Digital Attenuator 15.0 dB, 4-Bit, TTL Driver, DC-4.0 GHz Rev. V5 ### **Features** - Attenuation: 1 dB Steps to 15 dB - Low DC Power Consumption - · Small Footprint, JEDEC Package - Integral TTL Driver - 50 Ohm Impedance - · Test Boards Available - Tape and Reel Packaging Available - Lead-Free CSP-1 Package - 100% Matte Tin Plating over Copper - Halogen-Free "Green" Mold Compound - 260°C Reflow Compatible - RoHS* Compliant Version of AT90-0413 ### **Description** M/A-COM's MAADCC0006 is a GaAs FET 4-Bit digital attenuator with integral driver. Step size is 1 dB providing a 15 dB attenuation range. This device is in an PQFN plastic surface mount package. The MAADCC0006 is suited for applications where accuracy, fast speed, low power consumption and low costs are required. ### **Ordering Information** | Part Number | Package | |---------------|-------------------| | MAADCC0006 | Bulk Packaging | | MAADCC0006TR | 1000 piece reel | | MAADCC0006-TB | Sample Test Board | Note: Reference Application Note M513 for reel size information. # * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC. ## **Schematic with Off-Chip Components** ## Pin Configuration² | Pin No. | Function | Pin No. | Function | |---------|------------------|---------|------------------| | 1 | GND | 17 | N/C | | 2 | C8 | 18 | N/C | | 3 | C4 | 19 | N/C | | 4 | C2 | 20 | N/C | | 5 | C1 | 21 | N/C | | 6 | GND | 22 | N/C | | 7 | GND | 23 | N/C | | 8 | N/C | 24 | N/C | | 9 | N/C | 25 | N/C | | 10 | N/C ¹ | 26 | GND | | 11 | GND | 27 | RF2 | | 12 | RF1 | 28 | GND | | 13 | GND | 29 | N/C ¹ | | 14 | N/C | 30 | Vee | | 15 | N/C | 31 | N/C | | 16 | N/C | 32 | +Vcc | - 1. Pins 10 & 29 must be isolated. - The exposed pad centered on the package bottom must be connected to RF and DC ground. (For PQFN Packages) ## Digital Attenuator 15.0 dB, 4-Bit, TTL Driver, DC-4.0 GHz Rev. V5 ## Electrical Specifications: $T_A = 25$ °C | Parameter | Test Conditions | Frequency | Units | Min | Тур | Max | |--|---|--------------------------|----------------|------------|----------------|--| | Insertion Loss | _ | DC-2.5 GHz
DC-4.0 GHz | dB
dB | _ | 2.0
2.5 | 2.5
3.0 | | Attenuation
Accuracy | Individual Bits or
Combination of Bits | DC-2.5 GHz
DC-4.0 GHz | dB
dB | _ | _ | ±(0.3+4% of atten setting)
±(0.3+6% of atten setting) | | VSWR | Full Attenuation Range | DC-2.5 GHz
DC-4.0 GHz | Ratio
Ratio | _ | 1.5:1
1.8:1 | 1.8:1
2.0:1 | | Switching Speed | 50% Cntl to 90%/10% RF
10% to 90% or 90% to 10% | _ | ns
ns | _ | 25
4 | _ | | 1 dB Compression | _ | 50 MHz
0.5-4.0 GHz | dB
dB | _ | +21
+27 | | | Input IP ₃ | Two-tone Inputs up to +5 dBm | 50 MHz
0.5-4.0 GHz | dB
dB | _ | +35
+48 | _ | | +Vcc | _ | _ | V | 4.75 | 5.0 | 5.25 | | -Vee | _ | _ | V | -8.0 | -5.0 | -4.75 | | V _{IL}
V _{IH} | LOW-level input voltage
HIGH-level input voltage | = | V
V | 0.0
2.0 | _ | 0.8
5.0 | | lin (Input Leakage Current) | Vin = V _{CC} or GND | _ | uA | -1.0 | _ | 1.0 | | Icc
(Quiescent Supply Current) | Vcntrl = V _{CC} or GND | _ | uA | _ | 250 | 400 | | Δlcc
(Additional Supply Current
Per TTL Input Pin) | V _{CC} = Max, Vcntrl = V _{CC} - 2.1 V | _ | mA | _ | _ | 1.5 | | lee | VEE min to max, Vin = V_{IL} or V_{IH} | _ | mA | -1.0 | -0.2 | _ | | Thermal Resistance θjc | _ | _ | °C/W | _ | 15 | _ | ## Absolute Maximum Ratings 3,4 | Parameter | Absolute Maximum | | |---|---------------------------------------|--| | Max. Input Power
0.05 GHz
0.5 - 4.0 GHz | +27 dBm
+34 dBm | | | V _{CC} | -0.5V ≤ V _{CC} ≤ +7.0V | | | V _{EE} | -8.5V ≤ V _{EE} ≤ +0.5V | | | V _{CC} - V _{EE} | $-0.5V \le V_{CC} - V_{EE} \le 14.5V$ | | | Vin ⁵ | -0.5V ≤ Vin ≤ V _{CC} + 0.5V | | | Operating Temperature | -40°C to +85°C | | | Storage Temperature | -65°C to +125°C | | - Exceeding any one or combination of these limits may cause permanent damage to this device. - M/A-COM does not recommend sustained operation near these survivability limits. - Standard CMOS TTL interface, latch-up will occur if logic signal applied prior to power supply. ## Recommended PCB Configuration⁶ 6. Application Note S2083 is available on line at www.macom.com 2 ## Digital Attenuator 15.0 dB, 4-Bit, TTL Driver, DC-4.0 GHz Rev. V5 ### **Handling Procedures** Please observe the following precautions to avoid damage: ## **Static Sensitivity** Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices. ### **Moisture Sensitivity** The MSL rating for this part is defined as Level 2 per IPC/JEDEC J-STD-020. Parts shall be stored and/or baked as required for MSL Level 2 parts. ## **Truth Table (Digital Attenuator)** | C | 8 | C4 | C2 | C1 | Attenuation | |---|---|----|----|----|-----------------| | | 0 | 0 | 0 | 0 | Loss, Reference | | | 0 | 0 | 0 | 1 | 1.0 dB | | | 0 | 0 | 1 | 0 | 2.0 dB | | | 0 | 1 | 0 | 0 | 4.0 dB | | | 1 | 0 | 0 | 0 | 8.0 dB | | | 1 | 1 | 1 | 1 | 15.0 dB | 0 = TTL Low. 1 = TTL High ## **Typical Performance Curves** #### Reference Loss vs. Frequency #### Attenuation - 1 dB Bit vs. Frequency ### Attenuation - 2 dB Bit vs. Frequency #### Attenuation - 4dB Bit vs. Frequency Digital Attenuator 15.0 dB, 4-Bit, TTL Driver, DC-4.0 GHz Rev. V5 ## **Typical Performance Curves** #### Attenuation - 8 dB Bit vs. Frequency #### Attenuation - 15 dB Attenuation vs. Frequency VSWR vs. Frequency Reference Loss State VSWR - 1 dB Bit vs. Frequency VSWR - 2 dB Bit vs. Frequency VSWR - 4 dB Bit vs. Frequency Digital Attenuator 15.0 dB, 4-Bit, TTL Driver, DC-4.0 GHz Rev. V5 ### **Typical Performance Curves** #### VSWR - 8 dB Bit vs. Frequency #### VSWR - 15 dB Attenuation vs. Frequency # CSP-1, Lead-Free 4 x 6 mm, 32-lead PQFN[†] [†] Reference Application Note M538 for lead-free solder reflow recommendations. Digital Attenuator 15.0 dB, 4-Bit, TTL Driver, DC-4.0 GHz Rev. V5 ### M/A-COM Technology Solutions Inc. All rights reserved. Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document. THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS. MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.