the end of a transfer cycle at the TAP com-
munication link . The TXC bit helps the debug engine to recognize host requests, either command or data . This bit is 
normally set by utility ROM code to signify or request the sending or receiving of data . The TXC bit is cleared by the 
debug engine once set . CPU writes to the TXC bit results in the clearing of the JTAG PSS[1:0] bits .

CMD[3:0] ACTION

0000 No operation

0001 Read register map

0010 Read data memory

0011 Read stack memory

0100 Write register

0101 Write data memory

1000 Unlock password

1001 Read register

Other Reserved
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12.4.4 In-Circuit Debug Buffer Register (ICDB)

This register serves as the parallel holding buffer for the debug shift register of the TAP . Data is read from or written to 
ICDB for serial communication between the debug routines and the external host .

12.4.5 In-Circuit Debug Data Register (ICDD)

This register is used by the debug engine to store data/read count so that utility ROM code can view that information . 
This register is also used by the debug engine as a data register for content matching when BP5 is used as a register 
breakpoint . In this case, only data bits in this register with their corresponding mask bits in the ICDA register set are 
compared with the updated destination data to determine if a break should be generated .

12.4.6 In-Circuit Debug Address Register (ICDA)

This register is used by the debug engine to addresses so that utility ROM code can view that information . This regis-
ter is also used by the debug engine as a mask register to mask out don’t care bits in the ICDD register when BP5 is 
used as a register breakpoint . When a bit in this register is set to 1, the corresponding bit location in the ICDD register 
is compared to the data being written to the destination register to determine if a break should be generated . When 
a bit in this register is cleared, the corresponding bit in the ICDD register becomes a don’t care and is not compared 
against the data being written . When all bits in this register are cleared, any updated data pattern causes a break when 
the BP5 register matches the destination register address of the current instruction .
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SECTION 13: IN-SYSTEM PROGRAMMING (JTAG)
Internal nonvolatile (flash) memory of MAXQ610 microcontrollers can be initialized through bootstrap-loader mode . 
To enable the bootstrap loader and establish a desired communication channel, the system programming instruction 
(100b) must be loaded into the TAP instruction register using the IR-scan sequence . Once the instruction is latched in 
the instruction parallel buffer (IR[2:0]) and is recognized by the TAP controller in the update-IR state, a 3-bit data shift 
register is activated as the communication channel for DR-scan sequences . The TAP retains the system programming 
instruction until a new instruction is shifted in or the TAP controller returns to the test-logic-reset state . This 3-bit shift 
register formed between the TDI and TDO pins is directly interfaced to the 3-bit serial programming buffer (SPB) . The 
system programming buffer (SPB) contains three bits with the following functions:

•   SPB.0—System Programming Enable (SPE). Setting this bit to a 1 denotes that system programming is desired upon 
exiting reset . When it is cleared to 0, no system programming is needed . The logic state of SPE is examined by 
the reset vector in the utility ROM to determine the program flow after a reset . When SPE = 1, the bootstrap loader 
selected by the PSS[1:0] bits is activated to perform a bootstrap-loader function . When SPE = 0, the utility ROM 
transfers execution control to the normal user program .

•   SPB.2:1—Programming Source Select (PSS[1:0]). These bits allow the host to select programming interface sources. 
The PSS bits have no functions when the SPE bit is cleared .

The DR-scan sequence is used to configure the SPB bits . The data content of the SPB register is reflected in the ICDF 
register and allows read/write access by the CPU . These bits are cleared by power-on reset or test-logic-reset of the 
TAP controller .

13.1 JTAG Bootloader Operation
Devices that support a JTAG bootloader have the benefit of using the same status bit handshaking hardware as is used 
for in-circuit debugging . When the SPE bit of the system programming buffer (SPB) is set to 1 and JTAG is selected 
as the programming source (PSS[1:0] = 00b), the background and active debug mode state machines are disabled . 
Once the host loads the debug instruction into the TAP instruction register (IR[2:0]), the 10-bit shift register interface 
to ICDB and the status bits become available for host-to-utility ROM bootloader communication . The status bits should 
be interpreted as shown in Table 13-1 for JTAG bootloader operation:

When the using the JTAG bootloader option (SPE = 1, PSS[1:0] = 00b), the sole purpose of the debug hardware is 
to simultaneously transfer the data byte shifted in from the host into the ICDB register and transfer the contents of an 
internal holding register (loaded by utility ROM code writes of ICDB) into the shift register for output to the host . This 
transfer takes place on the falling edge of TCK at the update-DR state . The debug hardware additionally clears the TXC 
bit at this point in the state diagram . The utility ROM loader code controls the status bit output to the host by asserting 
TXC = 1 when it has valid data to be shifted out . The utility ROM code can flexibly implement whatever communication 
protocol and command set it wishes within the data byte portion of the shifted 10-bit word .

Table 13-1. Status Bits for Bootloader Operation

PSS1 PSS0 PROGRAMMING SOURCE

0 0 JTAG

0 1 Reserved

1 0 Reserved

1 1 Reserved

BITS 1:0 STATUS CONDITION

00 Reserved Invalid condition

01 Reserved Invalid condition

10 Loader-Busy Utility ROM loader is busy executing code or processing the current command

11 Loader-Valid Utility ROM loader is supplying valid output data to the host in current shift operation
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13.2 Password-Protected Access
Some applications require preventive measures to protect against simple access and viewing of program code 
memory . To address this need for code protection, any MAXQ610 microcontroller equipped with a utility ROM that 
permits in-system programming, in-application programming, or in-circuit debugging grants full access to those utili-
ties only after a password has been supplied . The password is defined as the 16 words of physical program memory 
at addresses 0010h to 001Fh of each memory area (system, user loader, user application, see Figure 2-7) . Note that 
using these memory locations as a password does not exclude their usage for general code space if a unique pass-
word is not needed .

Multiple password lock bits (PWL/PWLS/PWLL) are implemented in the SC register . When a PWL bit is set to 1, a pass-
word is required to access the in-circuit debug and in-system programming utility ROM routines that allow reading 
or writing of internal memory . When a PWL is cleared to 0, these utilities are fully accessible through the utility ROM 
without password .

The PWL bits default to 1 after a power-on reset . To access the ROM utilities, a correct password is needed; otherwise, 
access to the utility ROM utilities is denied . Once the correct password has been supplied by the user, the utility ROM 
clears the password lock . The PWLs remain clear until one of the following occurs:

•  Power-on reset

or

•  Set to 1 by user software

For flash-less devices with ROM program memory, the end user supplies the ROM code, thus the user always knows 
the password if needed . It is expected that the password is rarely needed since the utility of memory programming and/
or in-circuit debug to the end user is minimal once the decision has been made to freeze the code in program ROM .

For devices with reprogrammable nonvolatile memory, the password is always known for a fully erased device since 
the unprogrammed state of these memories is fixed . Once the memory has been programmed, a password is estab-
lished and can be used for access protection . The utility ROM code denies access to the protected routines when 
PWL indicates a locked state .

13.2.1 Entering Passwords
A password can be entered in one of two ways:

•   Through the in-system programming interface established by the PSS[1:0] bits when SPE bit is set to 1; the util-
ity ROM bootstrap loader dictates the protocol for entering the password over the specified serial communication 
interface .

•   Through the TAP interface directly by issuing the unlock password debug mode command. The unlock password 
command requires 32 follow-on transfer cycles each containing a byte value to be compared with the program 
memory password .
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SECTION 14: MAXQ610 INSTRUCTION SET SUMMARY

Table 14-1. MAXQ610 Instruction Set Summary

MNEMONIC DESCRIPTION
16-BIT INSTRUCTION 

WORD

STATUS 
BITS 

AFFECTED

AP  
INC/DEC

EXECUTION 
CYCLES

NOTES

L
O

G
IC

A
L

 O
P

E
R

A
T

IO
N

S

AND src Acc ← Acc AND src f001 1010 ssss ssss S, Z Y 1 1

OR src Acc ← Acc OR src f010 1010 ssss ssss S, Z Y 1 1

XOR src Acc ← Acc XOR src f011 1010 ssss ssss S, Z Y 1 1

CPL Acc ← ~Acc 1000 1010 0001 1010 S, Z Y 1 —

NEG Acc ← ~Acc + 1 1000 1010 1001 1010 S, Z Y 1 —

SLA Shift Acc left arithmetically 1000 1010 0010 1010 C, S, Z Y 1 —

SLA2 Shift Acc left arithmetically twice 1000 1010 0011 1010 C, S, Z Y 1 —

SLA4 Shift Acc left arithmetically four times 1000 1010 0110 1010 C, S, Z Y 1 —

RL Rotate Acc left (w/o C) 1000 1010 0100 1010 S Y 1 —

RLC Rotate Acc left (through C) 1000 1010 0101 1010 C, S, Z Y 1 —

SRA Shift Acc right arithmetically 1000 1010 1111 1010 C, Z Y 1 —

SRA2 Shift Acc right arithmetically twice 1000 1010 1110 1010 C, Z Y 1 —

SRA4
Shift Acc right arithmetically four  
times

1000 1010 1011 1010 C, Z Y 1 —

SR Shift Acc right (0 → msbit) 1000 1010 1010 1010 C, S, Z Y 1 —

RR Rotate Acc right (w/o C) 1000 1010 1100 1010 S Y 1 —

RRC Rotate Acc right (though C) 1000 1010 1101 1010 C, S, Z Y 1 —

B
IT

 O
P

E
R

A
T

IO
N

S

MOVE C, Acc .<b> C ← Acc .<b> 1110 1010 bbbb 1010 C — 1 —

MOVE C, #0 C ← 0 1101 1010 0000 1010 C — 1 —

MOVE C, #1 C ← 1 1101 1010 0001 1010 C — 1 —

CPL C C ← ~C 1101 1010 0010 1010 C — 1 —

MOVE Acc .<b>, C Acc .<b> ← C 1111 1010 bbbb 1010 S, Z — 1 —

AND Acc .<b> C ← C AND Acc .<b> 1001 1010 bbbb 1010 C — 1 —

OR Acc .<b> C ← C OR Acc .<b> 1010 1010 bbbb 1010 C — 1 —

XOR Acc .<b> C ← C XOR Acc .<b> 1011 1010 bbbb 1010 C — 1 —

MOVE dst .<b>, #1 dst .<b> ← 1 1ddd dddd 1bbb 0111 C, S, E, Z — (Note 2) 3

MOVE dst .<b>, #0 dst .<b> ← 0 1ddd dddd 0bbb 0111 C, S, E, Z — (Note 2) 3

MOVE C, src .<b> C ← src .<b> fbbb 0111 ssss ssss C — 1 —

M
A

T
H

ADD src Acc ← Acc + src f100 1010 ssss ssss C, S, Z, OV Y 1 1

ADDC src Acc ← Acc + (src + C) f110 1010 ssss ssss C, S, Z, OV Y 1 1

SUB src Acc ← Acc – src f101 1010 ssss ssss C, S, Z, OV Y 1 1

SUBB src Acc ← Acc – (src + C) f111 1010 ssss ssss C, S, Z, OV Y 1 1
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Table 14-1. MAXQ610 Instruction Set Summary (continued)

Note 1: The active accumulator (Acc) is not allowed as the src in operations where it is the implicit destination .
Note 2: The CPU stalls when code is executed from flash with the destination being an IP register or when the code pointer is 

used . This stall requires two execution cycles to complete the instruction .
Note 3: Only module 8 and modules 0 to 5 (when implemented for a given product) are supported by these single-cycle bit opera-

tions . Potentially affects C or E if PSF register is the destination . Potentially affects S and/or Z if AP or APC is the destination .
Note 4: The ‘{L/S}’ prefix is optional .
Note 5: Instructions that attempt to simultaneously push/pop the stack (e .g ., PUSH @SP--, PUSH @SPI--, POP @++SP, POPI 

@++SP) or modify SP in a conflicting manner (e .g ., MOVE SP, @SP--) are invalid .
Note 6: The enabled AP autoincrement or decrement operation occurs for operations when specifying the active accumulator 

(Acc) as the source or destination (i .e ., MOVE Acc, src; MOVE dst, Acc; MOVE Acc, Acc) . Special cases: If ‘MOVE APC, 
Acc’ sets the APC .CLR bit, AP is cleared, overriding any autoinc/dec/modulo operation specified for AP . If ‘MOVE AP, 
Acc’ causes an autoinc/dec/modulo operation on AP, this overrides the specified data transfer (i .e ., Acc is not trans-
ferred to AP) .

Note 7: Exception for MOVE instruction, MOVE dp, @cp requires three cycles .
Note 8: The terms Acc and A[AP] can be used interchangeably to denote the active accumulator .
Note 9: Any index represented by <b> or found inside [ ] brackets is considered variable, but required .
Note 10: The active accumulator (Acc) is not allowed as the dst if A[AP] is specified as the src .

MNEMONIC DESCRIPTION
16-BIT INSTRUCTION 

WORD

STATUS 
BITS 

AFFECTED

AP  
INC/DEC

EXECUTION 
CYCLES

NOTES

B
R

A
N

C
H

IN
G

{L/S}JUMP src IP ← IP + src or src f000 1100 ssss ssss — — 2 4

{L/S}JUMP C, src If C=1, IP ← (IP + src) or src f010 1100 ssss ssss — — 2 4

{L/S}JUMP NC, src If C=0, IP ← (IP + src) or src f110 1100 ssss ssss — — 2 4

{L/S}JUMP Z, src If Z=1, IP ← (IP + src) or src f001 1100 ssss ssss — — 2 4

{L/S}JUMP NZ, src If Z=0, IP ← (IP + src) or src f101 1100 ssss ssss — — 2 4
{L/S}JUMP E, src If E=1, IP ← (IP + src) or src 0011 1100 ssss ssss — — 2 4
{L/S}JUMP NE, src If E=0, IP ← (IP + src) or src 0111 1100 ssss ssss — — 2 4
{L/S}JUMP S, src If S=1, IP ← (IP + src) or src f100 1100 ssss ssss — — 2 4
{L/S}DJNZ LC[n], src If --LC[n] <> 0, IP← (IP + src) or src f10n 1101 ssss ssss — — 2 4
{L/S}CALL src @++SP ← IP+1; IP ← (IP+src) or src f011 1101 ssss ssss — — 2 4, 5
RET IP ← @SP-- 1000 1100 0000 1101 — — 2 —
RET C If C=1, IP ← @SP-- 1010 1100 0000 1101 — — 2 —
RET NC If C=0, IP ← @SP-- 1110 1100 0000 1101 — — 2 —
RET Z If Z=1, IP ← @SP-- 1001 1100 0000 1101 — — 2 —
RET NZ If Z=0, IP ← @SP-- 1101 1100 0000 1101 — — 2 —
RET S If S=1, IP ← @SP-- 1100 1100 0000 1101 — — 2 —
RETI IP ← @SP-- ; IPS←11b 1000 1100 1000 1101 — — 2 —
RETI C If C=1, IP ← @SP-- ; IPS←11b 1010 1100 1000 1101 — — 2 —
RETI NC If C=0, IP ← @SP-- ; IPS←11b 1110 1100 1000 1101 — — 2 —
RETI Z If Z=1, IP ← @SP-- ; IPS←11b 1001 1100 1000 1101 — — 2 —
RETI NZ If Z=0, IP ← @SP-- ; IPS←11b 1101 1100 1000 1101 — — 2 —
RETI S If S=1, IP ← @SP-- ; IPS←11b 1100 1100 1000 1101 — — 2 —

D
A

T
A

 
T

R
A

N
S

F
E

R

XCH Swap Acc bytes 1000 1010 1000 1010 S Y 1 —
XCHN Swap nibbles in each Acc byte 1000 1010 0111 1010 S Y 1 —
MOVE dst, src dst ← src fddd dddd ssss ssss C, S, Z, E (Note 6) (Notes 2, 7) 5, 6
PUSH src @++SP ← src f000 1101 ssss ssss — — (Note 2) 5
POP dst dst ← @SP-- 1ddd dddd 0000 1101 C, S, Z, E — (Note 2) 5
POPI dst dst ← @SP-- ; IPS←11b 1ddd dddd 1000 1101 C, S, Z, E — (Note 2) 5
CMP src E ← (Acc = src) f111 1000 ssss ssss E — 1 —
NOP No operation 1101 1010 0011 1010 — — 1 —
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ADD/ADDC src Add/Add with Carry

Description: The ADD instruction sums the active accumulator (Acc or A[AP]) and the specified src data and 
stores the result back to the active accumulator . The ADDC instruction additionally includes the 
Carry (C) Status Flag in the summation . For the complete list of src specifiers, reference the MOVE 
instruction . The PFX[n] register may be used to supply the high byte of data for 8-bit sources .

Status Flags: C, S, Z, OV

ADD
Operation: Acc ← Acc + src

Encoding: 15 0

f100 1010 ssss ssss

Example(s): ; Acc = 2345h for each example
ADD A[3] ; A[3]=FF0Fh

; → Acc =2254h,C=1, Z=0, S=0, OV=0
ADD #0C0h ; → Acc =2405h,C=0, Z=0, S=0, OV=0
ADD A[4] ; A[4]=C000h

; → Acc = E345h, C=0, Z=0, S=1, OV=0
ADD A[5] ; A[5]=6789h

; → Acc = 8ACEh, C=0, Z=0, S=1, OV=1

ADDC
Operation: Acc ← Acc + C + src

Encoding: 15 0

f110 1010 ssss ssss

Example(s): ; Acc = 2345h for each example
ADDC A[3] ; A[3] = DCBAh, C=1

; → Acc = 0000h, C=1, Z=1, S=0, OV=0
ADDC @DP[0]-- ; @DP[0] = 00EEh, C=1

; → Acc = 2434h, C=0, Z=0, S=0, OV=0
Special Notes: The active accumulator (Acc) is not allowed as the src for these operations .
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AND src Logical AND

Description: Performs a logical-AND between the active accumulator (Acc) and the specified src data . For the 
complete list of src specifiers, reference the MOVE instruction . The PFX[n] register may be used to 
supply the high byte of data for 8-bit sources .

Status Flags: S, Z
Operation: Acc ← Acc AND src

Encoding: 15 0

f001 1010 ssss ssss

Example(s): ; Acc = 2345h for each example
AND A[3] ; A[3]=0F0Fh

; → Acc = 0305h, S=0, Z=0
AND #33h ; → Acc = 0001h
AND #2233h ; generates object code below

; MOVE PFX[0], #22h (smart-prefixing)
; AND #33h

; → Acc = 2201h
MOVE PFX[0], #0Fh
AND M0[8] ; M0[8]=0Fh (assume M0[8] is an 8-bit register)

; → Acc = 0305h
Special Notes: The active accumulator (Acc) is not allowed as the src for this operation .

AND Acc.<b> Logical AND Carry Flag with Accumulator Bit

Description: Performs a logical-AND between the Carry (C) status flag and a specified bit of the active accumu-
lator (Acc .<b>) and returns the result to the Carry .

Status Flags: C
Operation: C ← C AND Acc.<b>

Encoding: 15 0

1001 1010 bbbb 1010

Example(s): ; Acc = 2345h, C=1 at start
AND Acc .0 ; Acc .0=1 → C=1
AND Acc .1 ; Acc .1=0 → C=0
AND C, Acc .8 ; Acc .8=1 → C=0
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{L/S}CALL src {Long/Short} Call to Subroutine

Description: Performs a call to the subroutine destination specified by src . The CALL instruction uses an 8-bit 
immediate src to perform a relative short call (IP +127/-128 words) . The CALL instruction uses a 
16-bit immediate src to perform an absolute long CALL to the specified 16-bit address . The PFX[0] 
register is used to supply the high byte of a 16-bit immediate address for the absolute long CALL . 
Using the optional ‘L’ prefix (i .e ., LCALL) will result in an absolute long call and use of the PFX[0] 
register . Using the optional ‘S’ prefix (i .e ., SCALL) will attempt to generate a relative short call, but 
will be flagged by the assembler if the destination is out or range . Specifying an internal register 
src (no matter whether 8-bit or 16-bit) always produces an absolute CALL to a 16-bit address, thus 
the ‘L’ and ‘S’ prefixes should not be used . The PFX[n] register value is used to supply the high 
address byte when an 8-bit register src is specified .

Status Flags: None
Operation: @++SP ← IP + 1 PUSH

IP ← src Absolute CALL

IP ← IP + src Relative CALL

Encoding: 15 0

f011 1101 ssss ssss

Example(s): CALL label1 ; relative call to label1 (must be within
; IP +127/-128 address range)

CALL label1 ; absolute call to label1 = 0120h
; MOVE PFX[0], #01h
; CALL #20h .

CALL DP[0] ; DP[0] holds 16-bit address of subroutine
CALL M0[0] ; assume M0[0] is an 8-bit register

; absolute call to addr16
; high(addr16)=00h (PFX[0])
; low (addr16)=M0[0]

MOVE PFX[0], #22h ;
CALL M0[0] ; assume M0[0] is an 8-bit register

; high(addr16)=22h (PFX[0])
; low (addr16)=M0[0]

LCALL label1 ; label=0120h and is relative to this instruction
; absolute call is forced by use of ‘L’ prefix
; MOVE PFX[0], #01h
; CALL #20h

SCALL label1 ; relative offset for label1 calculated and used
; if label1 is not relative, assembler will generate an
; error

SCALL #10h ; relative offset of #10h is used directly by the CALL
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CMP src Compare Accumulator

Description: Compare for equality between the active accumulator and the least significant byte of the specified 
src . The PFX[n] register may be used to supply the high byte of data for 8-bit sources .

Status Flags: E
Operation: Acc = src: E ← 1

Acc ≠ src: E ← 0

Encoding: 15 0

f111 1000 ssss ssss

Example(s): CMP #45h ; Acc = 0145h, E=0
CMP #145h ; PFX[0] register used

; MOVE PFX[0], #01h (smart-prefixing)
; CMP #45h E=1

CPL Complement Acc

Description: Performs a logical bitwise complement (one’s complement) on the active accumulator (Acc or 
A[AP]) and returns the result to the active accumulator .

Status Flags: S, Z
Operation: Acc ← ~Acc

Encoding: 15 0

1000 1010 0001 1010

Example(s): ; Acc = 0FFFFh, S=1, Z=0
CPL ; Acc ← 0000h, S=0, Z=1

; Acc = 0990h, S=0, Z=0
CPL ; Acc ← F66Fh, S=1, Z=0

CPL C Complement Carry Flag

Description: Logically complements the Carry (C) Flag .
Status Flag: C
Operation: C ← ~C

Encoding: 15 0

1101 1010 0010 1010

Example(s): ; C = 0
CPL C ; C ← 1

{L/S}DJNZ LC[n], src Decrement Counter, {Long/Short} Jump Not Zero

Description: The DJNZ LC[n], src instruction performs a conditional branch based upon the associated Loop 
Counter (LC[n]) register . The DJNZ LC[n], src instruction decrements the LC[n] loop counter 
and branches to the address defined by src if the decremented counter has not reached 0000h . 
Program branches can be relative or absolute depending upon the src specifier and may be quali-
fied by using the ‘L’ or ‘S’ prefixes as documented in the JUMP src opcode .

Status Flags: None
Operation: LC[n] ← LC[n] –1

LC[n] ≠ 0: IP ← IP + src (relative) –or— src (absolute)
LC[n] = 0: IP ← IP + 1
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Encoding: 15 0

f10n 1101 ssss ssss

Example(s): MOVE LC[1], #10h ; counter = 10h
Loop:
ADD @DP[0]++ ; add data memory contents to Acc, post-inc DP[0]
DJNZ LC[1], Loop ; 16 times before falling through

{L/S} JUMP src Unconditional {Long/Short} Jump

Description: Performs an unconditional jump as determined by the src specifier . The JUMP instruction uses an 
8-bit immediate src to perform a relative jump (IP +127/-128 words) . The JUMP instruction uses 
a 16-bit immediate src to perform an absolute JUMP to the specified 16-bit address . The PFX[0] 
register is used to supply the high byte of a 16-bit immediate address for the absolute JUMP . Using 
the optional ‘L’ prefix (i .e . LJUMP) will result in an absolute long jump and use of the PFX[0] register . 
Using the optional ‘S’ prefix (i .e . SJUMP) will attempt to generate a relative short jump, but will be 
flagged by the assembler if the destination is out or range . Specifying an internal register src (no 
matter whether 8-bit or 16-bit) always produces an absolute JUMP to a 16-bit address, thus the ‘L’ 
and ‘S’ prefixes should not be used . The PFX[n] register value is used to supply the high address 
byte when an 8-bit register src is specified .

Status Flags: None
Operation: IP ← src Absolute JUMP

IP ← IP + src Relative JUMP

Encoding: 15 0

f000 1100 ssss ssss

Example(s): JUMP label1 ; relative jump to label1 (must be within range
;  IP +127/-128 words)

JUMP label1 ; absolute jump to label1= 0400h
; MOVE PFX[0], #04h
; JUMP #00h

JUMP DP[0] ; absolute jump to addr16 DP[0]
JUMP M0[0] ; assume M0[0] is an 8-bit register

; absolute jump to addr16
; high(addr16)=00h (PFX[0])
; low (addr16)=M0[0]

LJUMP label1 ; label=0120h and is relative to this instruction
; absolute jump is forced by use of ‘L’ prefix
; MOVE PFX[0], #01h
; JUMP #20h

SJUMP label1 ; relative offset for label1 calculated and used
; if label1 is not relative, assembler will generate an
; error

SJUMP #10h ; relative offset of #10h is used directly by the JUMP
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{L/S} JUMP C/{L/S} JUMP NC, src 

{L/S} JUMP Z/{L/S} JUMP NZ, src

{L/S} JUMP E/{L/S} JUMP NE, src

{L/S} JUMP S, src

Conditional {Long/Short} Jump on Status Flag

Description: Performs conditional branching based upon the state of a specific processor status flag . JUMP C 
results in a branch if the Carry flag is set while JUMP NC branches if the Carry flag is clear . JUMP 
Z results in a branch if the Zero flag is set while JUMP NZ branches if the Zero flag is clear . JUMP E 
results in a branch if the Equal flag is set while JUMP NE branches if the Equal flag is clear . JUMP 
S results in a branch if the Sign flag is set . Program branches can be relative or absolute depending 
upon the src specifier and may be qualified by using the ‘L’ or ‘S’ prefixes as documented in the 
JUMP src opcode . Special src restrictions apply to JUMP E and JUMP NE .

Status Flags: None

JUMP C
Operation: C=1: IP ← IP + src (relative) –or— src (absolute)

C=0: IP ← IP + 1

Encoding: 15 0

f010 1100 ssss ssss

Example(s): JUMP C, label1 ; C=0, branch not taken

JUMP NC
Operation: C=0: IP ← IP + src (relative) –or— src (absolute)

C=1: IP ← IP +1

Encoding: 15 0

f010 1100 ssss ssss

Example(s): JUMP NC, label1 ; C=0, branch taken

JUMP Z
Operation: Z=1: IP ← IP + src

Z=0: IP ← IP + 1

Encoding: 15 0

f001 1100 ssss ssss

Example(s): JUMP Z, label1 ; Z=1, branch taken

JUMP NZ
Operation: Z=0: IP ← IP + src (relative) –or— src (absolute)

Z=1: IP ← IP + 1

Encoding: 15 0

f101 1100 ssss ssss

Example(s): JUMP NZ, label1 ; Z=1, branch not taken
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JUMP E
Operation: E=1: IP ← IP + src (relative) –or— src (absolute)

E=0: IP ← IP + 1

Encoding: 15 0

0011 1100 ssss ssss

Example(s): JUMP E, label1 ; E=1, branch taken
Special Notes: The src specifier must be immediate data .

JUMP NE
Operation: E=0: IP ← IP + src (relative) –or— src (absolute)

E=1: IP ← IP + 1

Encoding: 15 0

0111 1100 ssss ssss

Example(s): JUMP NE, label1 ; E=1, branch not taken
Special Notes: The src specifier must be immediate data .

JUMP S
Operation: S=1: IP ← IP + src (relative) –or— src (absolute)

S=0: IP ← IP + 1

Encoding: 15 0

f100 1100 ssss ssss

Example(s): JUMP S, label1 ; S=0, branch not taken

MOVE dst, src Move Data

Description: Moves data from a specified source (src) to a specified destination (dst) . A list of defined source, 
destination specifiers is given in the table below . Also, since src can be either 8-bit (byte) or 16-bit 
(word) data, the rules governing data transfer are also explained below in the encoding section .

Status Flags: S, Z (if dst is Acc or AP or APC)
C, E (if dst is PSF)

Operation: dst ← src

Encoding: 15 0

fddd dddd ssss ssss
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Table 14-2. Source Specifier Codes

src
src BIT 

ENCODING
f ssssssss

WIDTH
16 OR 8

DESCRIPTION

#k 0 kkkk kkkk 8 kkkkkkkk = Immediate (Literal) Data

MN[n] 1 nnnn 0NNN 8/16
nnnn Selects One of 1st 16 Registers in Module NNN, shere NNN = 0 to 5; 
Access to 2nd 16 Using PFX[n]

AP 1 0000 1000 8 Accumulator Pointer

APC 1 0001 1000 8 Accumulator Pointer Control

PSF 1 0100 1000 8 Processor Status Flag Register

IC 1 0101 1000 8 Interrupt and Control Register

SC 1 1000 1000 8 System Control Register

IPR0 1 1001 1000 8 Interrupt Priority Register Zero

CKCN 1 1110 1000 8 Clock Control Register

WDCN 1 1111 1000 8 Watchdog Control Register

A[n] 1 nnnn 1001 8/16 nnnn Selects One of 16 Accumulators 

Acc 1 0000 1010 8/16 Active Accumulator = A[AP]; Update AP per APC 

A[AP] 1 0001 1010 8/16 Active Accumulator = A[AP]; No Change to AP 

IP 1 0000 1100 16 Instruction Pointer

@SP-- 1 0000 1101 16 16-Bit Word @SP, Pop (Postincrement SP)

SP 1 0001 1101 16 Stack Pointer

IV 1 0010 1101 16 Interrupt Vector

LC[n] 1 011n 1101 16 n Selects One of Two Loop Counter Registers

@SPI-- 1 1000 1101 16 16-Bit Word @SP, Pop (Postincrement SP), IPS = 11b

@BP[OFFS] 1 0000 1110 8/16 Data Memory @BP[OFFS]

@BP[OFFS++] 1 0001 1110 8/16 Data Memory @BP[OFFS]; Postincrement OFFS

@BP[OFFS--] 1 0010 1110 8/16 Data Memory @BP[OFFS]; Postdecrement OFFS

OFFS 1 0011 1110 8 Frame Pointer Offset from Base Pointer (BP)

DPC 1 0100 1110 16 Data Pointer Control Register

GR 1 0101 1110 16 General Register

GRL 1 0110 1110 8 Low Byte of GR Register

BP 1 0111 1110 16 Frame Pointer Base Pointer (BP)

GRS 1 1000 1110 16 Byte-Swapped GR Register

GRH 1 1001 1110 8 High Byte of GR Register

GRXL 1 1010 1110 16 Sign Extended Low Byte of GR Register

FP 1 1011 1110 16 Frame Pointer (BP[OFFS])

@DP[n] 1 0n00 1111 8/16 Data Memory @DP[n]

@DP[n]++ 1 0n01 1111 8/16 Data Memory @DP[n], Postincrement DP[n]

@DP[n]-- 1 0n10 1111 8/16 Data Memory @DP[n], Postdecrement DP[n]

DP[n] 1 0n11 1111 16 n Selects One of Two Data Pointers

@CP 1 1000 1111 8/16 Code Memory @CP

@CP++ 1 1001 1111 8/16 Code Memory @CP, Postincrement DP[n]

@CP-- 1 1010 1111 8/16 Code Memory @CP, Postdecrement DP[n]

CP 1 1011 1111 16 Code Pointer
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Table 14-3. Destination Specifier Codes

dst
dst BIT 

ENCODING
ddd dddd

WIDTH
16 OR 8

DESCRIPTION

NUL 111 0110 8/16
Null (Virtual) Destination; Intended As A Bit Bucket to Assist Software with 
Pointer Increments/Decrements

MN[n] nnn 0NNN 8/16
nnnn Selects One of 1st Eight Registers in Module NNN, where NNN = 0 
to 5; Access to Next 24 Using PFX[n]

AP 000 1000 8 Accumulator Pointer

APC 001 1000 8 Accumulator Pointer Control

PSF 100 1000 8 Processor Status Flag Register

IC 101 1000 8 Interrupt and Control Register

A[n] nnn 1001 8/16 nnn Selects One of 1st Eight Accumulators: A[0] to A[7]

Acc 000 1010 8/16 Active Accumulator = A[AP] 

PFX[n] nnn 1011 8 nnn Selects One of Eight Prefix Registers

@++SP 000 1101 16 16-Bit Word @SP, Push (predecrement SP)

SP 001 1101 16 Stack Pointer

IV 010 1101 16 Interrupt Vector

LC[n] 11n 1101 16 n Selects One of Two Loop Counter Registers

@BP[OFFS] 000 1110 8/16 Data Memory @BP[OFFS]

@BP[++OFFS] 001 1110 8/16 Data Memory @BP[OFFS]; Preincrement OFFS

@BP[--OFFS] 010 1110 8/16 Data Memory @BP[OFFS]; Predecrement OFFS

OFFS 011 1110 8 Frame Pointer Offset from Base Pointer (BP)

DPC 100 1110 16 Data Pointer Control Register

GR 101 1110 16 General Register

GRL 110 1110 8 Low Byte of GR Register

BP 111 1110 16 Frame Pointer Base Pointer (BP)

@DP[n] n00 1111 8/16 Data Memory @DP[n]

@++DP[n] n01 1111 8/16 Data Memory @DP[n], Preincrement DP[n]

@--DP[n] n10 1111 8/16 Data Memory @DP[n], Predecrement DP[n]

DP[n] n11 1111 16 n Selects One of Two Data Pointers

2-CYCLE DESTINATION ACCESS USING PFX[n] Register (see Special Notes)

SC 000 1000 16 System Control Register

IPR0 001 1000 16 Interrupt Priority Register Zero

CKCN 110 1000 8 Clock Control Register

WDCN 111 1000 8 Watchdog Control Register

A[n] nnn 1001 16 nnn Selects One of 2nd Eight Accumulators A[8] to A[15]

GRH 001 1110 8 High Byte of GR Register

CP 011 1111 16 Code Pointer
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Data Transfer Rules

dst (16-bit) ← src (16-bit): dst[15:0] ← src[15:0]
dst (8-bit) ← src (8-bit): dst[7:0] ← src[7:0]
dst (16-bit) ← src (8-bit): dst[15:8] ← 00h *

dst[ 7:0] ← src[7:0]
dst (8-bit) ← src (16-bit): dst[7:0] ← src[7:0]

* Note: The PFX[0] register may be used to supply a separate high order data byte for this type of 
transfer .

Example(s): MOVE A[0], A[3] ; A[0] ← A[3]
MOVE DP[0], #110h ; DP[0] ← #0110h (PFX[0] register used)

; MOVE PFX[0], #01h (smart-prefixing)
; MOVE DP[0], #10h

MOVE DP[0], #80h ; DP[0] ← #0080h (PFX[0] register not needed)
Special 
Notes:

Proper loading of the PFX[n] registers, when for the purpose of supplying 16-bit immediate data 
or accessing 2-cycle destinations, is handled automatically by the assembler and is therefore an 
optional step for the user when writing assembly source code . Examples of the automatic PFX[n] 
code insertion by the assembler are demonstrated below .

Initial Assembly Code Assembler Output
MOVE DP[0], #0100h MOVE PFX[0], #01h

MOVE DP[0], #00h
MOVE A[15], A[7] MOVE PFX[2], anysrc

MOVE A[7], A[7]
MOVE A[8], #3040h MOVE PFX[2], #30h

MOVE A[0], #40h

MOVE Acc.<b>, C Move Carry Flag to Accumulator Bit

Description: Replaces the specified bit of the active accumulator with the Carry bit .
Status Flags: S, Z
Operation: Acc.<b> ← C

Encoding: 15 0

1111 1010 bbbb 1010

Example(s): ; Acc = 8000h, S=1, Z=0, C=0
MOVE Acc .15, C ; Acc = 0000h, S=0, Z=1

MOVE C, Acc.<b> Move Accumulator Bit to Carry Flag

Description: Replaces the Carry (C) status flag with the specified active accumulator bit .
Status Flag: C
Operation: C ← Acc .<b>

Encoding: 15 0

1110 1010 bbbb 1010

Example(s): ; Acc = 01C0h, C=0
MOVE C, Acc .8 ; C =1
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MOVE C, src.<b> Move Bit to Carry Flag

Description: Replaces the Carry (C) status flag with the specified source bit src.<b>.
Status Flag: C
Operation: C ← src .<b>

Encoding: 15 0

fbbb 0111 ssss ssss

Example(s): ; M0[0] = FEh; C=1 (assume M0[0] is an 8-bit register)
MOVE C, M0[0] .0 ; C=0

MOVE C, #0 Clear Carry Flag

Description: Clears the Carry (C) processor status flag .
Status Flag: C ← 0
Operation: C ← 0

Encoding: 15 0

1101 1010 0000 1010

Example(s): ; C = 1
MOVE C, #0 ; C ← 0

MOVE C, #1 Set Carry Flag

Description: Sets the Carry (C) processor status flag .
Status Flags: C ← 1
Operation: C ← 1

Encoding: 15 0

1101 1010 0001 1010

Example(s): ; C = 0
MOVE C, #1 ; C ← 1

MOVE dst.<b>, #0 Clear Bit

Description: Clears the bit specified by dst.<b>.
Status Flags: C, E (if dst is PSF)
Operation: dst .<b> ← 0

Encoding: 15 0

1ddd dddd 0bbb 0111

Example(s): ; M0[0] = FEh
MOVE M0[0] .1, #0 ; M0[0] = FCh
MOVE M0[0] .7, #0 ; M0[0] = 7Ch

Special Notes: Only system module 8 and peripheral modules (0 to 5) are supported by MOVE dst.<b>, #0 .
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MOVE dst.<b>, #1 Set Bit

Description: Sets the bit specified by dst.<b>.
Status Flags: C, E (if dst is PSF)
Operation: dst .<b> ← 1

Encoding: 15 0

1ddd dddd 1bbb 0111

Example(s): ; M0[0] = 00h
MOVE M0[0] .1, #1 ; M0[0] = 02h
MOVE M0[0] .7, #1 ; M0[0] = 82h

Special Notes: Only system module 8 and peripheral modules (0 to 5) are supported by MOVE dst.<b>, #1 .

NEG Negate Accumulator

Description: Performs a negation (two’s complement) of the active accumulator and returns the result back to the 
active accumulator .

Status Flags: S, Z
Operation: Acc ← ~Acc + 1

Encoding: 15 0

1000 1010 1001 1010

Example(s): ; Acc = 0FEEDh, S=1, Z=0
NEG ; Acc = 0113h, S=0, Z=0

OR src Logical OR

Description: Performs a logical-OR between the active accumulator (Acc or A[AP]) and the specified src data . 
For the complete list of src specifiers, reference the MOVE instruction . The PFX[n] register may be 
used to supply the high byte of data for 8-bit sources .

Status Flags: S, Z
Operation: Acc ← Acc OR src

Encoding: 15 0

f010 1010 ssss ssss

Example(s): ; Acc = 2345h for each example
OR A[3] ; A[3]= 0F0Fh → Acc = 2F4Fh
OR #1133h ; MOVE PFX[0], #11h (smart-prefixing)

; OR #33h → Acc = 3377h
Special Notes: The active accumulator (Acc) is not allowed as the src for this operation .
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OR Acc.<b> Logical OR Carry Flag with Accumulator Bit

Description: Performs a logical-OR between the Carry (C) status flag and a specified bit of the active accumulator 
(Acc .<b>) and returns the result to the Carry .

Status Flags: C
Operation: C ← C OR Acc.<b>

Encoding: 15 0

1010 1010 bbbb 1010

Example(s): OR Acc .1 ; Acc .1=0 → C=0
OR Acc .2 ; Acc .2=1 → C=1

POP dst Pop Word from the Stack

Description: Pops a single word from the stack (@SP) to the specified dst and decreases the stack depth (incre-
ments the stack pointer SP) .

Status Flags: S, Z (if dst = Acc or AP or APC)
C, E (if dst = PSF)

Operation: dst ← @SP--

Encoding: 15 0

1ddd dddd 0000 1101

Example(s): POP GR ; GR ← 1234h
POP @DP[0] ; @DP[0] ← 76h (WBS0=0)

; @DP[0] ← 0876h (WBS0=1)
Stack Data:

xxxxh
xxxxh ← SP (after POP @DP[0])
0876h ← SP (after POP GR)
1234h ← SP (initial)
xxxxh

POPI dst Pop Word from the Stack Enable Interrupts

Description: Pops a single word from the stack (@SP) to the specified dst and decreases the stack depth (incre-
ments the stack pointer SP) . Additionally, POPI returns the interrupt logic to a state in which it can 
acknowledge additional interrupts .

Status Flags: S, Z (if dst = Acc or AP or APC)
C, E (if dst = PSF)

Operation: dst ← @SP--
IPS ← 11b

Encoding: 15 0

1ddd dddd 1000 1101

Example(s): See POP
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PUSH src Push Word to the Stack

Description: Increases the stack depth (decments the stack pointer SP) and pushes a single word specified by 
src to the stack (@SP) .

Status Flags: None
Operation: SP ← ++SP

Encoding: 15 0

f000 1101 ssss ssss

Example(s): PUSH GR ; GR=0F3Fh
PUSH #40h

Stack Data:

xxxxh
xxxxh ← SP (initial)
0F3Fh ← SP (after PUSH GR)
0040h ← SP (after PUSH #40h)
xxxxh

RET Return from Subroutine

Description: RET pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decreases the stack 
depth (increments the stack pointer SP) . The modified SP is saved as the new stack pointer (SP) .

Status Flags: None
Operation: IP ← @SP--

Encoding: 15 0

1000 1100 0000 1101

Example(s): RET

Code Execution:

Addr (IP) Opcode

0311h …

0312h RET

→ 0103h …

Stack Data:

xxxxh
xxxxh ← SP (after RET)
0103h ← SP (before RET)
xxxxh
xxxxh
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RET C/RET NC 

RET Z/RET NZ

RET S

Conditional Return on Status Flag

Description: Performs conditional return (RET) based upon the state of a specific processor status flag . RET C 
returns if the Carry flag is set while RET NC returns if the Carry flag is clear . RET Z returns if the Zero 
flag is set while RET NZ returns if the Zero flag is clear . RET S returns if the Sign flag is set . See RET 
for additional information on the return operation .

Status Flags: None

RET C

Operation: C=1: IP ← @SP--
C=0: IP ← IP + 1

Encoding: 15 0

1010 1100 0000 1101

Example(s): RET C ; C=1, return (RET) is performed

RET NC

Operation: C=0: IP ← @SP--
C=1: IP ← IP +1

Encoding: 15 0

1110 1100 0000 1101

Example(s): RET NC ; C=1, return (RET) does not occur

RET Z

Operation: Z=1: IP ← @SP--
Z=0: IP ← IP + 1

Encoding: 15 0

1001 1100 0000 1101

Example(s): RET Z ; Z=0, return (RET) does not occur

RET NZ

Operation: Z=0: IP ← @SP--
Z=1: IP ← IP + 1

Encoding: 15 0

1101 1100 0000 1101

Example(s): RET NZ ; Z=0, return (RET) is performed
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RET S

Operation: S=1: IP ← @SP--
S=0: IP ← IP + 1

Encoding: 15 0

1100 1100 0000 1101

Example(s): RET S ; S=0, return (RET) does not occur

RETI Return from Interrupt

Description: RETI pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decrements the 
stack pointer (SP) . Additionally, RETI returns the interrupt logic to a state in which it can acknowl-
edge additional interrupts .

Status Flags: None
Operation: IP ← @SP--

IPS ← 11b

Encoding: 15 0

1000 1100 1000 1101

Example(s): see RET

RETI C/RETI NC 

RETI Z/RETI NZ

RETI S

Conditional Return from Interrupt on Status Flag

Description: Performs conditional return from interrupt (RETI) based upon the state of a specific processor status 
flag . RETI C returns if the Carry flag is set while RETI NC returns if the Carry flag is clear . RETI Z 
returns if the Zero flag is set while RETI NZ returns if the Zero flag is clear . RETI S returns if the Sign 
flag is set . See RETI for additional information on the return from interrupt operation .

Status Flags: None

RETI C

Description: RETI pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decrements the 
stack pointer (SP) . Additionally, RETI returns the interrupt logic to a state in which it can acknowl-
edge additional interrupts .

Status Flags: None
Operation: C=1: IP ← @SP--

IPS ← 11b
C=0: IP ← IP + 1

Encoding: 15 0

1010 1100 1000 1101

Example(s): RETI C ; C=1, return from interrupt (RETI) is performed .
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RETI NC

Operation: C=0: IP ← @SP--
IPS ← 11b
C=1: IP ← IP +1

Encoding: 15 0

1110 1100 1000 1101

Example(s): RETI NC ; C=1, return from interrupt (RETI) does not occur

RETI Z

Operation: Z=1: IP ← @SP--
IPS ← 11b
Z=0: IP ← IP + 1

Encoding: 15 0

1001 1100 1000 1101

Example(s): RETI Z ; Z=0, return from interrupt (RETI) does not occur

RETI NZ

Operation: Z=0: IP ← @SP--
IPS ← 11b
Z=1: IP ← IP + 1

Encoding: 15 0

1101 1100 1000 1101

Example(s): RETI NZ ; Z=0, return from interrupt (RETI) is performed

RETI S

Operation: S=1: IP ← @SP--
IPS ← 11b
S=0: IP ← IP + 1

Encoding: 15 0

1100 1100 1000 1101

Example(s): RETI S ; S=0, return from interrupt (RETI) does not occur



14-20

MAXQ610 User’s Guide

RL/RLC Rotate Left Accumulator Carry Flag Exclusive/Inclusive

Description: Rotates the active accumulator left by a single bit position . The RL instruction circulates the msbit of 
the accumulator (bit 15) back to the lsbit (bit 0) while the RLC instruction includes the Carry (C) flag 
in the circular left shift .

Status Flags: C (for RLC only), S, Z (for RLC only)

RL Operation: 15 Active Accumulator (Acc) 0
←

Acc .[15:1] ← Acc .[14:0]; Acc .0 ← Acc .15

Encoding: 15 0

1000 1010 0100 1010

Example(s): ; Acc = A345h, S=1, Z=0
RL ; Acc = 468Bh, S=0, Z=0
RL ; Acc = 8D16h, S=1, Z=0

RLC 15 Active Accumulator (Acc) 0 Carry Flag
Operation: ← ←

Acc .[15:1] ← Acc .[14:0]; Acc .0 ← C; C ← Acc .15

Encoding: 15 0

1000 1010 0101 1010

Example(s): ; Acc = A345h, C=1, S=1, Z=0
RLC ; Acc = 468Bh, C=1, S=0, Z=0
RLC ; Acc = 8D17h, C=0, S=1, Z=0



14-21

MAXQ610 User’s Guide

RR/RRC Rotate Right Accumulator Carry Flag Exclusive/Inclusive

Description: Rotates the active accumulator right by a single bit position . The RR instruction circulates the lsbit 
of the accumulator (bit 0) back to the msbit (bit 15) while the RRC instruction includes the Carry (C) 
flag in the circular right shift .

Status Flags: C (for RRC only), S, Z (for RRC only)

RR Operation: 15 Active Accumulator (Acc) 0
→

Acc .[14:0] ← Acc .[15:1]; Acc .15 ← Acc .0

Encoding: 15 0

1000 1010 1100 1010

Example(s): ; Acc = A345h, S=1, Z=0
RR ; Acc = D1A2h, S=1, Z=0
RR ; Acc = 68D1h, S=0, Z=0

RRC Operation: 15 Active Accumulator (Acc) 0 Carry Flag
→ →

Acc .[14:0] ← Acc .[15:1]; Acc .15 ← C; C ← Acc .0

Encoding: 15 0

1000 1010 1101 1010

Example(s): ; Acc = A345h, C=1, S=1, Z=0
RRC ; Acc = D1A2h, C=1, S=1, Z=0
RRC ; Acc = E8D1h, C=0, S=1, Z=0
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SLA/SLA2/SLA4 Shift Accumulator Left Arithmetically One, Two, or Four Times

Description: Shifts the active accumulator left once, twice, or four times respectively for SLA, SLA2, and SLA4 . 
For each shift iteration, a 0 is shifted into the lsbit and the msbit is shifted into the Carry (C) flag . For 
signed data, this shifting process effectively retains the sign orientation of the data to the point at 
which overflow/underflow would occur .

Status Flags: C, S, Z

SLA Carry Flag 15 Active Accumulator (Acc) 0
Operation: ← ← ← 0

C ← Acc .15; Acc .[15:1] ← Acc .[14:0]; Acc .0 ← 0

Encoding: 15 0

1000 1010 0010 1010

Example(s): ; Acc = E345h, C=0, S=1, Z=0
SLA ; Acc = C68Ah, C=1, S=1, Z=0
SLA ; Acc = 8D14h, C=1, S=1, Z=0

SLA2 Carry Flag 15 Active Accumulator (Acc) 0
Operation: ← ← ← 0

C ← Acc .14; Acc .[15:2] ← Acc .[13:0]; Acc .[1:0] ← 0

Encoding: 15 0

1000 1010 0011 1010

Example(s): ; Acc = E345h, C=0, S=1, Z=0
SLA2 ; Acc = 8D14h, C=1, S=1, Z=0

SLA4 Carry Flag 15 Active Accumulator (Acc) 0
Operation: ← ← ← 0

C ← Acc .12; Acc .[15:4] ← Acc .[11:0]; Acc .[3:0] ← 0

Encoding: 15 0

1000 1010 0110 1010

Example(s): ; Acc = E345h, C=0, S=1, Z=0
SLA4 ; Acc = 3450h, C=0, S=0, Z=0
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SR 
SRA/SRA2/SRA4

Shift Accumulator Right 
Shift Accumulator Right Arithmetically One, Two, or Four Times

Description: Shifts the active accumulator right once for the SR, SRA instructions and 2 or 4 times respectively 
for the SRA2, SRA4 instructions . The SR instruction shifts a 0 into the accumulator msbit while the 
SRA, SRA2, and SRA4 instructions effectively shift a copy of the current msbit into the accumulator, 
thereby preserving any sign orientation . For each shift iteration, the accumulator lsbit is shifted into 
the Carry (C) flag .

Status Flags: C, S (changes for SR only), Z

SR Operation: 15 Active Accumulator (Acc) 0 Carry Flag
0 → → →

Acc .15 ← 0; Acc .[14:0] ← Acc .[15:1]; C ← Acc .0

Encoding: 15 0

1000 1010 1010 1010

Example(s): ; Acc = A345h, C=1, S=1, Z=0
SR ; Acc = 51A2h, C=1, S=0, Z=0
SR ; Acc = 28D1h, C=0, S=0, Z=0

SRA Operation: 15 Active Accumulator (Acc) 0 Carry Flag
→ → →

Acc .[14:0] ← Acc .[15:1]
Acc .15 ← Acc .15
C ← Acc .0

Encoding: 15 0

1000 1010 1111 1010

Example(s): ; Acc = 0003h, C=0, Z=0
SRA ; Acc = 0001h, C=1, Z=0
SRA ; Acc = 0000h, C=1, Z=1

SRA2 Operation: 15 Active Accumulator (Acc) 0 Carry Flag
→ → →

Acc .[13:0] ← Acc .[15:2]
Acc .[15:14] ← Acc .15
C ← Acc .1

Encoding: 15 0

1000 1010 1110 1010

Example(s): ; Acc = 0003h, C=0, Z=0
SRA2 ; Acc = 0000h, C=1, Z=1
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SRA4 Operation: 15 Active Accumulator (Acc) 0 Carry Flag
→ → →

Acc .[11:0] ← Acc .[15:4]
Acc .[15:12] ← Acc .15
C ← Acc .3

Encoding: 15 0

1000 1010 1011 1010

Example(s): ; Acc = 9878h, C=0, Z=0
SRA4 ; Acc = F987h, C=1, Z=0
SRA4 ; Acc = FF98h, C=0, Z=0

SUB/SUBB src Subtract/Subtract with Borrow

Description: Subtracts the specified src from the active accumulator (Acc) and returns the result back to the active 
accumulator . The SUBB additionally subtracts the borrow (Carry Flag) which may have resulted from 
previous subtraction . For the complete list of src specifiers, reference the MOVE instruction . The 
PFX[n] register may be used to supply the high byte of data for 8-bit sources .

Status Flags: C, S, Z, OV

SUB 
Operation: Acc ← Acc – src

Encoding: 15 0

f101 1010 ssss ssss

Example(s): ; Acc = 2345h to start, A[1]= 1250h
SUB A[1] ; Acc = 10F5h, C=0, S=0, Z=0, OV=0
SUB A[1] ; Acc = FEA5h, C=1, S=1, Z=0, OV=0
SUB A[2] ; A[2] =7FFFh

; → Acc = 7EA6h; C=0, S=0, Z=0, OV=1

SUBB 
Operation: Acc ← Acc – (src + C)

Encoding: 15 0

f111 1010 ssss ssss

Example(s): ; Acc = 2345h, A[1]= 1250h, C=1
SUBB  A[1] ; Acc = 10F4h, C=0, S=0, Z=0
SUBB  A[1] ; Acc = FEA4h, C=1, S=1, Z=0

Special Notes: The active accumulator (Acc) is not allowed as the src for these operations .
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XCH Exchange Accumulator Bytes

Description: Exchanges the upper and lower bytes of the active accumulator .
Status Flags: S
Operation: Acc .[15:8] ← Acc .[7:0]

Acc .[7:0] ← Acc .[15:8]

Encoding: 15 0

1000 1010 1000 1010

Example(s): ; Acc = 2345h
XCH ; Acc = 4523h

XCHN Exchange Accumulator Nibbles

Description: Exchanges the upper and lower nibbles in the active accumulator byte(s) .
Status Flags: S
Operation: Acc .[7:4] ← Acc .[3:0]

Acc .[3:0] ← Acc .[7:4]
Acc .[15:12] ← Acc .[11:8]
Acc .[11:8] ← Acc .[15:12]

Encoding: 15 0

1000 1010 0111 1010

Example(s): ; Acc = 2345h
XCHN ; Acc = 3254h

XOR src Logical XOR

Description: Performs a logical-XOR between the active accumulator (Acc or A[AP]) and the specified src data . 
For the complete list of src specifiers, reference the MOVE instruction . The PFX[n] register may be 
used to supply the high byte of data for 8-bit sources .

Status Flags: S, Z
Operation: Acc ← Acc XOR src

Encoding: 15 0

f011 1010 ssss ssss

Example(s): ; Acc = 2345h
XOR A[2] ; A[2]=0F0Fh; Acc ← 2C4Ah

Special Notes: The active accumulator (Acc) is not allowed as the src for this operation .
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XOR Acc.<b> Logical XOR Carry Flag with Accumulator Bit

Description: Performs a logical-XOR between the Carry (C) status flag and a specified bit of the active accumu-
lator (Acc .<b>) and returns the result to the Carry .

Status Flags: C
Operation: C ← C XOR Acc.<b>

Encoding: 15 0

1011 1010 bbbb 1010

Example(s): ; Acc = 2345h, C=1 at start
XOR Acc .1 ; Acc .1=0 → C=1
XOR Acc .2 ; Acc .2=1 → C=0
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SECTION 15: UTILITY ROM
The MAXQ610 utility ROM includes routines that provide the following functions to application software .

•  In-application programming routines for flash memory (program, erase, mass erase)

•  Single word/byte copy and buffer copy routines for use with lookup tables

•  Entry into stop mode

•  Ability to check a value against a stored secret

To provide backwards compatibility among different versions of the utility ROM, a function address table is included 
that contains the entry points for all user-callable functions . With this table, user code can determine the entry point for 
a given function as follows:

1)  Read the location of the function address table from address 0800Dh in the utility ROM .

2)   The entry points for each function listed below are contained in the function address table, one word per function, 
in the order given by their function numbers .

For example, the entry point for the UROM_flashEraseAll function can be determined by the following procedure:

1)  functionTable = dataMemory[0800Dh]

2)  flashWriteEntry = dataMemory[functionTable + 0]

It is also possible to call utility ROM functions directly, using the entry points given above . Standard include files are 
provided for this purpose with the MAXQ development toolset . This method calls functions more quickly, but the appli-
cation might need to be recompiled in order to run properly with a different version of the utility ROM .

Table 15-1. Functions for MAXQ610 Utility ROM Version 1.00

INDEX FUNCTION NAME
ENTRY 
POINT

SUMMARY

0 UROM_flashWrite 8544h Programs a single word of flash memory .

1 UROM_flashErasePage 8566h Erases (programs to FFFFh) a 512-word sector of flash memory .

2 UROM_flashEraseAll 857Bh Erases (programs to FFFFh) all flash memory .

3 UROM_moveDP0 8589h Reads a byte/word at DP[0] .

4 UROM_moveDP0inc 858Ch Reads a byte/word at DP[0], then increments DP[0] .

5 UROM_moveDP0dec 858Fh Reads a byte/word at DP[0], then decrements DP[0] .

6 UROM_moveDP1 8592h Reads a byte/word at DP[1] .

7 UROM_moveDP1inc 8595h Reads a byte/word at DP[1], then increments DP[0] .

8 UROM_moveDP1dec 8598h Reads a byte/word at DP[1], then decrements DP[0] .

9 UROM_moveFP 859Bh Reads a byte/word at BP[OFFS] .

10 UROM_moveFPinc 859Eh Reads a byte/word at BP[OFFS], then increments OFFS .

11 UROM_moveFPdec 85A1h Reads a byte/word at BP[OFFS], then decrements OFFS .

12 UROM_copyBuffer 85A4h Copies LC[0] values (up to 255) from DP[0] to BP[OFFS] .

13 UROM_stopMode 85AAh Enters stop mode .
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15.1 In-Application Programming Functions

15.1.1 UROM_flashWrite

Notes:

•  This function uses one stack level to save and restore values.

•  If the watchdog reset function is active, it should be disabled before calling this function.

•   If the flash location has already been programmed to a non-FFFF value, this function returns with an error (carry set). 
To reprogram a flash location, it must first be erased by calling UROM_flashErasePage or UROM_flashEraseAll .

15.1.2 UROM_flashErasePage

Notes:

•  If the watchdog reset function is active, it should be disabled before calling this function.

•   When calling this function from flash, care should be taken that the return address is not in the page that is being 
erased .

15.1.3 UROM_flashEraseAll

Notes:

•  If the watchdog reset function is active, it should be disabled before calling this function.

•   This function can only be called by code running from the RAM. Attempting to call this function while running from 
the flash results in an error .

Function: UROM_flashWrite

Summary: Programs a single word of flash memory .

Inputs: A[0]: Word address in program flash memory to write to .

A[1]: Word value to write to flash memory .

Outputs: Carry: Set on error and cleared on success .

Destroys: PSF, LC[1]

Function: UROM_flashErasePage

Summary: Erases (programs to 0FFFFh) a 256-word page of flash memory .

Inputs: A[0]: Word address located in the page to be erased . (The page number is the high byte of A[0] .)

Outputs: Carry: Set on error and cleared on success .

Destroys: LC[1], A[0]

Function: UROM_flashEraseAll

Summary: Erases (programs to 0FFFFh) all locations in flash memory .

Inputs: None .

Outputs: Carry: Set on error and cleared on success .

Destroys: LC[1], A[0]
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15.2 Data Transfer Functions

15.2.1 UROM_moveDP0

Notes:

•  Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

•   The address passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•  This function automatically refreshes the data pointer before reading the byte/word value.

15.2.2 UROM_moveDP0inc

Notes:

•  Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

•   The address passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•  This function automatically refreshes the data pointer before reading the byte/word value.

15.2.3 UROM_moveDP0dec

Notes:

•  Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

•   The address passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•  This function automatically refreshes the data pointer before reading the byte/word value.

Function: UROM_moveDP0

Summary: Reads the byte/word value pointed to by DP[0] .

Inputs: DP[0]: Address to read from .

Outputs: GR: Data byte/word read .

Destroys: None .

Function: UROM_moveDP0inc

Summary: Reads the byte/word value pointed to by DP[0], then increments DP[0] .

Inputs: DP[0]: Address to read from .

Outputs: GR: Data byte/word read .

DP[0] is incremented .

Destroys: None .

Function: UROM_moveDP0dec

Summary: Reads the byte/word value pointed to by DP[0], then decrements DP[0] .

Inputs: DP[0]: Address to read from .

Outputs: GR: Data byte/word read .

DP[0] is decremented .

Destroys: None .
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15.2.4 UROM_moveDP1

Notes:

•  Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

•   The address passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•  This function automatically refreshes the data pointer before reading the byte/word value.

15.2.5 UROM_moveDP1inc

Notes:

•  Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

•   The address passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•  This function automatically refreshes the data pointer before reading the byte/word value.

15.2.6 UROM_moveDP1dec

Notes:

•  Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

•   The address passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•  This function automatically refreshes the data pointer before reading the byte/word value.

Function: UROM_moveDP1

Summary: Reads the byte/word value pointed to by DP[1] .

Inputs: DP[1]: Address to read from .

Outputs: GR: Data byte/word read .

Destroys: None .

Function: UROM_moveDP1inc

Summary: Reads the byte/word value pointed to by DP[1], then increments DP[1] .

Inputs: DP[1]: Address to read from .

Outputs:
GR: Data byte/word read .
DP[1] is incremented .

Destroys: None .

Function: UROM_moveDP1dec

Summary: Reads the byte/word value pointed to by DP[1], then decrements DP[1] .

Inputs: DP[1]: Address to read from .

Outputs: G: Data byte/word read .

DP[1] is decremented .

Destroys: None .
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15.2.7 UROM_moveFP

Notes:

•  Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

•   The address passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•  This function automatically refreshes the data pointer before reading the byte/word value.

15.2.8 UROM_moveFPinc

Notes:

•  Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

•   The address passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•  This function automatically refreshes the data pointer before reading the byte/word value.

15.2.9 UROM_moveFPdec

Notes:

•  Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

•   The address passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•  This function automatically refreshes the data pointer before reading the byte/word value.

Function: UROM_moveFP

Summary: Lookup table access using BP[OFFS] .

Inputs: BP[OFFS]: Location to read from in data space .

Outputs: GR: Data byte/word read .

Destroys: None .

Function: UROM_moveFPdec

Summary: Lookup table access using BP[OFFS], then decrements OFFS .

Inputs: BP[OFFS]: Location to read from in data space .

Outputs: GR: Data byte/word read .

OFFS is decremented .

Destroys: None .

Function: UROM_moveFPinc

Summary: Lookup table access using BP[OFFS], then increments OFFS .

Inputs: BP[OFFS]: Location to read from in data space .

Outputs: GR: Data byte/word read .

OFFS is incremented .

Destroys: None .
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15.2.10 UROM_moveBP

Notes:

•  Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

•   The address passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•  This function automatically refreshes the data pointer before reading the byte/word value.

15.2.11 UROM_copyBuffer

Notes:

•   Before calling this function, DPC should be set appropriately to configure DP[0] and BP[OFFS] for byte or word 
mode . Both DP[0] and BP[OFFS] should be configured to the same mode (byte or word) for correct buffer copying .

•   The addresses passed to this function should be based on the data memory mapping for the utility ROM, as shown 
in Figure 2-4 and Figure 2-5 . When a byte mode address is used, CDA0 must be set appropriately to access either 
the upper or lower half of program flash/ROM memory .

•   This function automatically refreshes the data pointers before reading the byte/word values.

15.3 Miscellaneous Functions

15.3.1 UROM_stopMode

Function: UROM_moveBP

Summary: Reads the byte/word value pointed to by BP[OFFS] .

Inputs: BP[OFFS]: Address to read from .

Outputs: GR: Data byte/word read .

Destroys: None .

Function: UROM_stopMode

Summary: Enters stop mode .

Inputs: None .

Outputs: None .

Destroys: None .

Function: UROM_copyBuffer

Summary: Copies LC[0] bytes/words (up to 255) from DP[0] to BP[OFFS] .

Inputs: DP[0]: Address to copy from .

BP[OFFS]: Address to copy to .

LC[0]: Number of bytes or words to copy .

Outputs: OFFS is incremented by LC[0] .

DP[0] is incremented by LC[0] .

Destroys: LC[0] .
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15.4 ROM Example 1: Calling A Utility ROM Function Directly
This example shows the direct addressing method for calling utility functions, using the function moveDP1inc to read 
a static string from code space . Note the equate UROM_MOVEDP1INC .

UROM_MOVEDP1INC EQU 087DBh

Text:

 DB “Hello World!”,0 ; Define a string in code space.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Function:  PrintText

;; Description: Prints the string stored at the “Text” label.

;; Returns:  N/A

;; Destroys:  ACC, DP[1], DP[0], and GR.

;; Notes:  This function assumes that DP[0] is set to word mode,

;;    DP[1] is in byte mode, and the device has 16-bit accumulators.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

PrintText:

 move DP[1], #Text ; Point to the string to display.

 move ACC, DP[1] ; “Text” is a word address and we need a

 sla ; byte address, so shift left 1 bit.

 or  #08000h ; Code space is mapped to 8000h when running

 move DP[1], ACC ; from the ROM, so the address must be masked.

PrintText_Loop:

 call UROM_MOVEDP1INC ; Fetch the byte from code space.

 move ACC, GR

 jump Z, PrintText_Done ; Reached the null terminator.

 call PrintChar ; Call a routine to output the char in ACC

 jump PrintText_Loop ; Process the next byte.

PrintText_Done:

 ret
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15.5 ROM Example 2: Calling A Utility ROM Function Indirectly
The second example shows the indirect addressing method (lookup table) for calling utility functions . We use the 
same function (UROM_MoveDP1Inc) to read our static string, but this time we must figure out the address we want 
dynamically . Note the inserted code where we before had a direct call to the function . Also note that the function index 
of moveDP1inc is 7 .

Text:

 DB “Hello World!”,0 ; Define a string in code space.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Function:  PrintText

;; Description: Prints the string stored at the “Text” label.

;; Returns:  N/A

;; Destroys:  ACC, DP[1], DP[0], and GR.

;; Notes:  This function assumes that DP[0] is set to word mode,

;;   DP[1] is in byte mode, and the device has 16-bit

;;   accumulators.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

PrintText:

 move DP[1], #Text ; Point to the string to display.

 move ACC, DP[1] ; “Text” is a word address and we need a

 sla ; byte address, so shift left 1 bit.

 or #08000h ; Code space is mapped to 8000h when running

 move DP[1], ACC ; from the ROM, so the address must be masked.

PrintText_Loop:

;

; Fetch the byte from code space.

;

 move DP[0], #0800Dh ; This is where the address of the table is stored.

 move ACC, @DP[0] ; Get the location of the function table.

 add #7 ; Add the index to the moveDP1inc function.

 move DP[0], ACC ; Point to where the address of moveDP1 is stored.

 move ACC, @DP[0] ; Retrieve the address of the function.

 call ACC ; Execute the function.

 move ACC, GR

 jump Z, PrintText_Done ; Reached the null terminator.

 call PrintChar ; Call a routine to output the char in ACC

 jump PrintText_Loop ; Process the next byte.

PrintText_Done:

 ret
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