MOSFET – Power, **Complementary, ChipFET**

20 V, +3.9 A /-4.4 A

Features

- Complementary N-Channel and P-Channel MOSFET
- Small Size, 40% Smaller than TSOP-6 Package
- Leadless SMD Package Provides Great Thermal Characteristics
- Trench P-Channel for Low On Resistance
- Low Gate Charge N-Channel for Test Switching
- Pb-Free Packages are Available

Applications

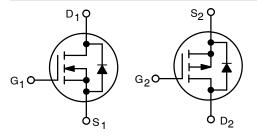
- DC-DC Conversion Circuits
- Load Switch Applications Requiring Level Shift
- Drive Small Brushless DC Motors
- Ideal for Power Management Applications in Portable, Battery **Powered Products**

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	20	V		
Gate-to-Source Voltage	١	l-Ch	V_{GS}	±12	V
	F	P-Ch		±8.0	
N-Channel	Steady	T _A = 25°C	I _D	2.9	Α
Continuous Drain Current (Note 1)	State	T _A = 85°C		2.1	
	t ≤ 10 s	T _A = 25°C		3.9	
P-Channel	Steady	T _A = 25°C	I _D	-3.2	Α
Continuous Drain Current (Note 1)	State	T _A = 85°C		-2.3	
	t ≤ 10 s	T _A = 25°C		-4.4	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.1	W
	t ≤ 5 s			3.1	
Pulsed Drain Current	N-Ch	t = 10 μs	I _{DM}	12	Α
(Note 1)		-13			
Operating Junction and Si	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Dio	I _S	2.5	Α		
Lead Temperature for Solo (1/8" from case for 10	T _L	260	°C		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

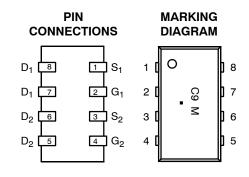
1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq


[1 oz] including traces).

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D MAX
N-Channel	58 mΩ @ 4.5 V	3.9 A
20 V	77 mΩ @ 2.5 V	3.9 A
P-Channel	64 mΩ @ -4.5 V	-4.4 A
–20 V	85 mΩ @ –2.5 V	



N-Channel MOSFET

P-Channel MOSFET

ChipFET **CASE 1206A** STYLE 2

C9

= Specific Device Code

= Month Code Μ

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	113	°C/W
Junction-to-Ambient - t ≤ 10 s (Note 2)	$R_{ heta JA}$	60	°C/W

^{2.} Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	N/P	Test Conditions			Тур	Max	Unit
OFF CHARACTERISTICS (Note 3)	•	•					•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N	.,	I _D = 250 μA	20			V
		Р	V _{GS} = 0 V	I _D = -250 μA	-20			
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 16 V	T 05.00			1.0	μΑ
		Р	V _{GS} = 0 V, V _{DS} = -16 V	T _J = 25 °C			-1.0	
		N	V _{GS} = 0 V, V _{DS} = 16 V	T 405.00			5.0	
		Р	V _{GS} = 0 V, V _{DS} = -16 V	T _J = 125 °C			-5.0	
Gate-to-Source Leakage Current	I _{GSS}	N	$V_{DS} = 0 V, V_{GS} =$	±12 V			±100	nA
		Р	V _{DS} = 0 V, V _{GS} =	: ±8.0 V			±100	
ON CHARACTERISTICS (Note 3)								
Gate Threshold Voltage	V _{GS(TH)}	N		I _D = 250 μA	0.6		1.2	V
		Р	$V_{GS} = V_{DS}$	I _D = -250 μA	45		-1.5	
Drain-to-Source On Resistance	R _{DS(on)}	N	V _{GS} = 4.5 V , I _D =	= 2.9 A		58	80	
		Р	V_{GS} = -4.5 V , I_D = -3.2 A			64	80	
		N	V _{GS} = 2.5 V , I _D =	= 2.3 A		77	115	mΩ
		Р	$V_{GS} = -2.5 \text{ V}, I_D =$	-2.2 A		85	110	
Forward Transconductance	9FS	N	$V_{DS} = 10 \text{ V}, I_{D} = 2.9 \text{ A}$			6.0		S
		Р	$V_{DS} = -10 \text{ V}$, $I_{D} = -3.2 \text{ A}$			8.0		
CHARGES AND CAPACITANCES								
Input Capacitance	C _{ISS}	N		V _{DS} = 10 V		165		pF
		Р		V _{DS} = -10 V		680		
Output Capacitance	C _{OSS}	N	f = 1 MHz, V _{GS} = 0 V	V _{DS} = 10 V		80		
		Р	1 = 1 WHZ, VGS = 0 V	V _{DS} = -10 V		100		
Reverse Transfer Capacitance	C _{RSS}	N		V _{DS} = 10 V		25		
		Р		V _{DS} = -10 V		70		
Total Gate Charge	Q _{G(TOT)}	N	V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 2.9 A			2.3		nC
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_D = -3.2 \text{ A}$			7.4		
Threshold Gate Charge	Q _{G(TH)}	N	V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 2.9 A			0.2		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_D = -3.2 \text{ A}$			0.6		
Gate-to-Source Gate Charge	Q _{GS}	N	V _{GS} = 4.5 V, V _{DS} = 10	V, I _D = 2.9 A		0.4		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	$V_{1D} = -3.2 \text{ A}$		1.4		
Gate-to-Drain "Miller" Charge	Q_{GD}	N	V _{GS} = 4.5 V, V _{DS} = 10	V, I _D = 2.9 A		0.7		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	$V_{1D} = -3.2 \text{ A}$		2.5		

^{3.} Pulse Test: pulse width \leq 250 $\mu s,$ duty cycle \leq 2%.

ELECTRICAL CHARACTERISTICS (continued) ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Conditions		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	(Note 4)	•						
Turn-On Delay Time	t _{d(ON)}					6.3		ns
Rise Time	t _r	N	V _{GS} = 4.5 V, V _{DD} = 10 V,			10.7		1
Turn-Off Delay Time	t _{d(OFF)}		$I_D = 2.9 \text{ A}, R_G =$			9.6		
Fall Time	t _f					1.5		1
Turn-On Delay Time	t _{d(ON)}					5.8		1
Rise Time	t _r] [V_{GS} = -4.5 V, V_{DD} = -10 V, I_{D} = -3.2 A, R_{G} = 2.5 Ω			11.7		
Turn-Off Delay Time	t _{d(OFF)}	P				16		1
Fall Time	t _f					12.4		
DRAIN-SOURCE DIODE CHARA	CTERISTICS							
Forward Diode Voltage			0.8	1.15	V			
		Р	$V_{GS} = 0 \text{ V}, T_J = 25 ^{\circ}\text{C}$	I _S = -2.5 A		-0.8	-1.2	1
Reverse Recovery Time	t _{RR}	N		I _S = 1.5 A		12.5		ns
		Р		I _S = -1.5 A		13.5		1
Charge Time	t _a	N		I _S = 1.5 A		9.0		
		Р	V _{GS} = 0 V,	I _S = -1.5 A		9.5		1
Discharge Time	t _b	N	$dI_S / dt = 100 \text{ A/}\mu\text{s}$ $I_S = 1.5 \text{ A}$			3.5		
		Р		I _S = -1.5 A		4.0		
Reverse Recovery Charge	Q _{RR}	N		I _S = 1.5 A		6.0		nC
		Р		I _S = −1.5 A		6.5		

^{4.} Switching characteristics are independent of operating junction temperatures.

TYPICAL N-CHANNEL PERFORMANCE CURVES

(T_J = 25°C unless otherwise noted)

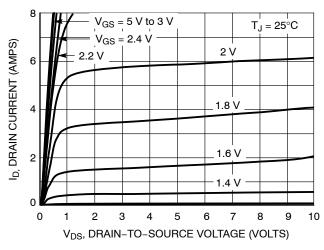


Figure 1. On-Region Characteristics

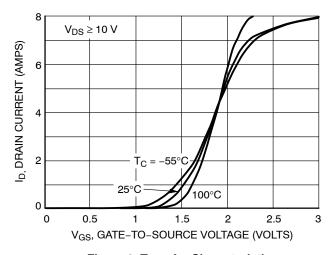


Figure 2. Transfer Characteristics

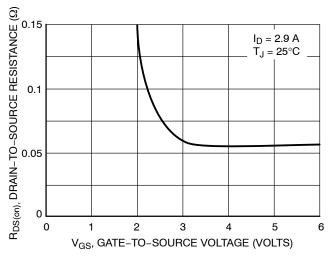


Figure 3. On-Resistance vs. Gate-to-Source Voltage

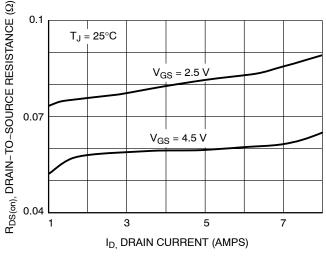


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

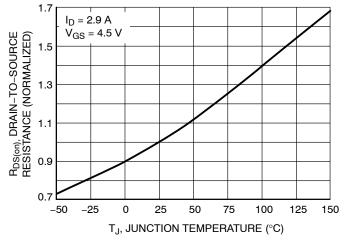


Figure 5. On–Resistance Variation with Temperature

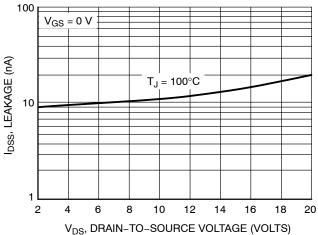
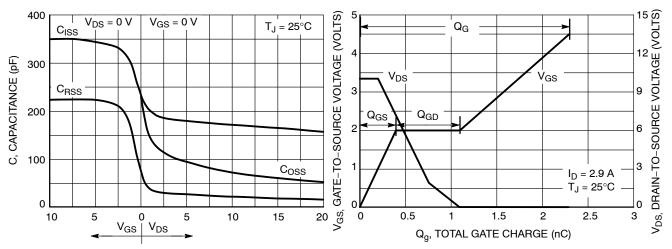
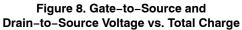



Figure 6. Drain-to-Source Leakage Current vs. Voltage


TYPICAL N-CHANNEL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

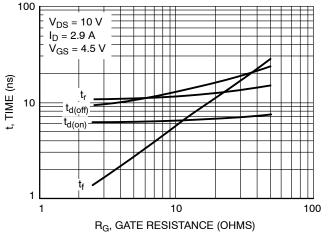


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

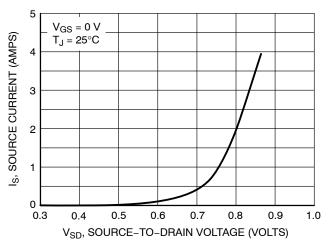


Figure 10. Diode Forward Voltage vs. Current

TYPICAL P-CHANNEL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

 $V_{DS} \ge -10 \text{ V}$

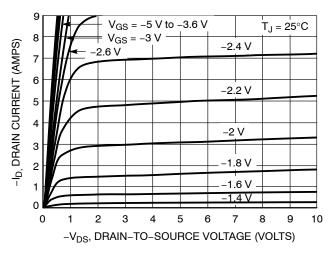
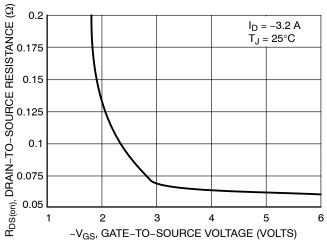



Figure 11. On-Region Characteristics

 $-V_{GS}$, GATE-TO-SOURCE VOLTAGE (VOLTS) Figure 12. Transfer Characteristics

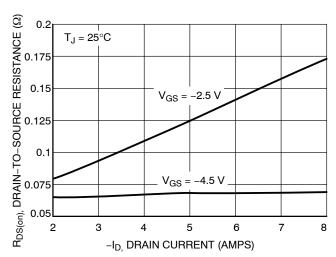
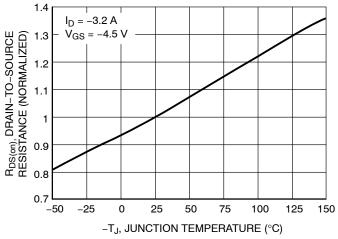



Figure 13. On-Resistance vs. Gate-to-Source Voltage

Figure 14. On-Resistance vs. Drain Current and Gate Voltage

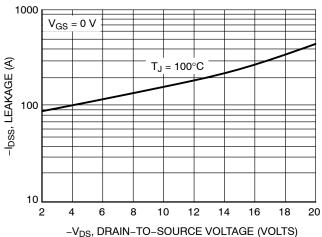


Figure 15. On–Resistance Variation with Temperature

Figure 16. Drain-to-Source Leakage Current vs. Voltage

TYPICAL P-CHANNEL PERFORMANCE CURVES

(T_{.1} = 25°C unless otherwise noted)

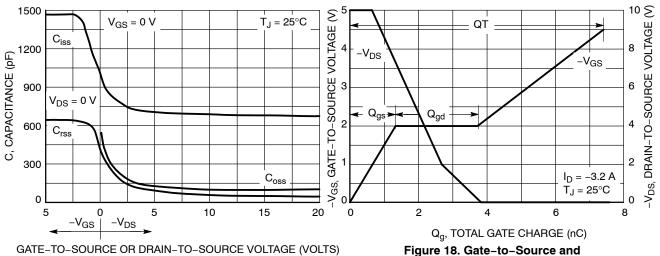


Figure 17. Capacitance Variation

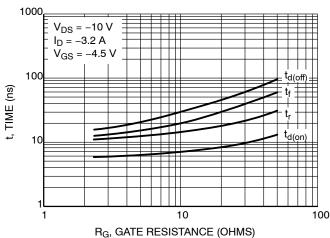


Figure 19. Resistive Switching Time Variation vs. Gate Resistance

Figure 18. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

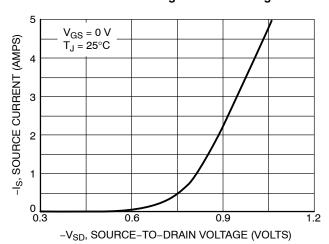
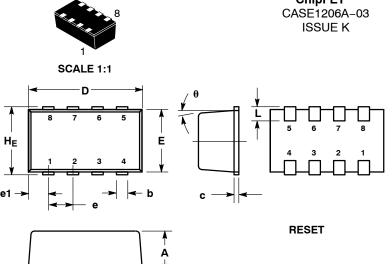



Figure 20. Diode Forward Voltage vs. Current

DEVICE ORDERING INFORMATION

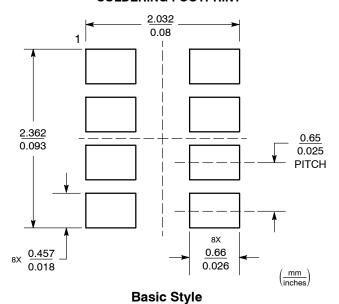
Device	Package	Shipping [†]
NTHD3100CT1	ChipFET	3000 / Tape & Reel
NTHD3100CT1G	ChipFET (Pb-Free)	3000 / Tape & Reel
NTHD3100CT3	ChipFET	10000 / Tape & Reel
NTHD3100CT3G	ChipFET (Pb-Free)	10000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ChipFET™

DATE 19 MAY 2009

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL
- AND VERTICAL SHALL NOT EXCEED 0.08 MM.
 DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
- NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.05	1.10	0.039	0.041	0.043
b	0.25	0.30	0.35	0.010	0.012	0.014
С	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	1.55	1.65	1.70	0.061	0.065	0.067
е		0.65 BSC		0.025 BSC		
e1		0.55 BSC			0.022 BSC	
L	0.28	0.35	0.42	0.011	0.014	0.017
HE	1.80	1.90	2.00	0.071	0.075	0.079
θ	5° NOM				5° NOM	

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. DRAIN	PIN 1. SOURCE 1	PIN 1. ANODE	PIN 1. COLLECTOR	PIN 1. ANODE	PIN 1. ANODE
DRAIN	2. GATE 1	2. ANODE	2. COLLECTOR	ANODE	2. DRAIN
DRAIN	SOURCE 2	SOURCE	COLLECTOR	DRAIN	3. DRAIN
GATE	4. GATE 2	4. GATE	4. BASE	DRAIN	4. GATE
SOURCE	5. DRAIN 2	5. DRAIN	EMITTER	SOURCE	5. SOURCE
DRAIN	6. DRAIN 2	6. DRAIN	COLLECTOR	GATE	6. DRAIN
DRAIN	7. DRAIN 1	CATHODE	COLLECTOR	CATHODE	7. DRAIN
8. DRAIN	8. DRAIN 1	CATHODE	COLLECTOR	CATHODE	8. CATHODE / DRAIN

0.05 (0.002)

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM*

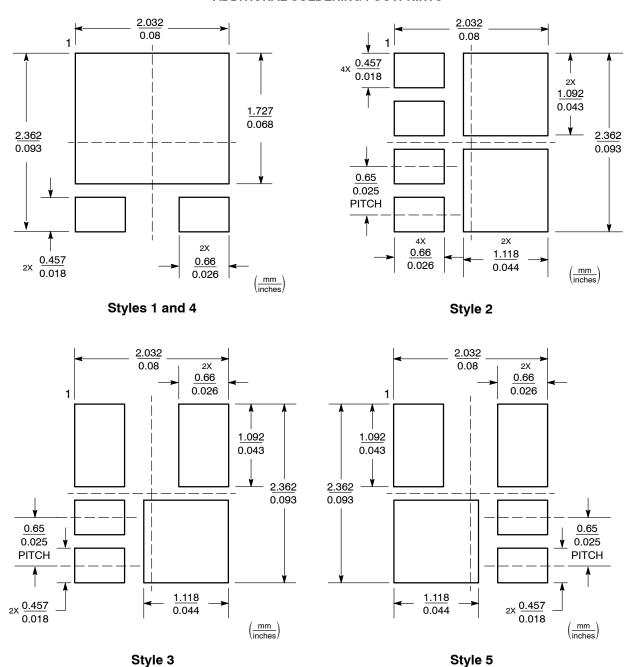
= Specific Device Code XXX

М = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.


OPTIONAL SOLDERING FOOTPRINTS ON PAGE 2

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ChipFET		PAGE 1 OF 2	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 19 MAY 2009

ADDITIONAL SOLDERING FOOTPRINTS*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ChipFET		PAGE 2 OF 2	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales