

# STM6519

### Single-pin, push button Smart Reset™

Datasheet - production data



#### Features

- Operating voltage range 2 V to 5.5 V
- Low supply current 1 μA
- Integrated test mode
- Single Smart Reset<sup>™</sup> push-button input with fixed extended reset setup delay (t<sub>SRC</sub>) from 0.5 s to 10 s in 0.5 s steps (typ.), option with internal input pull-up resistor
- Push-button controlled reset pulse duration
- Option 1: fully push-button controlled, no fixed or minimum pulse width guaranteed
- Option 2: defined output reset pulse duration (t<sub>REC</sub>), factory-programmed
- Single reset output
- Active-low or active-high
- Push-pull or open drain with optional pull-up resistor
- Fixed Smart Reset input logic voltage levels
- Operating temperature: -40 °C to 85 °C
- UDFN6 package 1.00 mm x 1.45 mm
- ECOPACK<sup>®</sup>2 (RoHS compliant, Halogen-Free)

### **Applications**

- Mobile phones, smartphones, PDAs
- e-books
- MP3 players
- Games
- Portable navigation devices
- Any application that requires delayed reset push-button response for improved system stability

This is information on a product in full production.

# Contents

| 1  | Dese | cription                                                 |
|----|------|----------------------------------------------------------|
|    | 1.1  | Test mode                                                |
|    | 1.2  | Logic diagram                                            |
|    | 1.3  | Pin connections                                          |
| 2  | Devi | ce overview                                              |
| 3  | Pin  | descriptions                                             |
|    | 3.1  | Power supply (V <sub>CC</sub> ) 8                        |
|    | 3.2  | Power-up sequence                                        |
|    | 3.3  | Ground (V <sub>SS</sub> )                                |
|    | 3.4  | Smart Reset input (SR) 8                                 |
|    | 3.5  | Reset output (RST)                                       |
|    | 3.6  | RST output undervoltage behavior (for open-drain option) |
| 4  | Турі | cal application diagrams 9                               |
| 5  | Timi | ng diagrams                                              |
| 6  | Турі | cal operating characteristics12                          |
| 7  | Max  | imum ratings                                             |
| 8  | DC a | and AC parameters                                        |
| 9  | Pacl | kage information                                         |
|    | 9.1  | UDFN6 package information 17                             |
|    | 9.2  | Tape and reel information 19                             |
| 10 | Part | numbering                                                |
| 11 | Pacl | kage marking information21                               |
| 12 | Revi | sion history                                             |
|    |      |                                                          |

DocID022111 Rev 7



# List of tables

| Table 1. | Signal names                          | 7 |
|----------|---------------------------------------|---|
| Table 2. | Absolute maximum ratings 1            | 4 |
| Table 3. | Operating and measurement conditions1 | 5 |
| Table 4. | DC and AC characteristics 1           | 6 |
| Table 5. | UDFN6 mechanical data1                | 8 |
| Table 6. | Ordering information scheme           | 0 |
| Table 7. | Package marking                       | 1 |
| Table 8. | Document revision history 2           | 2 |



# List of figures

| Figure 1.  | STM6519 logic diagram                                                                                    |
|------------|----------------------------------------------------------------------------------------------------------|
| Figure 2.  | UDFN6 pin connections (top view) 6                                                                       |
| Figure 3.  | STM6519 block diagram7                                                                                   |
| Figure 4.  | Typical application diagram - input, output and STM6519 device in one voltage domain9                    |
| Figure 5.  | Typical application diagram - STM6519 device in a different voltage domain than input                    |
|            | and output                                                                                               |
| Figure 6.  | Typical application diagram in different voltage domains - SR input in V <sub>BAT</sub> domain like      |
|            | V <sub>CC</sub> totally disables the test mode                                                           |
| Figure 7.  | RST output without t <sub>REC</sub> option                                                               |
| Figure 8.  | RST output with t <sub>REC</sub> option                                                                  |
| Figure 9.  | Supply current (I <sub>CC</sub> ) vs. temperature (T <sub>A</sub> )                                      |
| Figure 10. | Smart Reset delay (t <sub>SRC</sub> ) vs. temperature (T <sub>A</sub> ), t <sub>SRC</sub> = 4.0 s (typ.) |
| Figure 11. | Test mode entry voltage (V <sub>TEST</sub> ) vs. temperature (T <sub>A</sub> )                           |
| Figure 12. | Initial test mode time (t <sub>SRC-INI</sub> ) vs. temperature (T <sub>A</sub> )                         |
| Figure 13. | UDFN6 package outline                                                                                    |
| Figure 14. | UDFN6 recommended footprint                                                                              |
| Figure 15. | Carrier tape                                                                                             |
| Figure 16. | Pin 1 orientation                                                                                        |
| Figure 17. | Package marking (top view) 21                                                                            |
|            |                                                                                                          |



### 1 Description

The Smart Reset<sup>TM</sup> devices provide a useful feature which ensures that inadvertent short reset push-button closures do not cause system resets. This is done by implementing an extended Smart Reset input delay time ( $t_{SRC}$ ), which ensures a safe reset and eliminates the need for a specific dedicated reset button.

This reset configuration provides versatility and allows the application to distinguish between a software generated interrupt and a hard system reset. When the input push-button is connected to the microcontroller interrupt input, and is closed for a short time, the processor can only be interrupted. If the system still does not respond properly, continuing to keep the push-buttons closed for the extended setup time  $t_{SRC}$  causes a hard reset of the processor through the reset output.

The STM6519 has one Smart Reset input  $(\overline{SR})$  with preset delayed Smart Reset setup time ( $t_{SRC}$ ). The reset output ( $\overline{RST}$ ) is asserted after the Smart Reset input is held active for the selected  $t_{SRC}$  delay time. The RST output remains asserted either until the  $\overline{SR}$  input goes to inactive logic level (i.e. neither fixed nor minimum reset pulse width is set) or the output reset pulse duration is fixed for  $t_{REC}$  (i.e. factory-programmed). The device fully operates over a broad  $V_{CC}$  range from 2.0 V to 5.5 V.

#### 1.1 Test mode

After pulling  $\overline{SR}$  up to  $V_{TEST}$  ( $V_{CC}$  + 1.4 V) or above, the counter starts to count the initial shortened  $t_{SRC-INI}$  (42 ms, typ.). After  $t_{SRC-INI}$  expires, the RST output either goes down for  $t_{REC}$  (if  $t_{REC}$  option is used) or stays low as long as overvoltage on  $\overline{SR}$  is detected (if  $t_{REC}$  option is not used). This is feedback, and the user only knows that the device is locked in test mode. Each time the  $\overline{SR}$  input is connected to ground in test mode, a shortened  $t_{SRC-SHORT}$  ( $t_{SRC}/128$ ) is used instead of regular  $t_{SRC}$  (0.5 s - 10 s). In this way the device can be quickly tested without repeating test mode triggering. Return to normal mode is possible by performing a new startup of the device (i.e.  $V_{CC}$  goes to 0 V and back to its original state).

The advantages of this solution are its high glitch immunity, user feedback regarding entry into test mode, and testability within the full  $V_{CC}$  range.



## 1.2 Logic diagram



#### 1.3 Pin connections



1. Not connected (not bonded); should be connected to  $V_{\ensuremath{\mathsf{SS}}}.$ 



# 2 Device overview

|            |                 |                | -                                                                                                                                                 |
|------------|-----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin number | Name            | Туре           | Description                                                                                                                                       |
| 1          | RST             | Output         | Reset output, active-low, open drain.                                                                                                             |
| 2          | $V_{SS}$        | Supply ground  | Ground                                                                                                                                            |
| 3          | SR              | Input          | Smart Reset input, active-low.                                                                                                                    |
| 4          | V <sub>CC</sub> | Supply voltage | Positive supply voltage for the device. A 0.1 $\mu F$ decoupling ceramic capacitor is recommended to be connected between V_{CC} and V_{SS} pins. |
| 5          | NC              | -              | Not connected (not bonded); should be connected to $V_{SS}.$                                                                                      |
| 6          | NC              | -              | Not connected (not bonded); should be connected to $V_{SS}.$                                                                                      |

#### Table 1. Signal names

#### Figure 3. STM6519 block diagram





### 3 Pin descriptions

#### 3.1 Power supply (V<sub>CC</sub>)

This pin is used to provide power to the Smart Reset device. A 0.1  $\mu F$  ceramic decoupling capacitor is recommended to be connected between the V<sub>CC</sub> and V<sub>SS</sub> pins, as close to the STM6519 device as possible.

#### 3.2 Power-up sequence

In normal mode, if different input side ( $\overline{SR}$ ) and V<sub>CC</sub> voltage domains are used, power-on sequence must avoid meeting the test mode entry condition to avoid inadvertent test mode entry: there should not be logic high present on the  $\overline{SR}$  input before the V<sub>CC</sub> power-up. However V<sub>CC</sub> and V( $\overline{SR}$ ) rising at the same time is OK (e.g. if both are in the same voltage domain), the device will then safely start into normal operating mode, with  $\overline{RST}$  output inactive (in High-Z mode for open-drain option).

### 3.3 Ground (V<sub>SS</sub>)

This is the ground pin for the device.

### 3.4 Smart Reset input (SR)

Push-button Smart Reset input, active-low with optional pull-up resistor.  $\overline{SR}$  input needs to be asserted for at least t<sub>SRC</sub> to assert the reset output (RST).

By connecting a voltage higher than  $V_{CC}$  + 1.4 V to the  $\overline{SR}$  input the device enters test mode (see Section 1: Description on page 5 for more information).

### 3.5 Reset output (RST)

RST is active-low or active-high, open drain or push-pull reset output with optional internal pull-up resistor.

Output reset pulse width is optional as follows:

- Neither fixed nor minimum output reset pulse duration (releasing the push-button while reset output is active, causes the output to de-assert)
- Fixed, factory-programmed output reset pulse duration for t<sub>REC</sub> independent on Smart Reset input state.

## 3.6 **RST** output undervoltage behavior (for open-drain option)

High-Z on RST output below the specified operating voltage range is guaranteed at  $V_{CC}$  power-on or in case that valid  $V_{CC}$  dropped while the device was idle, i.e. while both output and input were inactive.



# 4 Typical application diagrams



Figure 4. Typical application diagram - input, output and STM6519 device in one voltage domain





 Open-drain RST output type and fixed SR input logic threshold allows to use the device in different voltage domains. To prevent entering test mode by creating a condition V(SR) > V<sub>CC</sub> + 1.1 V typ., V<sub>CC</sub> should be powered up before or together with voltage on the SR input.





Figure 6. Typical application diagram in different voltage domains - SR input in V<sub>BAT</sub> domain like V<sub>CC</sub> totally disables the test mode



# 5 Timing diagrams



Figure 7.  $\overline{\text{RST}}$  output without  $t_{\text{REC}}$  option

1.  $V_{CC}$  should be powered up before or together with voltage on the  $\overline{SR}$  input to prevent entering test mode by creating a condition V(SR) > V<sub>CC</sub> +1.1 V typ.



Figure 8.  $\overline{\text{RST}}$  output with  $t_{\text{REC}}$  option

 V<sub>CC</sub> should be powered up before or together with voltage on the SR input to prevent entering test mode by creating a condition V(SR) > V<sub>CC</sub> +1.1 V typ.

#### **Typical operating characteristics** 6









DocID022111 Rev 7





Figure 11. Test mode entry voltage ( $V_{TEST}$ ) vs. temperature ( $T_A$ )



Figure 12. Initial test mode time  $(t_{SRC-INI})$  vs. temperature  $(T_A)$ 



DocID022111 Rev 7

# 7 Maximum ratings

Stressing the device above the rating listed in *Table 2: Absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in *Table 3: Operating and measurement conditions* of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics<sup>™</sup> SURE program and other relevant guality documents.

| Symbol                          | Parameter                                                                           | Value       | Unit |
|---------------------------------|-------------------------------------------------------------------------------------|-------------|------|
| T <sub>STG</sub>                | Storage temperature (V <sub>CC</sub> off)                                           | -55 to 150  | °C   |
| T <sub>SLD</sub> <sup>(1)</sup> | Lead solder temperature for 10 seconds                                              | 260         | °C   |
| V <sub>IO</sub>                 | Input or output voltage                                                             | -0.3 to 5.5 | V    |
| V <sub>CC</sub>                 | Supply voltage                                                                      | -0.3 to 7   | V    |
| ESD                             |                                                                                     |             |      |
| V <sub>HBM</sub>                | Electrostatic discharge protection, human body model (JESD22-<br>A114-B level 2)    | 2           | kV   |
| V <sub>RCDM</sub>               | Electrostatic discharge protection, charged device model, all pins                  | 1           | kV   |
| V <sub>MM</sub>                 | Electrostatic discharge protection, machine model, all pins (JESD22-A115-A level A) | 200         | V    |
|                                 | Latch-up (V <sub>CC</sub> pin, $\overline{SR}$ reset input pin)                     | EIA/JESD78  |      |

1. Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 seconds.



## 8 DC and AC parameters

This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in *Table 4: DC and AC characteristics* are derived from tests performed under the measurement conditions summarized in *Table 3: Operating and measurement conditions*. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.

| Symbol                          | Parameter                                  | Value                                 | Unit |
|---------------------------------|--------------------------------------------|---------------------------------------|------|
| V <sub>CC</sub>                 | Supply voltage                             | 2.0 to 5.5                            | V    |
| T <sub>A</sub>                  | Ambient operating temperature              | -40 to 85                             | °C   |
| t <sub>R</sub> , t <sub>F</sub> | Input rise and fall times                  | ≤5                                    | ns   |
|                                 | Input pulse voltages                       | 0.2 to 0.8 V <sub>CC</sub>            | V    |
|                                 | Input and output timing reference voltages | 0.3 to 0.7 $\mathrm{V}_{\mathrm{CC}}$ | V    |



| Symbol                 | Parameter                                          | Test conditions <sup>(1)</sup>                                                                | Min.                   | Typ. <sup>(2)</sup>             | Max.                   | Unit |
|------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------|---------------------------------|------------------------|------|
| V <sub>CC</sub>        | Supply voltage                                     |                                                                                               | 2.0                    |                                 | 5.5                    | V    |
| I <sub>CC</sub>        | Supply current                                     | $\overline{SR} = V_{CC}$ , $t_{REC}$ and $t_{SRC}$<br>counter is not running                  |                        | 0.4                             | 1.0                    | μA   |
|                        |                                                    | $V_{CC} \ge 4.5 \text{ V}$ , sinking 3.2 mA                                                   |                        |                                 | 0.3                    | V    |
| V <sub>OL</sub>        | Reset output voltage low                           | $V_{CC} \ge 3.3 \text{ V}$ , sinking 2.5 mA                                                   |                        |                                 | 0.3                    | V    |
|                        |                                                    | $V_{CC} \ge 2.0 \text{ V}$ , sinking 1 mA                                                     |                        |                                 | 0.3                    | V    |
|                        |                                                    |                                                                                               | 0.85                   | 1.28                            | 1.71                   | ms   |
| +                      | Reset timeout delay,                               | (device option)                                                                               | 66                     | 100                             | 134                    | ms   |
| t <sub>REC</sub>       | factory-programmed                                 |                                                                                               | 140                    | 210                             | 280                    | ms   |
|                        |                                                    |                                                                                               | 240                    | 360                             | 480                    | ms   |
| R <sub>PUO</sub>       | Internal out <u>put</u> pull-up<br>resistor on RST | (device option) 6                                                                             |                        | 65                              |                        | kΩ   |
| ILO                    | Output leakage current                             | V <sub>RST</sub> = 5.5 V, open drain<br>device option without output -0.1<br>pull-up resistor |                        | 0.1                             | μA                     |      |
| Smart Rese             | t                                                  |                                                                                               | l                      |                                 |                        |      |
|                        | One of Decet delay                                 | T <sub>A</sub> = -40 to +85 °C                                                                | 0.8 x t <sub>SRC</sub> |                                 | 1.2 x t <sub>SRC</sub> | _    |
| t <sub>SRC</sub>       | Smart Reset delay                                  | T <sub>A</sub> = 25 °C                                                                        | 0.9 x t <sub>SRC</sub> | t <sub>SRC</sub> <sup>(3)</sup> | 1.1 x t <sub>SRC</sub> | S    |
| V <sub>IL</sub>        | SR input voltage low                               |                                                                                               | V <sub>SS</sub> -0.3   |                                 | 0.3                    | V    |
| V <sub>IH</sub>        | SR input voltage high                              |                                                                                               | 0.85                   |                                 | 5.5                    | V    |
| R <sub>PUI</sub>       | Internal inp <u>ut p</u> ull-up<br>resistor on SR  | (device option)                                                                               |                        | 65                              |                        | kΩ   |
| I <sub>LEAK</sub>      | SR input leakage current                           | ent device option without input -0.1                                                          |                        | 0.1                             | μA                     |      |
|                        | Input glitch immunity                              |                                                                                               |                        | t <sub>SRC</sub>                |                        | s    |
| Test mode              | 1                                                  | 1                                                                                             | 1                      | 1                               |                        |      |
| V <sub>TEST</sub>      | Test mode entry voltage                            |                                                                                               | V <sub>CC</sub> +0.9   | V <sub>CC</sub> + 1.1           | V <sub>CC</sub> + 1.4  | V    |
| t <sub>SRC-INI</sub>   | Initial test mode time                             |                                                                                               | 28                     | 42                              | 56                     | ms   |
| t <sub>SRC-SHORT</sub> | Shortened Smart Reset delay                        |                                                                                               |                        | t <sub>SRC</sub> / 128          |                        | ms   |

| Table 4. DC and AC c | haracteristics |
|----------------------|----------------|
|----------------------|----------------|

1. Valid for ambient operating temperature  $T_A$  = -40 to 85 °C,  $V_{CC}$  = 2.0 to 5.5 V.

2. Typical values are at 25  $^\circ\text{C}$  and V\_{CC} = 3.3 V unless otherwise noted.

3. Factory-programmable in the range of 0.5 s to 10 s typ. in 0.5 s steps.

57

# 9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

#### 9.1 UDFN6 package information



#### Figure 13. UDFN6 package outline



|        |      |      | Dir  | nensions |        |        |                     |  |  |  |
|--------|------|------|------|----------|--------|--------|---------------------|--|--|--|
| Symbol | (mm) |      |      | (inches) |        |        | Note <sup>(1)</sup> |  |  |  |
|        | Min. | Тур. | Max. | Min.     | Тур.   | Max.   |                     |  |  |  |
| Α      | 0.50 | 0.55 | 0.60 | 0.0197   | 0.0217 | 0.0236 |                     |  |  |  |
| A1     | 0.00 | 0.02 | 0.05 | 0.000    | 0.0008 | 0.0020 |                     |  |  |  |
| b      | 0.18 | 0.25 | 0.30 | 0.0071   | 0.0098 | 0.0118 |                     |  |  |  |
| D      | 1.40 | 1.45 | 1.50 | 0.0551   | 0.0571 | 0.0591 |                     |  |  |  |
| Е      | 0.95 | 1.00 | 1.05 | 0.0374   | 0.0394 | 0.0413 |                     |  |  |  |
| е      | 0.45 | 0.50 | 0.55 | 0.0177   | 0.0197 | 0.0217 |                     |  |  |  |
| k      | 0.20 |      |      | 0.0079   |        |        |                     |  |  |  |
| L      | 0.30 | 0.35 | 0.40 | 0.0118   | 0.0138 | 0.0157 |                     |  |  |  |

| Table 5. UDFN6 mechanical |
|---------------------------|
|---------------------------|

1. Package outline exclusive of any mold flashes dimensions and metal burrs.



#### Figure 14. UDFN6 recommended footprint



## 9.2 Tape and reel information



Figure 15. Carrier tape

1. 10-sprocket hole pitch cumulative tolerance  $\pm 0.20$ .

Figure 16. Pin 1 orientation





# 10 Part numbering

|                                                   | Table 6.                                                    | Ordering in        | formatio | n schen | ne |    |   |   |
|---------------------------------------------------|-------------------------------------------------------------|--------------------|----------|---------|----|----|---|---|
| Example:                                          | STM6519                                                     | Α                  | н        | Α       | R  | UB | 6 | F |
| Device type                                       |                                                             |                    |          |         |    |    |   |   |
| STM6519                                           |                                                             |                    |          |         |    |    |   |   |
| Reset (V <sub>CC</sub> monit                      | oring threshold) voltag                                     | e V <sub>RST</sub> |          |         |    |    |   |   |
| A = no $V_{CC}$ monito                            | ring feature                                                |                    |          |         |    |    |   |   |
| Smart Reset setu                                  | p delay (t <sub>SRC</sub> ) <sup>(1)</sup>                  |                    |          |         |    |    |   |   |
| C = factory program                               | mmable t <sub>SRC</sub> = 1.5 s (typ                        | .)                 |          |         |    |    |   |   |
| H = factory program                               | nmable t <sub>SRC</sub> = 4.0 s (typ                        | .)                 |          |         |    |    |   |   |
| L = factory program                               | nmable t <sub>SRC</sub> = 6.0 s (typ.                       | )                  |          |         |    |    |   |   |
| P = factory programmable $t_{SRC}$ = 7.5 s (typ.) |                                                             |                    |          |         |    |    |   |   |
| U = factory program                               | mmable t <sub>SRC</sub> = 10.0 s (ty                        | p.)                |          |         |    |    |   |   |
| Inputs, outputs ty                                | pe <sup>(2)</sup>                                           |                    |          |         |    |    |   |   |
|                                                   | input wi <u>th no</u> pull-up,<br>n drain RST output with ı | no pull-up         |          |         |    |    |   |   |
| B = active-low SR<br>active-low oper              | input wi <u>th p</u> ull-up,<br>n drain RST output with r   | no pull-up         |          |         |    |    |   |   |
| Reset timeout per                                 | riod (t <sub>REC</sub> )                                    |                    |          |         |    |    |   |   |
| A = factory program                               | nmable t <sub>REC</sub> = 210 ms (t                         | yp.)               |          |         |    |    |   |   |
| B = factory program                               | nmable t <sub>REC</sub> = 360 ms (t                         | yp.)               |          |         |    |    |   |   |
|                                                   | nmable t <sub>REC</sub> = 1.28 ms (                         |                    |          |         |    |    |   |   |
|                                                   | nmable t <sub>REC</sub> = 100 ms (t                         |                    |          |         |    |    |   |   |
| R = push-button co                                | ontrolled (no defined t <sub>REC</sub>                      | ;)                 |          |         |    |    |   |   |
| Package                                           |                                                             |                    |          |         |    |    |   |   |
| UB = UDFN-6L                                      |                                                             |                    |          |         |    |    |   |   |
| Temperature rang                                  | e                                                           |                    |          |         |    |    |   |   |
| 6 = -40 °C to 85 °C                               | ;                                                           |                    |          |         |    |    |   |   |
| Shipping method                                   |                                                             |                    |          |         |    |    |   |   |
| F = tape and reel                                 |                                                             |                    |          |         |    |    |   |   |

 Smart Reset delay (t<sub>SRC</sub>) is available from 0.5 s to 10 s in 0.5 s steps (typ.). Minimum order quantities may apply. Contact local sales office for availability.

2. Push-pull reset output type also available (active-low or active-high). SR input and open drain reset output available with optional pull-up resistor. Minimum order quantities may apply. Contact local sales office for availability.



# 11 Package marking information

| Part number     | t <sub>SRC</sub> (s) | Smart Reset<br>inputs <sup>(1)</sup> | Output<br>type <sup>(2)</sup> | t <sub>REC</sub><br>option <sup>(3)</sup> | Package | Topmark |
|-----------------|----------------------|--------------------------------------|-------------------------------|-------------------------------------------|---------|---------|
| STM6519ACARUB6F | 1.5                  | AL                                   | OD, AL                        | No t <sub>REC</sub>                       | UDFN6   | CA      |
| STM6519AHARUB6F | 4.0                  | AL                                   | OD, AL                        | No t <sub>REC</sub>                       | UDFN6   | HA      |
| STM6519ALARUB6F | 6.0                  | AL                                   | OD, AL                        | No t <sub>REC</sub>                       | UDFN6   | LA      |
| STM6519APAAUB6F | 7.5                  | AL                                   | OD, AL                        | 210 ms                                    | UDFN6   | PB      |
| STM6519APARUB6F | 7.5                  | AL                                   | OD, AL                        | No t <sub>REC</sub>                       | UDFN6   | PA      |
| STM6519APBBUB6F | 7.5                  | AL + pull-up                         | OD, AL                        | 360 ms                                    | UDFN6   | PC      |
| STM6519AUARUB6F | 10.0                 | AL                                   | OD, AL                        | No t <sub>REC</sub>                       | UDFN6   | UA      |

#### Table 7. Package marking

1. AL = active-low.

2. OD = open drain, AL = active-low.

3. No  $t_{REC}$  = push-button controlled reset pulse width, any other value represents typical value of  $t_{REC}$ .



#### Figure 17. Package marking (top view)



# 12 Revision history

| Date        | Revision | Changes                                                                                                                                                                                          |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12-Aug-2011 | 1        | Initial release.                                                                                                                                                                                 |
| 22-Sep-2011 | 2        | Updated Figure 5, Table 4, Table 7 and Table 8.                                                                                                                                                  |
| 07-Oct-2011 | 3        | Removed label "Preliminary data".                                                                                                                                                                |
| 27-Oct-2011 | 4        | Updated Figure 3 and Table 1.                                                                                                                                                                    |
| 13-Jun-2012 | 5        | Updated Features, Table 4, title of Section 9.                                                                                                                                                   |
| 17-Jan-2013 | 6        | Moved Figure 4 below Table 1.<br>Added Section 3.2, Section 3.6, Figure 6 and Figure 7.<br>Updated title of Figure 5.<br>Updated Figure 8 and Figure 9 (added notes and minor<br>modifications). |
| 29-Jun-2016 | 7        | Updated datasheet title<br>Removed UDFN4 package from datasheet                                                                                                                                  |

| Table 8. Document revision history | Table 8. | Document | revision | history |
|------------------------------------|----------|----------|----------|---------|
|------------------------------------|----------|----------|----------|---------|



#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved



DocID022111 Rev 7