STP8N90K5

N-channel 900 V, 0.60 Ω typ., 8 A MDmesh™ K5 Power MOSFET in a TO-220 package

Datasheet - production data

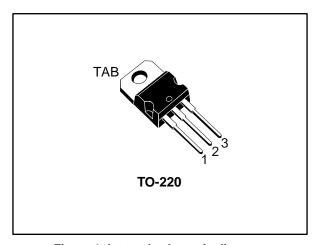
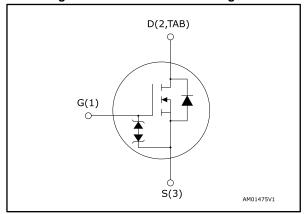



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STP8N90K5	900 V	0.68 Ω	8 A

- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing	
STP8N90K5	8N90K5	TO-220	Tube	

Contents STP8N90K5

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	TO-220 type A package information	10
5	Revisio	n history	12

STP8N90K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	±30	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	8	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	5	Α
I _D ⁽²⁾	Drain current pulsed	32	Α
P _{TOT}	Total dissipation at T _C = 25 °C	130	W
dv/dt (3)	Peak diode recovery voltage slope	4.5	\//n n
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
TJ	Operating junction temperature range	FF to 1F0	°C
T _{stg}	Storage temperature range	-55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.96	°C/W
R _{thj-amb}	R _{thj-amb} Thermal resistance junction-ambient		°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{J} max)	2.7	А
Eas	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	250	mJ

⁽¹⁾Limited by maximum junction temperature.

⁽²⁾Pulse width limited by safe operating area

 $^{^{(3)}}I_{SD} \le 8$ A, di/dt ≤ 100 A/ μ s; V_{DS} peak $\le V_{(BR)DSS}$

 $^{^{(4)}}V_{DS} \le 720 \text{ V}$

Electrical characteristics STP8N90K5

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	900			V
		V _{GS} = 0 V, V _{DS} = 900 V			1	μΑ
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 900 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			50	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 4 \text{ A}$		0.60	0.68	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	426	•	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	41	ı	pF
Crss	Reverse transfer capacitance	V 00 = V	-	1.2	ı	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 720 V,	1	75	ı	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	V _{GS} = 0 V	ı	28	ı	pF
Rg	Intrinsic gate resistance	f = 1 MHz , I _D = 0 A	-	7	•	Ω
Qg	Total gate charge	$V_{DD} = 720 \text{ V}, I_D = 8 \text{ A},$	-	11	ı	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	3.5	•	nC
Q_{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	4.8	-	nC

Notes:

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}$ Time related is defined as a constant equivalent capacitance giving the same charging time as Coss when V_{DS} increases from 0 to 80% V_{DSS}

 $^{^{(2)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as Coss when V_{DS} increases from 0 to 80% V_{DSS}

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 450 V, I _D = 4 A,	ı	14.7	1	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	ı	13.2	ı	ns
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	36.4	-	ns
t f	Fall time	and Figure 19: "Switching time waveform")	-	13.5	-	ns

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		8	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		1		32	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 8 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 8 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	371		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}$	-	4.27		μC
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	23		А
t _{rr}	Reverse recovery time	I _{SD} = 8 A, di/dt = 100 A/µs,	-	582		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	5.73		μC
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	19.7		Α

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
V (BR)GSO	Gate-source breakdown voltage	I_{GS} = ± 1mA, I_{D} = 0A	30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

⁽¹⁾Pulse width limited by safe operating area

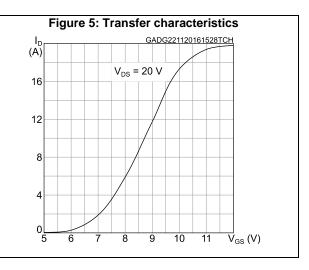
⁽²⁾Pulsed: pulse duration = 300 μs, duty cycle 1.5%

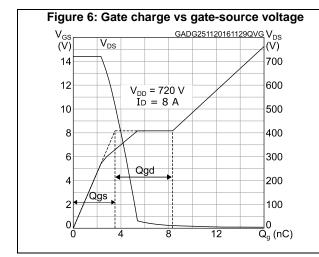
 $\overrightarrow{V}_{DS}\left(V\right)$

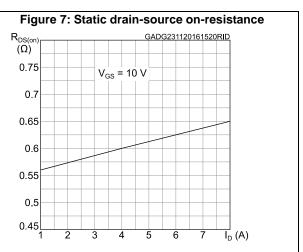
2.1 Electrical characteristics (curves)

Figure 2: Safe operating area $\begin{array}{c|c} & & & & \\ I_D & & & & \\ \hline (A) & & & & \\ \hline (A) & & & \\ \hline (D) & & & \\ \hline (A) & & & \\ \hline (A) & & & \\ \hline (D) & & & \\ \hline (A) & & & \\ \hline (D) & & & \\ \hline (D)$

Figure 3: Thermal impedance $\delta = 0.5$ $Z_{th} = k R_{thJ-c}$ 0.05 10⁻¹ $\delta = t_{\rm p}/\tau$ 0.02 0.01 SINGLE PULSE 10^{-2} 10^{-2} 10^{-5} 10-4 10^{-3}


10¹


10²


10³

10⁻¹

10⁰

STP8N90K5 Electrical characteristics

Figure 8: Capacitance variations $C \\ (pF)$ 10^{3} 10^{2} f = 1 MHz C_{lss} 10^{0} 10^{-1} 10^{0} 10^{-1} 10^{0} 10^{1} 10^{2} $V_{DS}(V)$

Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GADG241120160846VTH 1.4 1.2 0.8 $I_D = 100 \, \mu A$ 0.6 0.4 0.2 -75 -25 25 75 125 T_J (℃)

Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} (norm.)

2.6

2.2

1.8

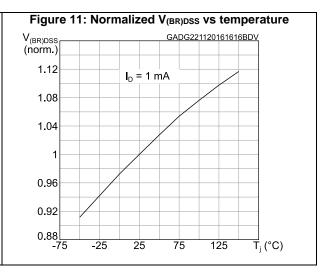
1.4

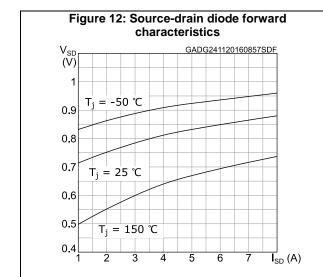
1

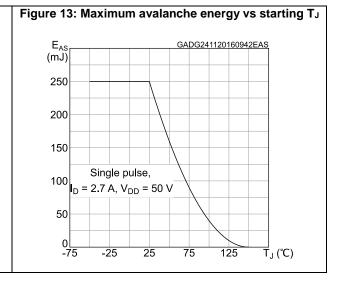
0.6

0.2

-75

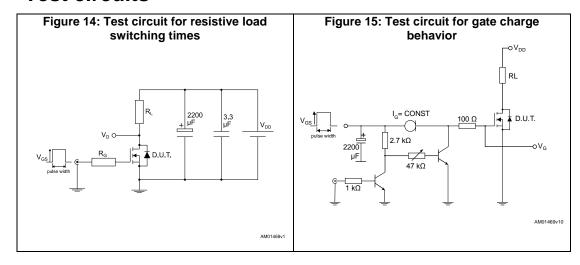

-25

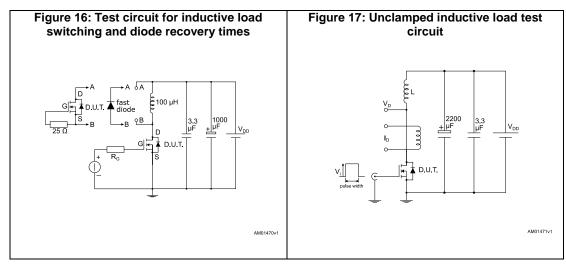

25

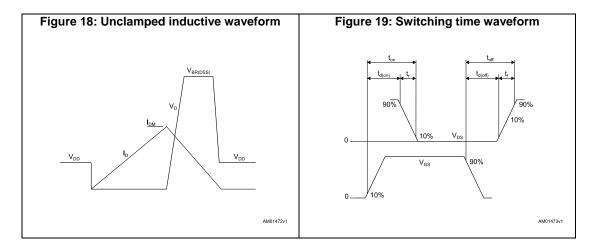

75

125

T_J (°C)







Test circuits STP8N90K5

3 Test circuits

STP8N90K5 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220 type A package information

Figure 20: TO-220 type A package outline

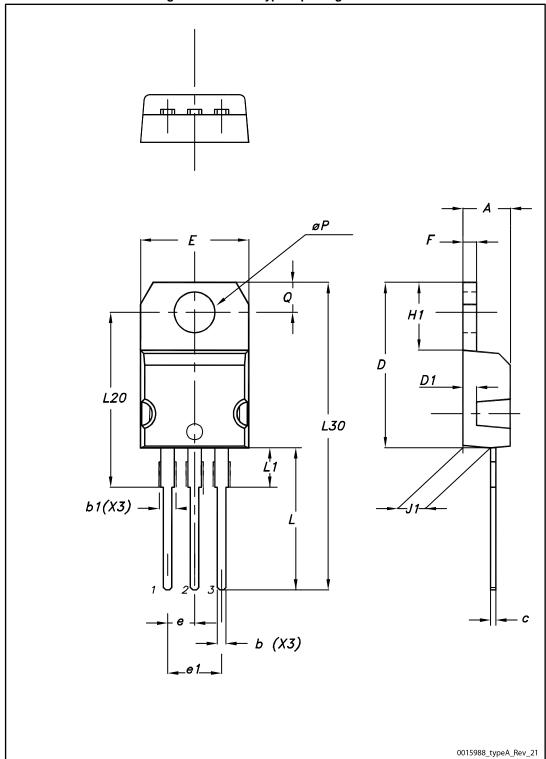


Table 10: TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

Revision history STP8N90K5

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
28-Nov-2016	1	First release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved