

 1
Product Page

Document Feedback Copyright © 2014 Future Technology Devices International Limited

FT800 Series Programmer Guide

Document Reference No.: FT_000793

Version 2.0

Issue Date: 1 July 2014

This document is a programmer guide for the FT800 series chip. This guide

details the chip features and procedures for use. For FT801 specific features
and procedures, please see the chapter FT801.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20FT800%20Programmers%20Guide%20Version%201.0

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 2

Table of Content

1 Introduction ... 11

1.1 Overview ... 11

1.2 Scope .. 11

1.3 API reference definitions .. 11

2 Programming Model 13

2.1 General Software architecture .. 13

2.2 Display configuration and initialization ... 14

2.2.1 Horizontal timing ... 15

2.2.2 Vertical timing .. 16

2.2.3 Signals updating timing control ... 16

2.2.4 Timing example: 480x272 at 60Hz .. 17

2.2.5 Initialization Sequence ... 18

2.3 Sound Synthesizer .. 19

2.4 Audio playback ... 19

2.5 Graphics routines .. 21

2.5.1 Getting started .. 21

2.5.2 Coordinate Plane ... 22

2.5.3 Drawing pattern .. 23

2.5.4 Writing display lists ... 27

2.5.5 Bitmap transformation matrix ... 28

2.5.6 Color and transparency .. 28

2.5.7 VERTEX2II and VERTEX2F .. 29

2.5.8 Screenshot ... 31

2.5.9 Performance ... 31

3 Register Description 33

3.1 Graphics Engine Registers .. 33

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 3

3.2 Touch Engine Registers (FT800 only) ... 47

3.3 Audio Engine Registers .. 62

3.4 Co-processor Engine Registers .. 68

3.5 Miscellaneous Registers ... 70

4 Display list commands.............................. 80

4.1 Graphics State .. 80

4.2 Command encoding... 81

4.3 Command groups.. 82

4.3.1 Setting Graphics state .. 82

4.3.2 Drawing actions .. 83

4.3.3 Execution control... 83

4.4 ALPHA_FUNC .. 84

4.5 BEGIN ... 85

4.6 BITMAP_HANDLE .. 87

4.7 BITMAP_LAYOUT ... 88

4.8 BITMAP_SIZE ... 93

4.9 BITMAP_SOURCE .. 96

4.10 BITMAP_TRANSFORM_A .. 98

4.11 BITMAP_TRANSFORM_B .. 100

4.12 BITMAP_TRANSFORM_C .. 101

4.13 BITMAP_TRANSFORM_D.. 102

4.14 BITMAP_TRANSFORM_E .. 103

4.15 BITMAP_TRANSFORM_F .. 105

4.16 BLEND_FUNC ... 106

4.17 CALL... 108

4.18 CELL ... 109

4.19 CLEAR .. 110

4.20 CLEAR_COLOR_A ... 112

4.21 CLEAR_COLOR_RGB ... 113

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 4

4.22 CLEAR_STENCIL... 115

4.23 CLEAR_TAG ... 116

4.24 COLOR_A .. 117

4.25 COLOR_MASK .. 118

4.26 COLOR_RGB .. 120

4.27 DISPLAY ... 121

4.28 END ... 122

4.29 JUMP .. 123

4.30 LINE_WIDTH ... 124

4.31 MACRO ... 125

4.32 POINT_SIZE .. 126

4.33 RESTORE_CONTEXT ... 127

4.34 RETURN .. 128

4.35 SAVE CONTEXT .. 129

4.36 SCISSOR_SIZE .. 130

4.37 SCISSOR_XY ... 131

4.38 STENCIL_FUNC .. 132

4.39 STENCIL_MASK.. 133

4.40 STENCIL_OP .. 134

4.41 TAG .. 136

4.42 TAG_MASK .. 137

4.43 VERTEX2F ... 138

4.44 VERTEX2II .. 139

5 Co-Processor Engine commands 140

5.1 Co-processor handling of Display list commands 141

5.2 Synchronization .. 142

5.3 ROM and RAM Fonts .. 142

5.4 Cautions .. 144

5.5 Fault Scenarios ... 145

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 5

5.6 widgets physical dimension .. 145

5.7 widgets color settings .. 145

5.8 Co-processor engine graphics state ... 146

5.9 Definition of parameter OPTION .. 147

5.10 Co-processor engine resources .. 148

5.11 Command groups ... 148

5.12 CMD_DLSTART - start a new display list 151

5.13 CMD_SWAP - swap the current display list 152

5.14 CMD_COLDSTART - set co-processor engine state to default values 152

5.15 CMD_INTERRUPT - trigger interrupt INT_CMDFLAG 153

5.16 CMD_APPEND - append memory to display list 154

5.17 CMD_REGREAD - read a register value 155

5.18 CMD_MEMWRITE - write bytes into memory 156

5.19 CMD_INFLATE - decompress data into memory 157

5.20 CMD_LOADIMAGE - load a JPEG image 158

5.21 CMD_MEMCRC - compute a CRC-32 for memory 160

5.22 CMD_MEMZERO - write zero to a block of memory 161

5.23 CMD_MEMSET - fill memory with a byte value 162

5.24 CMD_MEMCPY - copy a block of memory 163

5.25 CMD_BUTTON - draw a button ... 164

5.26 CMD_CLOCK - draw an analog clock ... 167

5.27 CMD_FGCOLOR - set the foreground color 172

5.28 CMD_BGCOLOR - set the background color 173

5.29 CMD_GRADCOLOR - set the 3D button highlight color 174

5.30 CMD_GAUGE - draw a gauge ... 176

5.31 CMD_GRADIENT - draw a smooth color gradient 183

5.32 CMD_KEYS - draw a row of keys .. 186

5.33 CMD_PROGRESS - draw a progress bar....................................... 191

5.34 CMD_SCROLLBAR – draw a scroll bar ... 194

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 6

5.35 CMD_SLIDER – draw a slider ... 197

5.36 CMD_DIAL – draw a rotary dial control 200

5.37 CMD_TOGGLE – draw a toggle switch ... 203

5.38 CMD_TEXT - draw text .. 206

5.39 CMD_NUMBER - draw a decimal number 210

5.40 CMD_SETMATRIX - write the current matrix to the display list 213

5.41 CMD_GETMATRIX - retrieves the current matrix coefficients 213

5.42 CMD_GETPTR - get the end memory address of inflated data 215

5.43 CMD_GETPROPS - get the image properties decompressed by

CMD_LOADIMAGE ... 216

5.44 CMD_SCALE - apply a scale to the current matrix......................... 216

5.45 CMD_ROTATE - apply a rotation to the current matrix 219

5.46 CMD_TRANSLATE - apply a translation to the current matrix 221

5.47 CMD_CALIBRATE - execute the touch screen calibration routine 223

5.48 CMD_SPINNER - start an animated spinner 224

5.49 CMD_SCREENSAVER - start an animated screensaver 228

5.50 CMD_SKETCH - start a continuous sketch update 229

5.51 CMD_STOP - stop any of spinner, screensaver or sketch 231

5.52 CMD_SETFONT - set up a custom font .. 232

5.53 CMD_TRACK - track touches for a graphics object 233

5.54 CMD_SNAPSHOT - take a snapshot of the current screen 237

5.55 CMD_LOGO - play FTDI logo animation 237

6 FT801 operation 239

6.1 FT801 introduction .. 239

6.2 FT801 touch engine ... 239

6.3 FT801 touch registers .. 239

6.4 Register summary ... 244

6.5 Calibration ... 245

6.6 CMD_CSKETCH – Capacitive touch specific sketch 245

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 7

Appendix A – Document References 248

Appendix B – Acronyms and Abbreviations 249

Appendix C – Memory Map 250

Appendix D – Revision History 251

Revision History .. 252

List of Code Snippet

CODE SNIPPET 1 INITIALIZATION SEQUENCE ... 18
CODE SNIPPET 2 SOUND SYNTHESIZER PLAY C8 ON THE XYLOPHONE 19
CODE SNIPPET 3 SOUND SYNTHESIZER CHECK THE STATUS OF SOUND PLAYING 19
CODE SNIPPET 4 SOUND SYNTHESIZER STOP PLAYING SOUND 19
CODE SNIPPET 5 AUDIO PLAYBACK ... 20
CODE SNIPPET 6 CHECK THE STATUS OF AUDIO PLAYBACK 20
CODE SNIPPET 7 STOP THE AUDIO PLAYBACK .. 20
CODE SNIPPET 8 GETTING STARTED ... 21
CODE SNIPPET 9 DL FUNCTION DEFINITION .. 27
CODE SNIPPET 10 COLOR AND TRANSPARENCY .. 28
CODE SNIPPET 11 NEGATIVE SCREEN COORDINATES EXAMPLE 30
CODE SNIPPET 12 SCREENSHOT WITH FULL PIXEL VALUE 31
CODE SNIPPET 13 CMD_GETPTR COMMAND EXAMPLE ... 215
CODE SNIPPET 14 CMD_CALIBRATE EXAMPLE .. 223
CODE SNIPPET 15 CMD_SCREENSAVER EXAMPLE ... 228
CODE SNIPPET 16 CMD_SKETCH EXAMPLE ... 230
CODE SNIPPET 17 CMD_SETFONT EXAMPLE ... 232
CODE SNIPPET 18 CMD_SNAPSHOT 160X120–SCREEN ... 237
CODE SNIPPET 19 CMD_LOGO COMMAND EXAMPLE .. 238

List of Figures
FIGURE 1: SOFTWARE ARCHITECTURE .. 14
FIGURE 2: HORIZONTAL TIMING ... 15
FIGURE 3: VERTICAL TIMING ... 16
FIGURE 4: PIXEL CLOCKING WITH NO CSPREAD ... 16
FIGURE 5: PIXEL CLOCKING WITH CSPREAD .. 16
FIGURE 7: GETTING START EXAMPLE IMAGE .. 21
FIGURE 6: FT800 GRAPHICS COORDINATES PLANE IN PIXEL PRECISION 22
FIGURE 8: THE CONSTANTS OF ALPHA_FUNC ... 84
FIGURE 9: PIXEL FORMAT FOR L1/L4/L8 .. 91
FIGURE 10: PIXEL FORMAT FOR ARGB2/1555 ... 91
FIGURE 11: PIXEL FORMAT FOR ARGB4, RGB332, RGB565 AND PALETTE 92
FIGURE 12: STENCIL_OP CONSTANTS DEFINITION ... 134

file:///C:/Users/paul.jiao/Documents/SharePoint%20Drafts/FT800_Series_Programmer_Guide.docx%23_Toc391974059
file:///C:/Users/paul.jiao/Documents/SharePoint%20Drafts/FT800_Series_Programmer_Guide.docx%23_Toc391974065

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 8

List of Tables
TABLE 1 BITMAP RENDERING PERFORMANCE ... 32
TABLE 2 REG_SWIZZLE AND RGB PINS MAPPING TABLE .. 35
TABLE 3 GRAPHICS CONTEXT ... 80
TABLE 4 FT800 GRAPHICS PRIMITIVES LIST ... 81
TABLE 5 GRAPHICS BITMAP FORMAT TABLE ... 82
TABLE 6 FT800 GRAPHICS PRIMITIVE OPERATION DEFINITION 85
TABLE 7 BITMAP_LAYOUT FORMAT LIST .. 88
TABLE 8 BLEND_FUNC CONSTANT VALUE DEFINITION .. 106
TABLE 9 FT800 FONT METRICS BLOCK FORMAT .. 144
TABLE 10 WIDGETS COLOR SETUP TABLE .. 145
TABLE 11 CO-PROCESSOR ENGINE GRAPHICS STATE .. 146
TABLE 12 PARAMETER OPTION DEFINITION ... 147
TABLE 13 TOUCH REGISTERS MAP TABLE .. 245

List of Registers
REGISTER DEFINITION 1 REG_PCLK DEFINITION .. 33
REGISTER DEFINITION 2 REG_PCLK_POL DEFINITION .. 34
REGISTER DEFINITION 3 REG_CSPREAD DEFINITION.. 34
REGISTER DEFINITION 4 REG_SWIZZLE DEFINITION .. 35
REGISTER DEFINITION 5 REG_DITHER DEFINITION .. 35
REGISTER DEFINITION 6 REG_OUTBITS DEFINITION .. 36
REGISTER DEFINITION 7 REG_ROTATE DEFINITION .. 37
REGISTER DEFINITION 8 REG_VSYNC1 DEFINITION ... 37
REGISTER DEFINITION 9 REG_VSYNC0 DEFINITION ... 38
REGISTER DEFINITION 10 REG_VSIZE DEFINITION .. 38
REGISTER DEFINITION 11 REG_VOFFSET DEFINITION .. 39
REGISTER DEFINITION 12 REG_VCYCLE DEFINITION .. 39
REGISTER DEFINITION 13 REG_HSYNC1 DEFINITION ... 40
REGISTER DEFINITION 14 REG_HSYNC0 DEFINITION ... 40
REGISTER DEFINITION 15 REG_HSIZE DEFINITION .. 41
REGISTER DEFINITION 16 REG_HOFFSET DEFINITION .. 41
REGISTER DEFINITION 17 REG_HCYCLE .. 42
REGISTER DEFINITION 18 REG_TAP_MASK .. 42
REGISTER DEFINITION 19 REG_TAP_CRC DEFINITION .. 43
REGISTER DEFINITION 20 REG_DLSWAP DEFINITION ... 44
REGISTER DEFINITION 21 REG_TAG DEFINITION ... 45
REGISTER DEFINITION 22 REG_TAG_Y DEFINITION .. 45
REGISTER DEFINITION 23 REG_TAG_X DEFINITION .. 46
REGISTER DEFINITION 24 REG_TOUCH_DIRECT_Z1Z2 DEFINITION 47
REGISTER DEFINITION 25 REG_TOUCH_DIRECT_XY ... 48
REGISTER DEFINITION 26 REG_TOUCH_TRANSFORM_F DEFINITION 49
REGISTER DEFINITION 27 REG_TOUCH_TRANSFORM_E DEFINITION 50
REGISTER DEFINITION 28 REG_TOUCH_TRANSFORM_D DEFINITION 51
REGISTER DEFINITION 29 REG_TOUCH_TRANSFORM_C DEFINITION 52
REGISTER DEFINITION 30 REG_TOUCH_TRANSFORM_B DEFINITION 53
REGISTER DEFINITION 31 REG_TOUCH_TRANSFORM_A DEFINITION 54
REGISTER DEFINITION 32 REG_TOUCH_TAG DEFINITION 55
REGISTER DEFINITION 33 REG_TOUCH_TAG_XY DEFINITION 56

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 9

REGISTER DEFINITION 34 REG_TOUCH_SCREEN_XY DEFINITION........................... 57
REGISTER DEFINITION 35 REG_TOUCH_RZ DEFINITION 58
REGISTER DEFINITION 36 REG_TOUCH_RAW_XY DEFINITION 58
REGISTER DEFINITION 37 REG_TOUCH_RZTHRESH DEFINITION 59
REGISTER DEFINITION 38 REG_TOUCH_OVERSAMPLE DEFINITION 59
REGISTER DEFINITION 39 REG_TOUCH_SETTLE DEFINITION 60
REGISTER DEFINITION 40 REG_TOUCH_CHARGE DEFINITION 60
REGISTER DEFINITION 41 REG_TOUCH_ADC_MODE DEFINITION 61
REGISTER DEFINITION 42 REG_TOUCH_MODE DEFINITION 61
REGISTER DEFINITION 43 REG_PLAY DEFINITION .. 62
REGISTER DEFINITION 44 REG_SOUND DEFINITION ... 62
REGISTER DEFINITION 45 REG_VOL_SOUND DEFINITION 63
REGISTER DEFINITION 46 REG_VOL_PB DEFINITION .. 63
REGISTER DEFINITION 47 REG_PLAYBACK_PLAY DEFINITION 64
REGISTER DEFINITION 48 REG_PLAYBACK_LOOP DEFINITION 65
REGISTER DEFINITION 49 REG_PLAYBACK_FORMAT DEFINITION 65
REGISTER DEFINITION 50 REG_PLAYBACK_FREQ DEFINITION 66
REGISTER DEFINITION 51 REG_PLAYBACK_READPTR DEFINITION 66
REGISTER DEFINITION 52 REG_PLAYBACK_LENGTH DEFINITION 67
REGISTER DEFINITION 53 REG_PLAYBACK_START DEFINITION 67
REGISTER DEFINITION 54 REG_CMD_DL DEFINITION ... 68
REGISTER DEFINITION 55 REG_CMD_WRITE DEFINITION 68
REGISTER DEFINITION 56 REG_CMD_READ DEFINITION 69
REGISTER DEFINITION 57 REG_TRACKER DEFINITION .. 69
REGISTER DEFINITION 58 REG_PWM_DUTY DEFINITION 70
REGISTER DEFINITION 59 REG_PWM_HZ DEFINITION .. 71
REGISTER DEFINITION 60 REG_INT_MASK DEFINITION .. 71
REGISTER DEFINITION 61 REG_INT_EN DEFINITION .. 72
REGISTER DEFINITION 62 REG_INT_FLAGS DEFINITION 73
REGISTER DEFINITION 63 REG_GPIO DEFINITION .. 73
REGISTER DEFINITION 64 REG_GPIO_DIR DEFINITION ... 74
REGISTER DEFINITION 65 REG_CPURESET DEFINITION 74
REGISTER DEFINITION 66 REG_SCREENSHOT_READ DEFINITION 75
REGISTER DEFINITION 67 REG_SCREENSHOT_BUSY DEFINITION........................... 75
REGISTER DEFINITION 68 REG_SCREENSHOT_START DEFINITION 75
REGISTER DEFINITION 69 REG_SCREENSHOT_Y DEFINITION 76
REGISTER DEFINITION 70 REG_SCREENSHOT_EN DEFINITION 76
REGISTER DEFINITION 71 REG_FREQUENCY DEFINITION 76
REGISTER DEFINITION 72 REG_CLOCK DEFINITION .. 77
REGISTER DEFINITION 73 REG_FRAMES DEFINITION .. 78
REGISTER DEFINITION 74 REG_ID DEFINITION .. 78
REGISTER DEFINITION 75 REG_TRIM DEFINITION .. 79
REGISTER DEFINITION 76 REG_CTOUCH_MODE DEFINITION 239
REGISTER DEFINITION 77 REG_CTOUCH_EXTENDED DEFINITION 240
REGISTER DEFINITION 78 REG_CTOUCH_TOUCH0_XY DEFINITION 240
REGISTER DEFINITION 79 REG_CTOUCH_TOUCH1_XY DEFINITION 241
REGISTER DEFINITION 80 REG_CTOUCH_TOUCH2_XY DEFINITION 241
REGISTER DEFINITION 81 REG_CTOUCH_TOUCH3_XY DEFINITION 242
REGISTER DEFINITION 82 REG_CTOUCH_TOUCH4_X DEFINITION 242
REGISTER DEFINITION 83 REG_CTOUCH_TOUCH4_Y DEFINITION 243

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 10

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 11

1 Introduction

This document captures programming details of FT800 series chips including graphics

commands, widget commands and configurations to control FT800 series chips for

smooth and vibrant screen effects.

The FT800 series chips are graphics controllers with add-on features such as audio

playback and touch capabilities. They consist of a rich set of graphics objects (primitive

and widgets) that can be used for displaying various menus and screen shots for a range

of products including home appliances, toys, industrial machinery, home automation,

elevators, and many more.

1.1 Overview

This document will be useful to understand the command set and demonstrate the ease

of usage in the examples given for each specific instruction. In addition, it also covers

various power modes, audio, and touch features as well as their usage.

Information on pin settings, hardware model and hardware configuration can be found in

the FT800 data sheet (DS_FT800_Embedded_Video_Engine) or FT801 datasheet

(DS_FT801).

1.2 Scope

This document is targeted for software programmers and system designers to develop

graphical user interface (GUI) applications on any system processor with either an SPI or

I2C master port.

1.3 API reference definitions

Functionality and nomenclature of the APIs used in this document.

wr8() – write 8 bits to intended address location

wr16() – write 16 bits to intended address location

wr32() – write 32 bits to intended address location

wr8s() – write 8 bits string to intended address location

rd8() – read 8 bits from intended address location

rd16() – read 16 bits from intended address location

rd32() – read 32 bits from intended address location

rd8s() – read 8 bits string from intended address location

cmd() – write 32 bits command to co-processor engine FIFO RAM_CMD

cmd_*() – Write 32 bits co-processor engine command with its necessary parameters to

the co-processor engine FIFO (RAM_CMD).

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT800.pdf

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 12

dl() – Write the specified 32 bits display list command to RAM_DL. Refer to section 2.5.4

Writing display lists for more information.

host_command() – send host command to FT800. Refer to the FT800 data sheet for

more information.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 13

2 Programming Model

The FT800 appears to the host MCU as a memory-mapped SPI or I2C device. The host

communicates with the FT800 using Read or Write to 8MB address space.

Within this document, endianness of DL commands, co-processor engine commands,

register values read/write, input RGB bitmap data and ADPCM input data are in ‘Little

Endian’ format.

2.1 General Software architecture

The software architecture can be broadly classified into layers such as custom

applications, graphics/GUI manager, video manger, audio manager, drivers etc. FT800

higher level graphics engine commands and co-processor engine widget commands are

part of the graphics/GUI manager. Control & data paths of video and audio are part of

video manager and audio manager. Communication between graphics/GUI manager and

the hardware is via the SPI or I2C driver.

Typically the display screen shot is constructed by the custom application based on the

framework exposed by the graphics/GUI manager.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 14

2.2 Display configuration and initialization

To configure the display, load the timing control registers with values for the particular

display. These registers control horizontal timing:

 REG_PCLK

 REG_PCLK_POL

 REG_HCYCLE

 REG_HOFFSET

 REG_HSIZE

 REG_HSYNC0

 REG_HSYNC1

These registers control vertical timing:

 REG_VCYCLE

MPU

FT800

Custom
APP0

Graphics/GUI manager

Video Manager Audio Manager

SPI/I2C Driver

Hardware

Custom
APP1

Custom
APP2

Host

software
stack

FT800 graphics
objects &

widgets to be
part of

graphics
manager

Figure 1: Software Architecture

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 15

 REG_VOFFSET

 REG_VSIZE

 REG_VSYNC0

 REG_VSYNC1

And the REG_CSPREAD register changes color clock timing to reduce system noise.

GPIO bit 7 is used for the display enable pin of the LCD module. By setting the direction

of the GPIO bit to out direction, the display can be enabled by writing value of 1 into

GPIO bit 7 or the display can be disabled by writing a value of 0 into GPIO bit 7. By

default GPIO bit 7 direction is output and the value is 0.

Note: Refer to FT800 data sheet for information on display register set.

2.2.1 Horizontal timing

Figure 2: Horizontal Timing

REG_PCLK controls the frequency of PCLK. The register specifies a divisor for the main

48 MHz clock, so a value of 4 gives a 12 MHz PCLK. If REG_PCLK is zero, then all display

output is suspended. REG_PCLK_POL controls the polarity of PCLK. Zero means that

display data is clocked out on the rising edge of PCLK. One means data is clocked on the

falling edge.

The total number of PCLKs in a horizontal line is REG_HCYCLE. Within this horizontal line

are the scanned out pixels, REG_HSIZE in total. They start after REG_HOFFSET cycles.

Signal DE is high while pixels are being scanned out.

Horizontal sync timing on signal HSYNC is controlled by REG_HSYNC0 and REG_HSYNC1.

They specify the time at which HSYNC falls and rises respectively.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 16

2.2.2 Vertical timing

Figure 3: Vertical Timing

Vertical timing is specified in number of lines. The total number of lines in a frame is

REG_VCYCLE. There are REG_VSIZE rows of pixels in total. They start after

REG_VOFFSET cycles.

Vertical sync timing on signal VSYNC is controlled by REG_VSYNC0 and REG_VSYNC1.

They specify the lines at which VSYNC falls and rises respectively.

2.2.3 Signals updating timing control

With REG_CSPREAD disabled, all color signals are updated at the same time:

Figure 4: Pixel clocking with no CSPREAD

But with REG_CSPREAD enabled, the color signal timings are adjusted slightly so that

fewer signals change simultaneously:

Figure 5: Pixel clocking with CSPREAD

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 17

2.2.4 Timing example: 480x272 at 60Hz

For a display updating at 60Hz, there are 48000000/60= 800000 fast clocks per frame.

Setting the PCLK divisor REG_PCLK to 5 gives a PCLK frequency of 9.6 MHz and

800000/5= 160000PCLKs per frame.

For a 480 x 272 display, the typical horizontal period is 525 clocks, and vertical period is

286 lines. A little searching shows that a 548 x 292 size gives a period of 160016 clocks,

very close to the target. So with a REG_HCYCLE=548 and REG_VCYCLE=292 the display

frequency is almost exactly 60Hz. The other register settings can be set directly from the

display panel datasheet.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 18

2.2.5 Initialization Sequence

This section describes the initialization sequence in the different scenario.

 Initialization Sequence during the boot up:

1. Use MCU SPI clock not more than 11MHz

2. Send Host command “CLKEXT” to FT800

3. Send Host command “ACTIVE” to enable clock to FT800.

4. Configure video timing registers, except REG_PCLK

5. Write first display list

6. Write REG_DLSWAP, FT800 swaps display list immediately

7. Enable back light control for display

8. Write REG_PCLK, video output begins with the first display list

9. Use MCU SPI clock not more than 30MHz

MCU_SPI_CLK_Freq(<11MHz);//use the MCU SPI clock less than 11MHz

host_command(CLKEXT);//send command to "CLKEXT" to FT800

host_command(ACTIVE);//send host command "ACTIVE" to FT800

/* Configure display registers - demonstration for WQVGA resolution */

wr16(REG_HCYCLE, 548);

wr16(REG_HOFFSET, 43);

wr16(REG_HSYNC0, 0);

wr16(REG_HSYNC1, 41);

wr16(REG_VCYCLE, 292);

wr16(REG_VOFFSET, 12);

wr16(REG_VSYNC0, 0);

wr16(REG_VSYNC1, 10);

wr8(REG_SWIZZLE, 0);

wr8(REG_PCLK_POL, 1);

wr8(REG_CSPREAD, 1);

wr16(REG_HSIZE, 480);

wr16(REG_VSIZE, 272);

/* write first display list */

wr32(RAM_DL+0,CLEAR_COLOR_RGB(0,0,0));

wr32(RAM_DL+4,CLEAR(1,1,1));

wr32(RAM_DL+8,DISPLAY());

wr8(REG_DLSWAP,DLSWAP_FRAME);//display list swap

wr8(REG_GPIO_DIR,0x80 | Ft_Gpu_Hal_Rd8(phost,REG_GPIO_DIR));

wr8(REG_GPIO,0x080 | Ft_Gpu_Hal_Rd8(phost,REG_GPIO));//enable display bit

wr8(REG_PCLK,5);//after this display is visible on the LCD

MCU_SPI_CLK_Freq(<30Mhz);//use the MCU SPI clock upto 30MHz

Code snippet 1 Initialization sequence

 Initialization Sequence from Power Down using PD_N pin:

1. Drive the PD_N pin high

2. Wait for at least 20ms

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 19

3. Execute ”Initialization Sequence during the Boot UP” from steps 1 to 9

 Initialization Sequence from Sleep Mode:

1. Send Host command “ACTIVE” to enable clock to FT800

2. Wait for at least 20ms

3. Execute “Initialization Sequence during Boot Up” from steps 5 to 8

 Initialization sequence from standby mode:

 Execute all the steps mentioned in “Initialization Sequence from Sleep Mode”

except waiting for at least 20ms in step 2.

Note: Refer to FT800 data sheet for information on power modes. Follow section 2.3 for

audio management during power down and reset operations.

2.3 Sound Synthesizer

Sample code to play C8 on the xylophone:

wr8(REG_VOL_SOUND,0xFF); //set the volume to maximum

wr16(REG_SOUND, (0x6C<< 8) | 0x41); // C8 MIDI note on xylophone

wr8(REG_PLAY, 1); // play the sound

Code snippet 2 sound synthesizer play C8 on the xylophone

Sample code to check the status of sound play:

Sound_status = rd8(REG_PLAY);//1-play is going on, 0-play has finished

Code snippet 3 sound synthesizer check the status of sound playing

Sample code to stop sound play:

wr16(REG_SOUND,0x0);//configure silence as sound to be played

wr8(REG_PLAY,1);//play sound

Sound_status = rd8(REG_PLAY);//1-play is going on, 0-play has finished

Code snippet 4 sound synthesizer stop playing sound

To avoid an audio pop sound on reset or power state change, trigger a "mute" sound,

and wait for it to complete (completion of sound play is when REG_PLAY contains a value

of 0). This sets the output value to 0 level. On reboot, the audio engine plays back the

"unmute" sound to drive the output to the half way level.

Note: Refer to FT800 data sheet for more information on sound synthesizer and audio

playback.

2.4 Audio playback

FT800 supports three types of audio format: 4 Bit IMA ADPCM, 8 Bit signed PCM, 8 Bit u-

Law. For IMA ADPCM format, please note the byte order: within one byte, first sample

(4 bits) shall locate from bit 0 to bit 3, while the second sample (4 bits) shall locate from

bit 4 to bit 7.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 20

For the audio data in FT800 RAM to play, FT800 requires the start address in

REG_PLAYBACK_START to be 64 bit (8 Bytes) aligned. In addition, the length of audio

data specified by REG_PLAYBACK_LENGTH is required to be 64 bit (8 Bytes) aligned.

To learn how to play back the audio data, please check the sample code below:
wr8(REG_VOL_PB,0xFF);//configure audio playback volume

wr32(REG_PLAYBACK_START,0);//configure audio buffer starting address

wr32(REG_PLAYBACK_LENGTH,100*1024);//configure audio buffer length

wr16(REG_PLAYBACK_FREQ,44100);//configure audio sampling frequency

wr8(REG_PLAYBACK_FORMAT,ULAW_SAMPLES);//configure audio format

wr8(REG_PLAYBACK_LOOP,0);//configure once or continuous playback

wr8(REG_PLAYBACK_PLAY,1);//start the audio playback

Code snippet 5 Audio playback

AudioPlay_Status = rd8(REG_PLAYBACK_PLAY);//1-audio playback is going on,

0-audio playback has finished

Code snippet 6 Check the status of audio playback

wr32(REG_PLAYBACK_LENGTH,0);//configure the playback length to 0

wr8(REG_PLAYBACK_PLAY,1);//start audio playback

Code snippet 7 Stop the audio playback

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 21

2.5 Graphics routines

This section describes graphics features and captures a few of examples.

2.5.1 Getting started

This short example creates a screen with the text "FTDI" on it, with a red dot.

Figure 6: Getting Start Example Image

The code to draw the screen is:

wr32(RAM_DL + 0, CLEAR(1, 1, 1)); // clear screen

wr32(RAM_DL + 4, BEGIN(BITMAPS)); // start drawing bitmaps

wr32(RAM_DL + 8, VERTEX2II(220, 110, 31, 'F')); // ascii F in font 31

wr32(RAM_DL + 12, VERTEX2II(244, 110, 31, 'T')); // ascii T

wr32(RAM_DL + 16, VERTEX2II(270, 110, 31, 'D')); // ascii D

wr32(RAM_DL + 20, VERTEX2II(299, 110, 31, 'I')); // ascii I

wr32(RAM_DL + 24, END());

wr32(RAM_DL + 28, COLOR_RGB(160, 22, 22)); // change color to red

wr32(RAM_DL + 32, POINT_SIZE(320)); // set point size to 20 pixels in

radius

wr32(RAM_DL + 36, BEGIN(POINTS)); // start drawing points

wr32(RAM_DL + 40, VERTEX2II(192, 133, 0, 0)); // red point

wr32(RAM_DL + 44, END());

wr32(RAM_DL + 48, DISPLAY()); // display the image

Code snippet 8 Getting Started

After the above drawing commands are loaded into display list RAM, register

REG_DLSWAP is required to be set to 0x02 in order to make the new display list active

on the next frame refresh.

Note:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 22

 The display list always starts at address RAM_DL

 The address always increments by 4(bytes) as each command is 32 bit width.

 Command CLEAR is recommended to be used before any other drawing

operation, in order to put FT800 graphics engine in a known state.

 The end of the display list is always flagged with the command DISPLAY

2.5.2 Coordinate Plane

The figure below illustrates the graphics coordinate plane and its visible area.

The valid X and Y coordinate ranges from -1024 to 1023 in pixel precision, i.e., from

-16384 to 16383 in 1/16th pixel precision.

 Visible Area

(511,511)

511 (0,0)

511

Y

Figure 7: FT800 graphics coordinates plane in pixel precision

X

-1024

-1024 1023

1023

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 23

2.5.3 Drawing pattern

The general pattern for drawing is:

 BEGIN with one of the primitive types

 Input one or more vertices, which specify the placement of the primitive on

the screen

 END to mark the end of the primitive

(note: In many examples the END command is not explicitly listed)

The primitive types that the graphics engine support are:

 BITMAPS - rectangular pixel arrays, in various color formats

 POINTS - anti-aliased points, point radius is 1-256 pixels

 LINES - anti-aliased lines, with width from 0 to 4095 1/16th of pixel units.

(width is from center of the line to boundary)

 LINE_STRIP - anti-aliased lines, connected head-to-tail

 RECTS - round-cornered rectangles, curvature of the corners can be adjusted

using LINE_WIDTH.

 EDGE_STRIP_A/B/L/R - edge strips

Examples

Draw points with varying radius from 5 pixels to 13 pixels with different colors:

dl(COLOR_RGB(128, 0, 0));

dl(POINT_SIZE(5 * 16));

dl(BEGIN(POINTS));

dl(VERTEX2F(30 * 16,17 * 16));

dl(COLOR_RGB(0, 128, 0));

dl(POINT_SIZE(8 * 16));

dl(VERTEX2F(90 * 16, 17 * 16));

dl(COLOR_RGB(0, 0, 128));

dl(POINT_SIZE(10 * 16));

dl(VERTEX2F(30 * 16, 51 * 16));

dl(COLOR_RGB(128, 128, 0));

dl(POINT_SIZE(13 * 16));

dl(VERTEX2F(90 * 16, 51 * 16));

The VERTEX2F command gives the location of the circle center.

Draw lines with varying sizes from 2 pixels to 6 pixels with different colors (line width

size is from center of the line till boundary):

dl(COLOR_RGB(128, 0, 0));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 24

dl(LINE_WIDTH(2 * 16));

dl(BEGIN(LINES));

dl(VERTEX2F(30 * 16,38 * 16));

dl(VERTEX2F(30 * 16,63 * 16));

dl(COLOR_RGB(0, 128, 0));

dl(LINE_WIDTH(4 * 16));

dl(VERTEX2F(60 * 16,25 * 16));

dl(VERTEX2F(60 * 16,63 * 16));

dl(COLOR_RGB(128, 128, 0));

dl(LINE_WIDTH(6 * 16));

dl(VERTEX2F(90 * 16, 13 * 16));

dl(VERTEX2F(90 * 16, 63 * 16));

The VERTEX2F commands are in pairs to define the start and finish point of the line.

Draw rectangle with sizes of 5x25, 10x38 and 15x50 dimensions (line width size is used

for corner curvature, LINE_WIDTH pixels are added on both directions in addition to

rectangle dimension):

dl(COLOR_RGB(128, 0, 0));

dl(LINE_WIDTH(1 * 16));

dl(BEGIN(RECTS));

dl(VERTEX2F(28 * 16,38 * 16));

dl(VERTEX2F(33 * 16,63 * 16));

dl(COLOR_RGB(0, 128, 0));

dl(LINE_WIDTH(5 * 16));

dl(VERTEX2F(50 * 16,25 * 16));

dl(VERTEX2F(60 * 16,63 * 16));

dl(COLOR_RGB(128, 128, 0));

dl(LINE_WIDTH(10 * 16));

dl(VERTEX2F(83 * 16, 13 * 16));

dl(VERTEX2F(98 * 16, 63 * 16));

The VERTEX2F commands are in pairs to define the top left and bottom right corners of

the rectangle.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 25

Draw line strips for sets of coordinates:

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(LINE_STRIP));

dl(VERTEX2F(5 * 16,5 * 16));

dl(VERTEX2F(50 * 16,30 * 16));

dl(VERTEX2F(63 * 16,50 * 16));

Draw Edge strips for above:

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(EDGE_STRIP_A));

dl(VERTEX2F(5 * 16,5 * 16));

dl(VERTEX2F(50 * 16,30 * 16));

dl(VERTEX2F(63 * 16,50 * 16));

Draw Edge strips for below:

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(EDGE_STRIP_B));

dl(VERTEX2F(5 * 16,5 * 16));

dl(VERTEX2F(50 * 16,30 * 16));

dl(VERTEX2F(63 * 16,50 * 16));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 26

Draw Edge strips for right:

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(EDGE_STRIP_R));

dl(VERTEX2F(5 * 16,5 * 16));

dl(VERTEX2F(50 * 16,30 * 16));

dl(VERTEX2F(63 * 16,50 * 16));

Draw Edge strips for left:

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(EDGE_STRIP_L));

dl(VERTEX2F(5 * 16,5 * 16));

dl(VERTEX2F(50 * 16,30 * 16));

dl(VERTEX2F(63 * 16,50 * 16));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 27

2.5.4 Writing display lists

Writing display list entries with wr32() is time-consuming and error-prone, so instead a

function might be used:

static size_t dli;

static void dl(unsigned long cmd)

{

wr32(RAM_DL + dli, cmd);

dli += 4;

}

...

dli = 0; // start writing the display list

dl(CLEAR(1, 1, 1)); // clear screen

dl(BEGIN(BITMAPS)); // start drawing bitmaps

dl(VERTEX2II(220, 110, 31, 'F')); // ascii F in font 31

dl(VERTEX2II(244, 110, 31, 'T')); // ascii T

dl(VERTEX2II(270, 110, 31, 'D')); // ascii D

dl(VERTEX2II(299, 110, 31, 'I')); // ascii I

dl(END());

dl(COLOR_RGB(160, 22, 22)); // change color to red

dl(POINT_SIZE(320)); // set point size

dl(BEGIN(POINTS)); // start drawing points

dl(VERTEX2II(192, 133, 0, 0)); // red point

dl(END());

dl(DISPLAY()); // display the image

Code snippet 9 dl function definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 28

2.5.5 Bitmap transformation matrix

To achieve the bitmap transformation, the bitmap transform matrix below is specified in

the FT800 and denoted as m

m = [

]

by default m = [

], it is named as identity matrix.

The coordinates , after transforming is calculated in following equation:

[

] = m × [

]

i.e.:

where A,B,C,E,D,E,F stands for the values assigned by commands

BITMAP_TRANSFORM_A-F.

2.5.6 Color and transparency

The same bitmap can be drawn in more places on the screen, in different colors and

transparency:

dl(COLOR_RGB(255, 64, 64)); // red at (200, 120)

dl(VERTEX2II(200, 120, 0, 0));

dl(COLOR_RGB(64, 180, 64)); // green at (216, 136)

dl(VERTEX2II(216, 136, 0, 0));

dl(COLOR_RGB(255, 255, 64)); // transparent yellow at (232, 152)

dl(COLOR_A(150));

dl(VERTEX2II(232, 152, 0, 0));

Code snippet 10 color and transparency

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 29

The COLOR_RGB command changes the current drawing color, which colors the bitmap.

The COLOR_A command changes the current drawing alpha, changing the transparency

of the drawing: an alpha of 0 means fully transparent and an alpha of 255 is fully

opaque. Here a value of 150 gives a partially transparent effect.

2.5.7 VERTEX2II and VERTEX2F

The VERTEX2II command used above only allows positive screen coordinates. If the

bitmap is partially off screen, for example during a screen scroll, then it is necessary to

specify negative screen coordinates. The VERTEX2F command allows negative

coordinates. It also allows fractional coordinates, because it specifies screen (x,y) in

units of 1/16 of a pixel.

For example, drawing the same bitmap at screen position (-10,-10) using VERTEX2F:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 30

dl(BEGIN(BITMAPS));

dl(VERTEX2F(-160, -160));

dl(END());

Code snippet 11 negative screen coordinates example

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 31

2.5.8 Screenshot

The code below demonstrates how to utilize the registers and RAM_SCREENSHOT to

capture the current screen with full pixel value. Each pixel is represented in 32 bits and

BGRA format. However, this process may cause the flicking and tearing effect.

#define SCREEN_WIDTH 480

#define SCREEN_HEIGHT 272

uint32 screenshot[SCREEN_WIDTH*SCREEN_HEIGHT];

wr8(REG_SCREENSHOT_EN, 1);

for (int ly = 0; ly < SCREEN_HEIGHT; ly++) {

 wr16(REG_SCREENSHOT_Y, ly);

 wr8(REG_SCREENSHOT_START, 1);

 //Read 64 bit registers to see if it is busy

 while (rd32(REG_SCREENSHOT_BUSY) | rd32(REG_SCREENSHOT_BUSY + 4));

 wr8(REG_SCREENSHOT_READ , 1);

 for (int lx = 0; lx < SCREEN_WIDTH; lx ++) {

 //Read 32 bit pixel value from RAM_SCREENSHOT

 //The pixel format is BGRA: Blue is in lowest address and Alpha

is in highest address

 screenshot[ly*SCREEN_HEIGHT + lx] = rd32(RAM_SCREENSHOT + lx*4);

 }

 wr8(REG_SCREENSHOT_READ, 0);

}

wr8(REG_SCREENSHOT_EN, 0);

Code Snippet 12 Screenshot with full pixel value

2.5.9 Performance

The graphics engine has no frame buffer: it uses dynamic compositing to build up each

display line during scan out. Because of this, there is a finite amount of time available to

draw each line. This time depends on the scan out parameters (REG_PCLK and

REG_HCYCLE) but is never less than 2048 internal clock cycles.

Some performance limits:

 The display list length must be less than 2048 instructions, because the

graphics engine fetches display list commands one per clock.

 The graphics engine performance rending pixels is 4 pixels per clock, for any

line with 2048 display commands the total pixels performance drawn must be

less than 8192.

 For some bitmap formats, the drawing rate is 1 pixel per clock. These are

TEXT8X8, TEXTVGA and PALETTED.

 For bilinear filtered pixels, the drawing rate is reduced to ¼ pixel per clock.

Most bitmap formats draw at 1 pixel per clock, and the above formats

(TEXT8X8, TEXTVGA and PALETTED) draw at 1 pixel every 4 clocks.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 32

To summarize:

Table 1 Bitmap rendering performance

Filter Mode Format Rate

Nearest TEXT8X8, TEXTVGA and
PALETTED

1 pixel per clock

Nearest all other formats 4 pixel per clock

BILINEAR TEXT8X8, TEXTVGA and

PALETTED

1/4 pixel per clock

BILINEAR all other formats 1 pixel per clock

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 33

3 Register Description

In this chapter, all the registers in the FT800 are classified into 5 groups: Graphics

Engine Registers, Audio Engine Registers, Touch Engine Registers, and Co-processor

Engine Registers as well as Miscellaneous Registers. This chapter gives the detailed

definition for each register. To view the register summary of the FT800, please check the

datasheet instead.

In addition, please note that all the reserved bits are read-only and shall be zero. All the

hexadecimal values are prefixed with 0x. Readers are strongly encouraged to cross-

reference the other chapters of this document for a better understanding.

3.1 Graphics Engine Registers

Register Definition 1 REG_PCLK Definition

31 8 7 0

Address: 0x10246C Reset Value: 0x0

Note: NONE

REG_PCLK Definition

Bit 0 - 7 : These bits are set to divide the main clock for PCLK. If the typical

main clock was 48MHz and the value of these bits are 5, the PCLK will be 9.6

MHz. If the value of these bits are zero, there will be no PCLK output.

R/WReserved

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 34

Register Definition 2 REG_PCLK_POL Definition

R/W

31 1 0

Address: 0x102468 Reset Value: 0x0

Note: NONE

Bit 0 : This bit controls the polarity of PCLK. If it is set to zero, PCLK polarity

is on the rising edge. If it is set to one, PCLK polarity is on the falling edge.

Reserved

REG_PCLK_POL Definition

Register Definition 3 REG_CSPREAD Definition

Please check the sector 2.2.3 for more details.

R/W

31 1 0

Address: 0x102464 Reset Value: 0x1

Note: NONE

Bit 0 : This bit controls the transition of RGB signals with PCLK active clock

edge. When REG_CSPREAD=0, R[7:2],G[7:2] and B[7:2] signals change

following the active edge of PCLK. When REG_CSPREAD=1, R[7:2] changes a

PCLK clock early and B[7:2] a PCLK clock later, which helps reduce the system

noise .

Bit 1 - 31: Reserved.

Reserved

REG_CSPREAD Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 35

Register Definition 4 REG_SWIZZLE Definition

31 4 3 0

Address: 0x102460 Reset Value: 0x0

Note: NONE

Bit 0 - 3 : These bits are set to control the arrangement of output RGB pins,

which may help support different LCD panel. Please check the table above for

details.

Reserved R/W

REG_SWIZZLE Definition

 Table 2 REG_SWIZZLE and RGB pins mapping table

REG_SWIZZLE PINS

b3 b2 b1 b0 R7, R6, R5,

R4, R3, R2

G7, G6, G5,

G4, G3, G2

B7, B6, B5, B4,

B3, B2

0 X 0 0 R[7:2] G[7:2] B[7:2] Power on Default

0 X 0 1 R[2:7] G[2:7] B[2:7]

0 X 1 0 B[7:2] G[7:2] R[7:2]

0 X 1 1 B[2:7] G[2:7] R[2:7]

1 0 0 0 G[7:2] B[7:2] R[7:2]

1 0 0 1 G[2:7] B[2:7] R[2:7]

1 0 1 0 G[7:2] R[7:2] B[7:2]

1 0 1 1 G[2:7] R[2:7] B[2:7]

1 1 0 0 B[7:2] R[7:2] G[7:2]

1 1 0 1 B[2:7] R[2:7] G[2:7]

1 1 1 0 R[7:2] B[7:2] G[7:2]

1 1 1 1 R[2:7] B[2:7] G[2:7]

Register Definition 5 REG_DITHER Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 36

R/W

31 1 0

Address: 0x10245C Reset Value: 0x1B6

Bit 0 : Set to 1 to enable dithering feature of output RGB signals. Set to 0 to

disable dithering feature. Reading 1 from this bit means dithering feature is

enabled. Reading 0 from this bit means dithering feature is disabled.

Reserved

Note: Please refer to REG_SWIZZLE and RGB pins mapping table for

details

REG_DITHER Definition

Register Definition 6 REG_OUTBITS Definition

31 9 8 0

Address: 0x102458 Reset Value: 0x1B6

Note: NONE

 R/WReserved

Bit 0 - 8: These 9 bits are split into 3 groups for Red, Green and Blue color output

signals:

Bit 0 - 2: Blue color signal lines number. Reset value is 6.

Bit 3 - 5: Green Color signal lines number. Reset value is 6.

Bit 6 - 8: Red Color signal lines number. Reset value is 6.

Host can write these bits to control the numbers of output signals for each color.

REG_OUTBITS Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 37

Register Definition 7 REG_ROTATE Definition

R/W

31 1 0

Address: 0x102454 Reset Value: 0x00

REG_ROTATE Definition

Note: After rotation is turned on, please do the screen calibration

again

Bit 0: 180 degree screen Rotation switch. Writing this bit to 0 will turn

off the rotation functionality. Writing this bit to 1 will turn on the

rotation functionality and 180 degree rotation will take place at the next

frame rendered. Reading this bit will reflect the current rotation switch

Reserved

Register Definition 8 REG_VSYNC1 Definition

31 10 9 0

Note: NONE

Bit0 - 9: The value of these bits specifies how many lines for signal VSYNC takes at the start of

new frame.

R/W

Address: 0x10244C Reset Value: 0x00A

REG_VSYNC1 Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 38

Register Definition 9 REG_VSYNC0 Definition

31 9 0

Note: NONE

REG_VSYNC0 Definition

Bit0 - 9: The value of these bits specifies how many lines for the high state of signal VSYNC

takes at the start of new frame.

R/W

Address: 0x102448 Reset Value: 0x000

Register Definition 10 REG_VSIZE Definition

31 10 9 0

Note:

REG_VSIZE Definition

Bit0 - 9: The value of these bits specifies how many lines of pixels in one frame.

R/W

Address: 0x102444 Reset Value: 0x110

Reserved

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 39

Register Definition 11 REG_VOFFSET Definition

31 9 0

Note:

REG_VOFFSET Definition

Bit0 - 9: The value of these bits specifies how many lines takes after the start of new frame.

R/W

Address: 0x102440 Reset Value: 0x00C

Reserved

Register Definition 12 REG_VCYCLE Definition

31 10 9 0

Note:

REG_VCYCLE Definition

Bit0 - 9: The value of these bits specifies how many lines in one frame.

R/W

Address: 0x10243C Reset Value: 0x124

Reserved

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 40

Register Definition 13 REG_HSYNC1 Definition

31 9 0

Note: NONE

Bit0 - 9: The value of these bits specifies how many PCLK cycles for HSYNC during start of line.

REG_HSYNC1 Definition

R/W

Address: 0x102438 Reset Value: 0x029

Reserved

Register Definition 14 REG_HSYNC0 Definition

31 10 9 0

Note: NONE

Bit0 - 9: The value of these bits specifies how many PCLK cycles of HSYNC high state during

start of line.

R/W

Address: 0x102434 Reset Value: 0x0

Reserved

REG_HSYNC0 Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 41

Register Definition 15 REG_HSIZE Definition

Please reference to section 2.2.1

31 10 9 0

Address: 0x102430 Reset Value: 0x1E0

Note: NONE

Bit0 - 9: These bits are used to specify the numbers of PCLK cycles per horizonal line.

R/WReserved

REG_HSIZE Definition

Register Definition 16 REG_HOFFSET Definition

Please reference to section 2.2.1

31 10 9 0

Address: 0x10242C Reset Value: 0x2B

Note: NONE

Bit0 - 9: These bits are used to specify the numbers of PCLK cycles before pixels are scanned

out.

R/WReserved

REG_HOFFSET Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 42

Register Definition 17 REG_HCYCLE

Please reference to section 2.2.1

31 9 0

Address: 0x102428 Reset Value: 0x224

Note: NONE

REG_HCYCLE Definition

Bit0 - 9: These bits are the number of total PCLK cycles per horizontal line scan. The

default value is 548 and supposed to support 480x272 screen resolution display. Please

check the display panel specification for more details.

R/WReserved

Register Definition 18 REG_TAP_MASK

31 0

Address: 0x102424 Reset Value: 0xFFFFFFFF

Note: NONE

R/W

Bit0 - 31: These bits are used to mask the value of RGB output signals. The result will be used

to caculate the CRC value which will be updated into REG_TAP_CRC.

REG_TAP_MASK Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 43

Register Definition 19 REG_TAP_CRC Definition

31 0

Address: 0x102420 Reset Value: 0x00000000

Note: NONE

Read Only

Bit0 - 31: These bits are set by FT800 as the CRC value of RGB signals output. It updates once

every time display list is rendered.

REG_TAP_CRC Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 44

Register Definition 20 REG_DLSWAP Definition

Reserved

31 2 1 0

Address: 0x102450 Reset Value: 0x00

REG_DLSWAP Definition

Note:

R/W

Bit 0 - 1: These bits can be set by the host to validate the display list buffer

of the FT800. The FT800 graphics engine will determine when to render the

screen , depending on what values of these bits are set:

 01: Graphics engine will render the screen immediately after current l ine

is scanned out. It may cause tearing effect.

 10: Graphics engine will render the screen immediately after current

frame is scanned out. This is recommended in most of cases.

 00: Do not write this value into this register.

 11: Do not write this value into this register.

 These bits can be also be read by the host to check the availability of the

display list buffer of the FT800. If the value is read as zero, the display list

buffer of the FT800 is safe and ready to write. Otherwise, the host needs to

wait ti l l it becomes zero.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 45

Register Definition 21 REG_TAG Definition

31 8 7 0

REG_TAG Definition

Address: 0x102478 Reset Value: 0x0

Note: Please note the difference between REG_TAG and REG_TOUCH_TAG. REG_TAG is

updated based on the X,Y given by REG_TAG_X and REG_TAG_Y. However, REG_TOUCH_TAG

is updated based on the current touching point given by FT800 touch engine.

Bit 0 - 7 : These bits are updated with tag value by FT800 graphics engine. The tag value

here is corresponding to the touching point coordinator given in REG_TAG_X and

REG_TAG_Y. Host can read this register to check which graphics object is touched.

Reserved R/O

Register Definition 22 REG_TAG_Y Definition

31 9 8 0

Address: 0x102474 Reset Value: 0x0

Note: NONE

REG_TAG_Y Definition

Bit 0 - 8 : These bits are set by host as Y coordinate of touching point, which

will enable the host to query the tag value. This register shall be used

together with REG_TAG_X and REG_TAG. Normally, in the case the host has

already captured the touching point's coordinator, this register can be

updated to query the tag value of respective touching point.

Reserved R/W

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 46

Register Definition 23 REG_TAG_X Definition

31 9 8 0

Address: 0x102470 Reset Value: 0x0

Note: NONE

REG_TAG_X Definition

Bit 0 - 8 : These bits are set by host as X coordinate of touching point, which

will enable host to query the tag value. This register shall be used together

with REG_TAG_Y and REG_TAG. Normally, in the case the host has already

captured the touching point's coordinator, this register can be updated to

query the tag value of the respective touching point.

Reserved R/W

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 47

3.2 Touch Engine Registers (FT800 only)

Register Definition 24 REG_TOUCH_DIRECT_Z1Z2 Definition

Reserved

31 26 25 16 15 10 9 0

REG_TOUCH_DIRECT_Z1Z2 Definition

Address: 0x102578

Note: To know it is touched or not, please check the 31st bit of

REG_TOUCH_DIRECT_XY. FT800 touch engine will do the post-

processing for these Z1 and Z2 values and update the result in

REG_TOUCH_RZ.

Bit 0 - 9 : The 10 bit ADC value for touch screen resistance Z2.

Bit 16-25: The 10 bit ADC value for touch screen resistance Z1.

Reset Value: NA

RO ROReserved

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 48

Register Definition 25 REG_TOUCH_DIRECT_XY

RO Reserved Reserved

31 26 25 16 15 10 9 0

RO RO

REG_TOUCH_DIRECT_XY Definition

Address: 0x102574

Note:

Bit 0 - 9 : The 10 bit ADC value for Y coordinate

Bit 16-25: The 10 bit ADC value for X coordinate.

Bit 31 : If this bit is zero, it means a touch is being sensed and the two

fields above contains the sensed data. If this bit is one, it means no

touch is being sensed and the data in the two fields above shall be

ignored.

Reset Value: 0x0

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 49

Register Definition 26 REG_TOUCH_TRANSFORM_F Definition

31 30 16 15 0

R/W

REG_TOUCH_TRANSFORM_F Definition

Address: 0x102530

Note: This register represents fixed point number and the default value is

+0.0 after reset.

Bit 0 - 15 : The value of these bits represents the fractional part of a fixed

point number.

Bit 16 - 30 : The value of these bits represents the integer part of a fixed

point number.

Reset Value: 0x0

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 50

Register Definition 27 REG_TOUCH_TRANSFORM_E Definition

31 30 16 15 0

R/W

REG_TOUCH_TRANSFORM_E Definition

Address: 0x10252C

Note: This register represents fixed point number and the default

value is +1.0 after reset.

Bit 0 - 15 : The value of these bits represents the fractional part of the

fixed point number.

Bit 16 - 30 : The value of these bits represents the integer part of the

fixed point number.

Bit 31 : The sign bit for fixed point number

Reset Value: 0x10000

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 51

Register Definition 28 REG_TOUCH_TRANSFORM_D Definition

31 30 16 15 0

R/W

REG_TOUCH_TRANSFORM_D Definition

Address: 0x102528

Note: This register represents fixed point number and the default

value is +0.0 after reset.

Bit 0 - 15 : The value of these bits represents the fractional part of the

fixed point number.

Bit 16 - 30 : The value of these bits represents the integer part of the

fixed point number.

Bit 31 : The sign bit for fixed point number

Reset Value: 0x0

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 52

Register Definition 29 REG_TOUCH_TRANSFORM_C Definition

31 30 16 15 0

R/W

REG_TOUCH_TRANSFORM_C Definition

Address: 0x102524

Note: This register represents fixed point number and the default

value is +0.0 after reset.

Bit 0 - 15 : The value of these bits represents the fractional part of the

fixed point number.

Bit 16 - 30 : The value of these bits represents the integer part of the

fixed point number.

Bit 31 : The sign bit for fixed point number

Reset Value: 0x0

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 53

Register Definition 30 REG_TOUCH_TRANSFORM_B Definition

31 30 16 15 0

R/W

REG_TOUCH_TRANSFORM_B Definition

Address: 0x102520

Note: This register represents fixed point number and the default

value is +0.0 after reset.

Bit 0 - 15 : The value of these bits represents the fractional part of the

fixed point number.

Bit 16 - 30 : The value of these bits represents the integer part of the

fixed point number.

Bit 31 : The sign bit for fixed point number

Reset Value: 0x0

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 54

Register Definition 31 REG_TOUCH_TRANSFORM_A Definition

31 30 16 15 0

R/W

REG_TOUCH_TRANSFORM_A Definition

Address: 0x10251C

Note: This register represents fixed point number and the default

value is +1.0 after reset.

Bit 0 - 15 : The value of these bits represents the fractional part of the

fixed point number.

Bit 16 - 30 : The value of these bits represents the integer part of the

fixed point number.

Bit 31 : The sign bit for fixed point number

Reset Value: 0x10000

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 55

Register Definition 32 REG_TOUCH_TAG Definition

31 8 7 0

Address: 0x102518 Reset Value: 0

Note: The valid tag value range is from 1 to 255 ,therefore the default value of this

register is zero, meaning there is no touch by default.

Bit 0 - 7 : These bits are set as the tag value of the specific graphics object on the

screen which is being touched. These bits are updated once when all the lines of

the current frame is scanned out to the screen.

Bit 8 - 31: These bits are reserved.

REG_TOUCH_TAG Definition

RESERVED RO

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 56

Register Definition 33 REG_TOUCH_TAG_XY Definition

31 16 15 0

RORO

REG_TOUCH_TAG_XY Definition

Address: 0x102514 Reset Value: 0

Note: Host can read this register to check the coordinates used by the touch

engine to update the tag register REG_TOUCH_TAG.

Bit 0 - 15 : The value of these bits are the Y coordinates of the touch screen,

which was used by the touch engine to look up the tag result.

Bit 16 - 31: The value of these bits are X coordinates of the touch screen, which

was used by the touch engine to look up the tag result.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 57

Register Definition 34 REG_TOUCH_SCREEN_XY Definition

31 16 15 0

REG_TOUCH_SCREEN_XY Definition

Address: 0x102510

Note: This register is the final computation output of the touch engine of the

FT800. It has been mapped into screen size.

Bit 0 - 15 : The value of these bits are the Y coordinates of the touch screen.

After doing calibration, it shall be within the height of the screen size. If the

touch screen is not being touched, it shall be 0x8000.

Bit 16 - 31: The value of these bits are the X coordinates of the touch screen.

After doing calibration, it shall be within the width of the screen size. If the

touch screen is not being touched, it shall be 0x8000.

RORO

Reset Value: 0x80008000

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 58

Register Definition 35 REG_TOUCH_RZ Definition

31 16 15 0

REG_TOUCH_RZ Definition

Address: 0x10250C Reset Value: 0x7FFF

Bit 0 - 15 : These bits are the resistance of touching on the touch screen . The valid

value is from 0 to 0x7FFF. The highest value(0x7FFF) means no touch and the lowest

value (0) menas the maximum pressure.

Bit 16 - 31: Reserved

ROReserved

Register Definition 36 REG_TOUCH_RAW_XY Definition

31 16 15 0

REG_TOUCH_RAW_XY Definition

Address: 0x102508

Note: The coordinates in this register have not mapped into the screen

coordinates. To get the screen coordinates, please refer to

REG_TOUCH_SCREEN_XY .

Bit 0 - 15 : These bits are the raw Y coordinates of the touch screen before going

through transformation matrix. The valid range is from 0 to 1023. If there is no

touch on screen, the value shall be 0xFFFF.

Bit 16 - 31: These bits are the raw X coordinates going through transformation

matrix. The valid range is from 0 to 1023. If there is no touch on screen, the value

shall be 0xFFFF.

ROReserved

Reset Value: 0xFFFFFFFF

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 59

Register Definition 37 REG_TOUCH_RZTHRESH Definition

31 16 15 0

REG_TOUCH_RZTHRESH Definition

Address: 0x102504 Reset Value: 0xFFFF

Bit 0 - 15 : These bits control the touch screen resistance threshold. Host can

adjust the touch screen touching sensitivity by setting this register. The default

value after reset is 0xFFFF and it means the lightest touch will be accepted by the

touch engine of the FT800. The host can set this register by doing experiments. The

typical value is 1200.

R/WReserved

Register Definition 38 REG_TOUCH_OVERSAMPLE Definition

31 4 3 0

REG_TOUCH_OVERSAMPLE Definition

Address: 0x102500 Reset Value: 0x7

Bit 0 - 3 : These bits control the touch screen oversample factor. The higher value

of this register causes more accuracy with more power consumption, but may not

be necessary. The valid range is from 1 to 15.

R/WReserved

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 60

Register Definition 39 REG_TOUCH_SETTLE Definition

31 4 3 0

REG_TOUCH_SETTLE Definition

Address: 0x1024FC Reset Value: 0x3

Note: .

Bit 0 - 3 : These bits control the touch screen settle time , in the unit of 6 clocks. The

default value is 3, meaning the settle time is 18 (3*6) system clock cycles.

R/WReserved

Register Definition 40 REG_TOUCH_CHARGE Definition

31 16 15 0

REG_TOUCH_CHARGE Definition

Address: 0x1024F8 Reset Value: 0x1770

Note: .

Bit 0 - 15 : These bits control the touch-screen charge time, in the unit of 6 system

clocks. The default value after reset is 6000, i.e. the charge time will be 6000*6 clock

cycles.

R/WReserved

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 61

Register Definition 41 REG_TOUCH_ADC_MODE Definition

R/W

31 1 0

Reserved

REG_TOUCH_ADC_MODE Definition

Address: 0x1024F4 Reset Value: 0x1

Note: .

Bit 0 : The host can set this bit to control the ADC sampling mode of the FT800,

as per:

 0: Single Ended mode. It causes lower power consumption but with less

accuracy.

 1: Differential Mode. It causes higher power consumption but with more

accuracy. The default mode after reset.

Register Definition 42 REG_TOUCH_MODE Definition

31 2 1 0

Bit 0 - 1 : The host can set these two bits to control the touch screen sampling

mode of the FT800 touch engine, as per:

 00: Off mode. No sampling happens.

 01: Single mode. Cause one single sample to occur.

 10: Frame mode. Cause a sample at the start of each frame.

 11: Continuous mode. Up to 1000 times per seconds. Default mode after

reset.

R/WReserved

REG_TOUCH_MODE Definition

Address: 0x1024F0 Reset Value: 0x3

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 62

3.3 Audio Engine Registers

Register Definition 43 REG_PLAY Definition

31 1 0

Address: 0x102488 Reset Value: 0x0

Note: Please refer to the datasheet sector "Sound Synthesizer" for the details of this

register.

Bit 0 : A write to this bit triggers the play of synthesized sound effect specified in

REG_SOUND.

Reading value 1 in this bit means the sound effect is playing. To stop the sound effect,

the host needs to select the silence sound effect by setting up REG_SOUND and set

this register to play.

Register Definition 44 REG_SOUND Definition

Reserved

31 16 15 0

R/W

REG_SOUND Definition

Address: 0x102484 Reset Value: 0x0000

Note: Please refer to the datasheet sector "Sound Synthesizer" for the details

of this register.

Bit 0 - 15 : These bits are used to select the synthesized sound effect. They

are split into two group Bit 0 - 7, Bit 8- 15.

Bit 0 - 7 : These bits define the sound effect. Some of them are pitch

adjustable and the pitch is defined in Bits 8 - 15. Some of them are not pitch

adjustable and the Bits 8 - 15 will be ignored.

Bit 8 - 15: The MIDI note for the sound effect defined in Bits 0 - 7.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 63

Register Definition 45 REG_VOL_SOUND Definition

31 8 7 0

REG_VOL_SOUND Definition

Address: 0x102480 Reset Value: 0xFF

Note:

Bit 0 - 7 : These bits control the volume of the synthesizer sound. The default

value 0xFF is highest volume. The value zero means mute.

Reserved R/W

Register Definition 46 REG_VOL_PB Definition

31 8 7 0

REG_VOL_PB Definition

Address: 0x10247C Reset Value: 0xFF

Note:

Bit 0 - 7 : These bits control the volume of the audio file playback. The default

value 0xFF is highest volume. The value zero means mute.

Reserved R/W

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 64

Register Definition 47 REG_PLAYBACK_PLAY Definition

R/W

31 1 0

REG_PLAYBCK_PLAY Definition

Address: 0x1024BC Reset Value: 0x0

Note: Please refer to the datasheet section "Audio Playback" for the details of

this register.

Reserved

Bit 0 : A write to this bit triggers the start of audio playback, regardless of

writing ‘0’ or ‘1’. It will read back ‘1’ when playback is ongoing, and ‘0’ when

playback completes.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 65

Register Definition 48 REG_PLAYBACK_LOOP Definition

R/W

31 1 0

REG_PLAYBACK_LOOP Definition

Address: 0x1024B8 Reset Value: 0x0

Note: Please refer to the datasheet section "Audio Playback" for the details of

this register.

Reserved

Bit 0 : this bit controls the audio engine to play back the audio data in RAM_G

from the start address once it consumes all the data. A value of 1 means LOOP

is enabled, a value of 0 means LOOP is disabled.

Register Definition 49 REG_PLAYBACK_FORMAT Definition

Address: 0x1024B4 Reset Value: 0x0

Note: Please read the datasheet section "Audio Playback" for more details.

Bit 0 - 1 : These bits define the format of the audio data in RAM_G. FT800

supports:

 00: Linear Sample format

 01: uLaw Sample format

 10: 4 bit IMA ADPCM Sample format

 11: Undefined.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 66

Register Definition 50 REG_PLAYBACK_FREQ Definition

31 16 15 0

REG_PLAYBACK_FREQ Definition

Address: 0x1024B0 Reset Value: 0x1F40

Note: Please read the datasheet section "Audio Playback" for more details.

Bit 0 - 15 : These bits specify the sampling fequency of audio playback data.

Units is in Hz.

Reserved R/O

Register Definition 51 REG_PLAYBACK_READPTR Definition

31 20 19 0

Note: Please read the datasheet section "Audio Playback" for more details.

Bit 0 - 19 : These bits are updated by the FT800 audio engine while playing audio data

from RAM_G. It is the current audio data address which is playing back. The host can

read this register to check if the audio engine has consumed all the audio data.

Reserved R/O

REG_PLAYBACK_READPTR Definition

Address: 0x1024AC Reset Value: 0x00000

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 67

Register Definition 52 REG_PLAYBACK_LENGTH Definition

31 20 19 0

Note: Please read the datasheet section "Audio Playback" for more details.

Bit 0 - 19 : These bits specify the length of audio data in RAM_G to playback,

starting from the address specified in REG_PLAYBACK_START register.

Reserved R/W

REG_PLAYBACK_LENGTH Definition

Address: 0x1024A8 Reset Value: 0x00000

Register Definition 53 REG_PLAYBACK_START Definition

31 20 19 0

Note: Please read the datasheet section "Audio Playback" for more details.

Bit 0 - 19 : These bits specify the start address of audio data in RAM_G to playback.

Reserved R/W

REG_PLAYBACK_START Definition

Address: 0x1024A4 Reset Value: 0x00000

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 68

3.4 Co-processor Engine Registers

Register Definition 54 REG_CMD_DL Definition

31 14 13 0

REG_CMD_DL Definition

Address: 0x1024EC Reset Value: 0x0000

Note: .

R/WReserved

Bit 0 - 13 : These bits indicate the offset from RAM_DL of a display list command

generated by the coprocessor engine. The coprocessor engine depends on these

bits to determine the address in the display list buffer of generated display list

commands. The coprocessor engine will update this register as long as the display

list commands are generated into the display list buffer. By setting this register

properly, the host can specify the starting address in the display list buffer for the

coprocessor engine to generate display commands. The valid value range is from 0

to 8195.

Register Definition 55 REG_CMD_WRITE Definition

Address: 0x1024E8 Reset Value: 0x0

Note: FIFO size of command buffer is 4096 bytes and each co-processor

instruction is of 4 bytes in size. The value to be written into this register must

be 4 bytes aligned.

Bit 0 - 11 : These bits are updated by the host MCU to inform the coprocessor

engine of the ending address of valid data feeding into its FIFO. Typically, the

host will update this register after it has downloaded the coprocessor

commands into its FIFO. The valid range is from 0 to 4095, i.e. within the size

of the FIFO.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 69

Register Definition 56 REG_CMD_READ Definition

31 12 11 0

Address: 0x1024E4 Reset Value: 0x000

Note: The host shall not write into this register unless in error recovery case.

Its default value is zero after the coprocessor engine is reset.

Bit 0 - 11 : These bits are updated by the coprocessor engine as long as the

coprocessor engine fetched the command from its FIFO. The host can read

this register to determine the FIFO fullness of the coprocessor engine. The

valid value range is from 0 to 4095. In the case of error, the coprocessor

engine writes 0xFFF to this register.

Register Definition 57 REG_TRACKER Definition

31 16 15 0

Address: 0x109000 Reset Value: 0x0

Note: NONE

REG_TRACK Definition

Read Only

Track Value Tag Value

Bit 16 - 31: These bits are set to indicate the tracking value for the tracked graphics objects.

The coprocessor caculates how much the current touching points take within the predefined

range. Please check the CMD_TRACK for more details.

Bit0 - 15: These bits are set to indicate the tag value of a graphics object which is being

touched.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 70

3.5 Miscellaneous Registers

In this chapter, the miscellaneous registers covers backlight control, interrupt, GPIO, and

other functionality registers.

Register Definition 58 REG_PWM_DUTY Definition

Reserved

31 8 7 0

R/W

REG_PWM_DUTY Definition

Address: 0x1024C4 Reset Value: 0x80

Note:

Bit 0 - 7 : These bits define the backlight PWM output duty cycle. The valid

range is from 0 to 128. 0 means backlight complete off, 128 means backlight in

max brightness.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 71

Register Definition 59 REG_PWM_HZ Definition

31 14 13 0

REG_PWM_HZ Definition

Address: 0x1024C0 Reset Value: 0xFA

Note:

Bit 0 - 13 : These bits define the backlight PWM output frequency in HZ. The

default is 250 Hz after reset. The valid frequency is from 250Hz to 10000Hz.

R/WReserved

Register Definition 60 REG_INT_MASK Definition

31 8 7 0

Note: Please read the datasheet section "Interrupts" for more details.

Bit 0 - 7 : These bits are used to mask the corresponding interrupt. 1 means to

enable the corresponding interrupt source, 0 means to disable the

corresponding interrupt source. After reset , all the interrupt source are eligible

to trigger interrupt by default.

Reserved R/W

REG_INT_MASK Definition

Address: 0x1024A0 Reset Value: 0xFF

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 72

Register Definition 61 REG_INT_EN Definition

R/W

31 1 0

REG_INT_EN Definition

Address: 0x10249C Reset Value: 0x0

Note: Please refer to the datasheet section "Interrupts" for the details of this

register.

Reserved

Bit 0 : The host can set this bit to 1 to enable the global interrupt of FT800. To

disable the global interrupt of FT800, the host can set this bit to 0.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 73

Register Definition 62 REG_INT_FLAGS Definition

31 8 7 0

Reserved R/C

REG_INT_FLAGS Definition

Address: 0x102498 Reset Value: 0x00

Note: Please read the datasheet section "Interrupts" for more details.

Bit 0 - 7 : These bits are interrupt flags set by the FT800. The host can read these

bits to determine which interrupt takes place. These bits are cleared

automatically by reading. The host shall not write this register. After reset,

there are no interrupts happen by default , therefore, it is 0x00.

Register Definition 63 REG_GPIO Definition

31 8 7 0

Note: Please read the datasheet section "General Purpose IO pins" for more

details.

Bit 0 - 7 : These bits are versatile. Bit 0 , 1, 7 are used to control GPIO pin values.

Bit 2 - 6 : These are used to configure the drive strength of the pins.

R/WReserved

REG_GPIO Definition

Address: 0x102490 Reset Value: 0x00

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 74

Register Definition 64 REG_GPIO_DIR Definition

31 8 7 0

REG_GPIO_DIR Definition

Address: 0x10248C Reset Value: 0x80

Bit 0 - 7 : These bits configure the direction of GPIO pins of the FT800. Bit 0 controls

the direction of GPIO0 and Bit 7 controls the direction of GPIO7. The bit value 1

means the GPIO pin is set as an output, otherwise it means an input. After reset, only

the GPIO7 is set to output by default.

R/WReserved

Register Definition 65 REG_CPURESET Definition

RW

31 1 0

Address: 0x10241C Reset Value: 0x00

Bit 1 - 31: Reserved

Bit 0: Write this bit to 1 will set the coprocessor engines of the FT800

into the reset state. Write this bit to 0 will resume from reset state to

normal operational mode. If this bit is read as 1, the FT800 coprocessor

engines are in reset state. Otherwise, FT800 corpocessor engines are in

normal state.

Reserved

REG_CPURESET Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 75

Register Definition 66 REG_SCREENSHOT_READ Definition

 Reserved R/W

31 1 0

Address: 0x102554 Reset Value: 0x0

Bit 0 : Set this bit to enable the readout of screenshot of selected Y line.

Bit 1~31: Reserved.

REG_SCREENSHOT_READ Definition

Note: After the REG_SCREENSHOT_BUSY register is clear, this register is required to

set before reading out the screenshot of selected Y lines. The screenshot resides in

RAM_SCREENSHOT and the format of each pixel is in 32 bit BGRA format: Blue channel is in

lowest address and Alpha is in highest address.

Register Definition 67 REG_SCREENSHOT_BUSY Definition

63 0

Address: 0x1024D8 Reset Value: 0x0

Read Only

Bit 0～63: Screen shot busy flag. Any non-zero value in these 64 bits represents the busy

status of screen shot. Zero value in these 64 bits represents the screen shot is done.

REG_SCREENSHOT_BUSY Definition

Note: After the screen shot is started, host shall read this register to determine

when the screen shot is complete.

Register Definition 68 REG_SCREENSHOT_START Definition

 R/W

31 1 0

Address: 0x102418 Reset Value: 0x0

Note: NONE

Bit 0 : Set this bit to start screen shot if screen shot is already enabled. Screen shot is

automatically stopped when screen shot is disabled.

Bit 1~31: Reserved.

REG_SCREENSHOT_START Definition

Reserved

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 76

Register Definition 69 REG_SCREENSHOT_Y Definition

31 9

Address: 0x102414 Reset Value: 0x000

Note: NONE

Bit 0~8 : The value of these 9 bits specifies the line number to capture in horizontal direction

when screen shot is enabled.

Bit 9~31: Reserved.

REG_SCREENSHOT_Y Definition

8 0

Reserved R/W

Register Definition 70 REG_SCREENSHOT_EN Definition

 R/W

31 1 0

Address: 0x102410 Reset Value: 0x0

Bit 0 : Set this bit to enable screen shot for current frame. Clear this bit to disable the screen

shot.

Bit 1-31: Reserved.

REG_SCREENSHOT_EN Definition

Reserved

Register Definition 71 REG_FREQUENCY Definition

31 0

Address: 0x10240C Reset Value: 0x2DC6C00

Read / Write

Bit0 - 31: These bits are set 0x2DC6C00 after reset, i.e. The main clock frequency is 48MHz by

default. The value is in HZ. If the host selects the alternative frequency by using host command

CLK36M, this register must be updated accordingly.

REG_FREQUENCY Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 77

Register Definition 72 REG_CLOCK Definition

31 0

Address: 0x102408 Reset Value: 0x00000000

Read Only

Bit0 - 31: These bits are set to zero after reset. The register counts the number of FT800 main

clock cycles since reset. If the FT800 main clock's frequency is 48Mhz, it will wrap around after

about 89 seconds.

REG_CLOCK Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 78

Register Definition 73 REG_FRAMES Definition

31 0

Address: 0x102404 Reset Value: 0x00000000

Read Only

Bit0 - 31: These bits are set to zero after reset. The register counts the number of screen

frames. If the refresh rate is 60Hz, it will wrap up till about 828 days after reset.

REG_FRAMES Definition

Register Definition 74 REG_ID Definition

31 8 7 0

Address: 0x102400 Reset Value: 0x7C

Bit0 - 7: These bits are the built-in register ID. The host can read it to determine if the chip is

FT800. The value shall always be 0x7C.

Reserved RO

REG_ID Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 79

Register Definition 75 REG_TRIM Definition

31 5 4 0

Address: 0x10256C Reset Value: 0x0

REG_TRIM Definition

Note: Please check the application note AN_299_FT800_FT801_Internal_Clock_Trimming

for more details.

Bit 0 - 4: These bits are set to trim the interanl clock.

Bit 5 - 31: Reserved

Reserved R/W

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 80

4 Display list commands

The graphics engine of FT800 takes the instructions from display list memory RAM_DL in

the form of commands. Each command is 4 bytes long and one display list can be filled

up to 2048 commands since the size of RAM_DL is 8K bytes. The graphics engine of the

FT800 performs respective operation according to the definition of commands.

4.1 Graphics State

The graphics state which controls drawing is stored in the graphics context. Individual

pieces of state can be changed by the appropriate display list commands (e.g.

COLOR_RGB) and the entire state can be saved and restored using the SAVE_CONTEXT

and RESTORE_CONTEXT commands.

Note that the bitmap drawing state is special: Although the bitmap handle is part of the

graphics context, the parameters for each bitmap handle are not part of the graphics

context. They are neither saved nor restored by SAVE_CONTEXT and

RESTORE_CONTEXT. These parameters are changed using the BITMAP_SOURCE,

BITMAP_LAYOUT, and BITMAP_SIZE commands. Once these parameters are set up, they

can be utilized at any display list until they were changed.

SAVE_CONTEXT and RESTORE_CONTEXT are comprised of a 4 level stack in addition to

the current graphics context. The table below details the various parameters in the

graphics context.

Table 3 Graphics Context

Parameters Default values Commands

func & ref ALWAYS, 0 ALPHA_FUNC

func & ref ALWAYS, 0 STENCIL_FUNC

Src & dst SRC_ALPHA,

ONE_MINUS_SRC_ALPHA

BLEND_FUNC

Cell value 0 CELL

Alpha value 0 COLOR_A

Red, Blue, Green colors (255,255,255) COLOR_RGB

Line width in 1/16 pixels 16 LINE_WIDTH

Point size in 1/16 pixels 16 POINT_SIZE

Width & height of scissor 512,512 SCISSOR_SIZE

Starting coordinates of

scissor

(x, y) = (0,0) SCISSOR_XY

Current bitmap handle 0 BITMAP_HANDLE

Bitmap transform +1.0,0,0,0,+1.0,0 BITMAP_TRANSFORM_A-F

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 81

Parameters Default values Commands

coefficients

Stencil clear value 0 CLEAR_STENCIL

Tag clear value 0 CLEAR_TAG

Mask value of stencil 255 STENCIL_MASK

spass and sfail KEEP,KEEP STENCIL_OP

Tag buffer value 255 TAG

Tag mask value 1 TAG_MASK

Alpha clear value 0 CLEAR_COLOR_A

RGB clear color (0,0,0) CLEAR_COLOR_RGB

Each display list command in this section lists any graphics context it sets.

4.2 Command encoding

Each display list command has a 32-bit encoding. The most significant bits of the code

determine the command. Command parameters (if any) are present in the least

significant bits. Any bits marked reserved must be zero.

The graphics primitives supported by FT800 and their respective values are mentioned

below

Table 4 FT800 Graphics Primitives list

Graphics Primitive Primitive value

BITMAPS 1

POINTS 2

LINES 3

LINE_STRIP 4

EDGE_STRIP_R 5

EDGE_STRIP_L 6

EDGE_STRIP_A 7

EDGE_STRIP_B 8

RECTS 9

Various bitmap formats supported by FT800 and their respective values are mentioned

below

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 82

Table 5 Graphics Bitmap Format table

Bitmap format Bitmap format value

ARGB1555 0

L1 1

L4 2

L8 3

RGB332 4

ARGB2 5

ARGB4 6

RGB565 7

PALETTED 8

TEXT8X8 9

TEXTVGA 10

BARGRAPH 11

4.3 Command groups

4.3.1 Setting Graphics state

ALPHA_FUNC set the alpha test function

BITMAP_HANDLE set the bitmap handle

BITMAP_LAYOUT set the source bitmap memory format and layout for the

current handle

BITMAP_SIZE set the screen drawing of bitmaps for the current handle

BITMAP_SOURCE set the source address for bitmap graphics

BITMAP_TRANSFORM_A-F set the components of the bitmap transform matrix

BLEND_FUNC set pixel arithmetic

CELL set the bitmap cell number for the VERTEX2F command

CLEAR clear buffers to preset values

CLEAR_COLOR_A set clear value for the alpha channel

CLEAR_COLOR_RGB set clear values for red, green and blue channels

CLEAR_STENCIL set clear value for the stencil buffer

CLEAR_TAG set clear value for the tag buffer

COLOR_A set the current color alpha

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 83

COLOR_MASK enable or disable writing of color components

COLOR_RGB set the current color red, green and blue

LINE_WIDTH set the line width

POINT_SIZE set point size

RESTORE_CONTEXT restore the current graphics context from the context stack

SAVE_CONTEXT push the current graphics context on the context stack

SCISSOR_SIZE set the size of the scissor clip rectangle

SCISSOR_XY set the top left corner of the scissor clip rectangle

STENCIL_FUNC set function and reference value for stencil testing

STENCIL_MASK control the writing of individual bits in the stencil planes

STENCIL_OP set stencil test actions

TAG set the current tag value

TAG_MASK control the writing of the tag buffer

4.3.2 Drawing actions

BEGIN start drawing a graphics primitive

END finish drawing a graphics primitive

VERTEX2F supply a vertex with fractional coordinates

VERTEX2II supply a vertex with positive integer coordinates

4.3.3 Execution control

JUMP execute commands at another location in the display list

MACRO execute a single command from a macro register

CALL execute a sequence of commands at another location in the

display list

RETURN return from a previous CALL command

DISPLAY end the display list

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 84

4.4 ALPHA_FUNC

Specify the alpha test function

Encoding

31 24 23 11 10 8 7 6 5 4 3 2 1 0

0x09 Reserved func ref

Parameters

func

Specifies the test function, one of NEVER, LESS, LEQUAL, GREATER, GEQUAL,

EQUAL, NOTEQUAL, or ALWAYS. The initial value is ALWAYS (7)

NAME VALUE

NEVER 0

LESS 1

LEQUAL 2

GREATER 3

GEQUAL 4

EQUAL 5

NOTEQUAL 6

ALWAYS 7

Figure 8: The constants of ALPHA_FUNC

ref

Specifies the reference value for the alpha test. The initial value is 0

Graphics context

The values of func and ref are part of the graphics context, as described in section

4.1

See also

 None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 85

4.5 BEGIN

Begin drawing a graphics primitive

Encoding

31 24 23 4 3 2 1 0

 0x1F Reserved prim

Parameters

prim

Graphics primitive. The valid value is defined as below:

Table 6 FT800 graphics primitive operation definition

NAME VALUE Description

BITMAPS 1 Bitmap drawing primitive

POINTS 2 Point drawing primitive

LINES 3 Line drawing primitive

LINE_STRIP 4

Line strip drawing

primitive

EDGE_STRIP_R 5

Edge strip right side

drawing primitive

EDGE_STRIP_L 6

Edge strip left side

drawing primitive

EDGE_STRIP_A 7

Edge strip above drawing

primitive

EDGE_STRIP_B 8

Edge strip below side

drawing primitive

RECTS 9

Rectangle drawing

primitive

Description

All primitives supported by the FT800 are defined in the table above. The primitive

to be drawn is selected by the BEGIN command. Once the primitive is selected, it will be

valid till the new primitive is selected by the BEGIN command.

Please note that the primitive drawing operation will not be performed until

VERTEX2II or VERTEX2F is executed.

Examples

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 86

Drawing points, lines and bitmaps:

dl(BEGIN(POINTS));

dl(VERTEX2II(50, 5, 0, 0));

dl(VERTEX2II(110, 15, 0, 0));

dl(BEGIN(LINES));

dl(VERTEX2II(50, 45, 0, 0));

dl(VERTEX2II(110, 55, 0, 0));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(50, 65, 31, 0x45));

dl(VERTEX2II(110, 75, 31, 0x46));

Graphics context

 None

See also

 END

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 87

4.6 BITMAP_HANDLE

Specify the bitmap handle

Encoding

31 24 23 5 4 3 2 1 0

0x05 reserved handle

Parameters

handle

Bitmap handle. The initial value is 0. The valid value range is from 0 to 31.

Description

Handles 16 to 31 are defined by the FT800 for built-in font and handle 15 is

defined in the co-processor engine commands CMD_GRADIENT, CMD_BUTTON and

CMD_KEYS. Users can define new bitmaps using handles from 0 to 14. If there is

no co-processor engine command CMD_GRADIENT, CMD_BUTTON and CMD_KEYS in

the current display list, users can even define a bitmap using handle 15.

Graphics context

 The value of handle is part of the graphics context, as described in section 4.1

See also

 BITMAP_LAYOUT, BITMAP_SIZE

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 88

4.7 BITMAP_LAYOUT

Specify the source bitmap memory format and layout for the current handle.

Encoding

31 24 23 22 21 20 19 18 9 8 0

0x07 format linestride Height

Parameters

format

Bitmap pixel format. The valid range is from 0 to 11 and defined as per the

table below.

 Table 7 BITMAP_LAYOUT format list

NAME VALUE

ARGB1555 0

L1 1

L4 2

L8 3

RGB332 4

ARGB2 5

ARGB4 6

RGB565 7

PALETTED 8

TEXT8X8 9

TEXTVGA 10

BARGRAPH 11

 Various bitmap formats supported are:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 89

BARGRAPH - render data as a bar graph. Looks up the x coordinate in a byte array, then

gives an opaque pixel if the byte value is less than y, otherwise a transparent pixel. The

result is a bar graph of the bitmap data. A maximum of 256x256 size bitmap can be

drawn using the BARGRAPH format. Orientation, width and height of the graph can be

altered using the bitmap transform matrix.

TEXT8X8 - lookup in a fixed 8x8 font. The bitmap is a byte array present in the graphics

ram and each byte indexes into an internal 8x8 CP437 [2] font (inbuilt font bitmap

handles 16 & 17 are used for drawing TEXT8X8 format). The result is that the bitmap

acts like a character grid. A single bitmap can be drawn which covers all or part of the

display; each byte in the bitmap data corresponds to one 8x8 pixel character cell.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 90

TEXTVGA – lookup in a fixed 8x16 font with TEXTVGA syntax. The bitmap is a TEXTVGA

array present in the graphics ram, each element indexes into an internal 8x16 CP437 [2]

font (inbuilt font bitmap handles 18 & 19 are used for drawing TEXTVGA format with

control information such as background color, foreground color and cursor etc). The

result is that the bitmap acts like a TEXTVGA grid. A single bitmap can be drawn which

covers all or part of the display; each TEXTVGA data type in the bitmap corresponds to

one 8x16 pixel character cell.

PALETTED - bitmap bytes are indices into a palette table. By using a palette table -

which contains 32-bit RGBA colors - a significant amount of memory can be saved. The

256 color palette is stored in a dedicated 1K (256x4) byte RAM_PAL.

 linestride

Bitmap linestride, in bytes. Please note the alignment requirement which is

described below.

height

Bitmap height, in lines

Description

The bitmap formats supported are L1, L4, L8, RGB332, ARGB2, ARGB4, ARGB1555,

RGB565 and Palette.

For L1 format, the line stride must be a multiple of 8 bits; For L4 format the line

stride must be multiple of 2 nibbles. (Aligned to byte)

For more details about alignment, please refer to the figures below:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 91

Byte Order

Pixel 0 Bit 7

Pixel 1 Bit 6

Pixel 7 Bit 0

Byte Order

Pixel 0 Bit 7-4

Pixel 1 Bit 3-0

Byte Order

Pixel 0 Bit 7-0 Byte 0
pixel 1 Bit 15-8 Byte 1
pixel 2 Bit 23-16 Byte 2

L8 format layout

L1 format layout

L4 format layout

Byte 0

Byte 0

……

Figure 9: Pixel format for L1/L4/L8

Byte Order

A Bit 7-6

R Bit 5-4

G Bit 3-2

B Bit 1-0

Byte Order

A Bit 15

R Bit 14-10

G Bit 9- 5

B Bit 4-0

ARGB2 format layout

ARGB1555 format layout

Byte 0

Byte 1

Byte 0

Figure 10: Pixel format for ARGB2/1555

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 92

 Byte Order

A Bit 15-12

R Bit 11-8

G Bit 7-4

B Bit 3-0

 Byte Order

R Bit 7-5

G Bit 4-2

B Bit 1-0

Byte Order

R Bit 15-11

G Bit 10-5

B Bit 4-0

Byte Order

A Bit 31-24 Byte 3

R Bit 23-16 Byte 2

G Bit 15-8 Byte 1

B Bit 7-0 Byte 0

Palette format layout

Byte 0

RGB565 format layout

Byte 1

Byte 0

ARGB4 format layout

RGB332 pixel layout

Byte 1

Byte 0

Figure 11: Pixel format for ARGB4, RGB332, RGB565 and Palette

Graphics context

None

See also

 BITMAP_HANDLE, BITMAP_SIZE, BITMAP_SOURCE

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 93

4.8 BITMAP_SIZE

Specify the screen drawing of bitmaps for the current handle

Encoding

31 24 23 21 20 19 18 17 9 8 0

 0x08 reserved filter wrapx wrapy width height

Parameters

filter

Bitmap filtering mode, one of NEAREST or BILINEAR

The value of NEAREST is 0 and the value of BILINEAR is 1.

wrapx

Bitmap x wrap mode, one of REPEAT or BORDER

The value of BORDER is 0 and the value of REPEAT is 1.

wrapy

Bitmap y wrap mode, one of REPEAT or BORDER

width

Drawn bitmap width, in pixels

height

Drawn bitmap height, in pixels

Description

This command controls the drawing of bitmaps: the on-screen size of the bitmap,

the behavior for wrapping, and the filtering function. Please note that if wrapx or

wrapy is REPEAT then the corresponding memory layout dimension

(BITMAP_LAYOUT line stride or height) must be power of two, otherwise the result is

undefined.

For parameter width and height, the value from 1 to 511 means the bitmap width

and height in pixel. The value of zero means the 512 pixels in width or height.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 94

Examples

Drawing a 64 x 64 bitmap:

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_SIZE(NEAREST, BORDER,

BORDER, 64, 64));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(48, 28, 0, 0));

Reducing the size to 32 x 50:

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_SIZE(NEAREST, BORDER,

BORDER, 32, 50));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(48, 28, 0, 0));

Using the REPEAT wrap mode to tile the bitmap:

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_SIZE(NEAREST, REPEAT,

REPEAT, 160, 120));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(0, 0, 0, 0));

4X zoom - 128 X 128 - using a bitmap transform:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 95

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_TRANSFORM_A(128));

dl(BITMAP_TRANSFORM_E(128));

dl(BITMAP_SIZE(NEAREST, BORDER,

BORDER, 128, 128));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(16, 0, 0, 0));

Using a bilinear filter makes the zoomed image a little smoother:

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_TRANSFORM_A(128));

dl(BITMAP_TRANSFORM_E(128));

dl(BITMAP_SIZE(BILINEAR, BORDER,

BORDER, 128, 128));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(16, 0, 0, 0));

Graphics context

None

See also

 BITMAP_HANDLE, BITMAP_LAYOUT, BITMAP_SOURCE

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 96

4.9 BITMAP_SOURCE

Specify the source address of bitmap data in FT800 graphics memory RAM_G.

Encoding

31 24 23 20 19 0

0x01 Reserved addr

Parameters

addr

Bitmap address in graphics SRAM FT800, aligned with respect to the bitmap

format.

For example, if the bitmap format is RGB565/ARGB4/ARGB1555, the bitmap

source shall be aligned to 2 bytes.

Description

The bitmap source address is normally the address in main memory where the

bitmap graphic data is loaded.

Examples

Drawing a 64 x 64 bitmap, loaded at address 0:

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_SIZE(NEAREST, BORDER,

BORDER, 64, 64));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(48, 28, 0, 0));

Using the same graphics data, but with source and size changed to show only a

32 x 32 detail:

dl(BITMAP_SOURCE(128 * 16 + 32));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_SIZE(NEAREST, BORDER,

BORDER, 32, 32));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(48, 28, 0, 0));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 97

Graphics context

 None

See also

 BITMAP_LAYOUT, BITMAP_SIZE

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 98

4.10 BITMAP_TRANSFORM_A

Specify the A coefficient of the bitmap transform matrix.

Encoding

31 24 23 17 16 0

 0x15 Reserved a

Parameters

a

Coefficient A of the bitmap transform matrix, in signed 8.8 bit fixed-point

form. The initial value is 256.

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform

functionalities such as scaling, rotation and translation. These are similar to openGL

transform functionality.

Examples

A value of 0.5 (128) causes the bitmap appear double width:

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_TRANSFORM_A(128));

dl(BITMAP_SIZE(NEAREST, BORDER,

BORDER, 128, 128));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(16, 0, 0, 0));

A value of 2.0 (512) gives a half-width bitmap:

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_TRANSFORM_A(512));

dl(BITMAP_SIZE(NEAREST, BORDER,

BORDER, 128, 128));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(16, 0, 0, 0));

Graphics context

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 99

 The value of a is part of the graphics context, as described in section 4.1

See also

 None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 100

4.11 BITMAP_TRANSFORM_B

Specify the B coefficient of the bitmap transform matrix

Encoding

31 24 23 17 16 0

 0x16 Reserved b

Parameters

b

Coefficient B of the bitmap transform matrix, in signed 8.8 bit fixed-point

form. The initial value is 0

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform

functionalities such as scaling, rotation and translation. These are similar to openGL

transform functionality.

Graphics context

 The value of B is part of the graphics context, as described in section 4.1

See also

 None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 101

4.12 BITMAP_TRANSFORM_C

Specify the C coefficient of the bitmap transform matrix

Encoding

31 24 23 0

 0x17 c

Parameters

c

Coefficient C of the bitmap transform matrix, in signed 15.8 bit fixed-point

form. The initial value is 0

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform

functionalities such as scaling, rotation and translation. These are similar to openGL

transform functionality.

Graphics context

 The value of c is part of the graphics context, as described in section 4.1

See also

 None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 102

4.13 BITMAP_TRANSFORM_D

Specify the D coefficient of the bitmap transform matrix

Encoding

31 24 23 17 16 0

 0x18 Reserved d

Parameters

d

Coefficient D of the bitmap transform matrix, in signed 8.8 bit fixed-point

form. The initial value is 0

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform

functionalities such as scaling, rotation and translation. These are similar to openGL

transform functionality.

Graphics context

 The value of d is part of the graphics context, as described in section 4.1

See also

 None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 103

4.14 BITMAP_TRANSFORM_E

Specify the E coefficient of the bitmap transform matrix

Encoding

31 24 23 17 16 0

 0x19 Reserved e

Parameters

e

Coefficient E of the bitmap transform matrix, in signed 8.8 bit fixed-point

form. The initial value is 256

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform

functionalities such as scaling, rotation and translation. These are similar to openGL

transform functionality.

Examples

A value of 0.5 (128) causes the bitmap appear double height:

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_TRANSFORM_E(128));

dl(BITMAP_SIZE(NEAREST, BORDER,

BORDER, 128, 128));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(16, 0, 0, 0));

A value of 2.0 (512) gives a half-height bitmap:

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_TRANSFORM_E(512));

dl(BITMAP_SIZE(NEAREST, BORDER,

BORDER, 128, 128));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(16, 0, 0, 0));

Graphics context

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 104

 The value of e is part of the graphics context, as described in section 4.1

See also

 None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 105

4.15 BITMAP_TRANSFORM_F

Specify the F coefficient of the bitmap transform matrix

Encoding

31 24 23 0

 0x1A f

Parameters

f

Coefficient F of the bitmap transform matrix, in signed 15.8 bit fixed-point

form. The initial value is 0

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform

functionalities such as scaling, rotation and translation. These are similar to openGL

transform functionality.

Graphics context

 The value of f is part of the graphics context, as described in section 4.1

See also

 None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 106

4.16 BLEND_FUNC

Specify pixel arithmetic

Encoding

31 24 23 6 5 3 2 0

 0x0B reserved src dst

Parameters

src

Specifies how the source blending factor is computed. One of ZERO, ONE,

SRC_ALPHA, DST_ALPHA, ONE_MINUS_SRC_ALPHA or

ONE_MINUS_DST_ALPHA. The initial value is SRC_ALPHA (2).

dst

Specifies how the destination blending factor is computed, one of the same

constants as src. The initial value is ONE_MINUS_SRC_ALPHA(4)

 Table 8 BLEND_FUNC constant value definition

NAME VALUE Description

ZERO 0 Check openGL definition

ONE 1 Check openGL definition

SRC_ALPHA 2 Check openGL definition

DST_ALPHA 3 Check openGL definition

ONE_MINUS_SRC_ALPHA 4 Check openGL definition

ONE_MINUS_DST_ALPHA 5 Check openGL definition

Description

The blend function controls how new color values are combined with the values

already in the color buffer. Given a pixel value source and a previous value in the

color buffer destination, the computed color is:

source × src + destination × dst

for each color channel: red, green, blue and alpha.

Examples

The default blend function of (SRC_ALPHA, ONE_MINUS_SRC_ALPHA) causes

drawing to overlay the destination using the alpha value:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 107

dl(BEGIN(BITMAPS));

dl(VERTEX2II(50, 30, 31, 0x47));

dl(COLOR_A(128));

dl(VERTEX2II(60, 40, 31, 0x47));

A destination factor of zero means that destination pixels are not used:

dl(BEGIN(BITMAPS));

dl(BLEND_FUNC(SRC_ALPHA, ZERO));

dl(VERTEX2II(50, 30, 31, 0x47));

dl(COLOR_A(128));

dl(VERTEX2II(60, 40, 31, 0x47));

Using the source alpha to control how much of the destination to keep:

dl(BEGIN(BITMAPS));

dl(BLEND_FUNC(ZERO, SRC_ALPHA));

dl(VERTEX2II(50, 30, 31, 0x47));

Graphics context

 The values of src and dst are part of the graphics context, as described in section

4.1

See also

 COLOR_A

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 108

4.17 CALL

Execute a sequence of commands at another location in the display list

Encoding

31 24 23 16 15 0

 0x1D Reserved dest

Parameters

dest

The destination address in RAM_DL which the display command is to be

switched. FT800 has the stack to store the return address. To come back to

the next command of source address, the RETURN command can help.

Description

CALL and RETURN have a 4 level stack in addition to the current pointer. Any

additional CALL/RETURN done will lead to unexpected behavior.

Graphics context

 None

See also

 JUMP, RETURN

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 109

4.18 CELL

Specify the bitmap cell number for the VERTEX2F command.

Encoding

31 24 23 7 6 0

0x06 Reserved Cell

Parameters

cell

bitmap cell number. The initial value is 0

Graphics context

 The value of cell is part of the graphics context, as described in section 4.1

See also

 None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 110

4.19 CLEAR

Clear buffers to preset values

Encoding

31 24 23 3 2 1 0

0x26 Reserved C S T

Parameters

c

Clear color buffer. Setting this bit to 1 will clear the color buffer of the FT800

to the preset value. Setting this bit to 0 will maintain the color buffer of the

FT800 with an unchanged value. The preset value is defined in command

CLEAR_COLOR_RGB for RGB channel and CLEAR_COLOR_A for alpha channel.

s

Clear stencil buffer. Setting this bit to 1 will clear the stencil buffer of the

FT800 to the preset value. Setting this bit to 0 will maintain the stencil

buffer of the FT800 with an unchanged value. The preset value is defined in

command CLEAR_STENCIL.

t

Clear tag buffer. Setting this bit to 1 will clear the tag buffer of the FT800 to

the preset value. Setting this bit to 0 will maintain the tag buffer of the

FT800 with an unchanged value. The preset value is defined in command

CLEAR_TAG.

Description

The scissor test and the buffer write masks affect the operation of the clear. Scissor

limits the cleared rectangle, and the buffer write masks limit the affected buffers.

The state of the alpha function, blend function, and stenciling do not affect the clear.

Examples

To clear the screen to bright blue:

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(CLEAR(1, 0, 0));

To clear part of the screen to gray, part to blue using scissor rectangles:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 111

dl(CLEAR_COLOR_RGB(100, 100, 100));

dl(CLEAR(1, 1, 1));

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(SCISSOR_SIZE(30, 120));

dl(CLEAR(1, 1, 1));

Graphics context

 None

See also

 CLEAR_COLOR_A, CLEAR_STENCIL, CLEAR_TAG, CLEAR_COLOR_RGB

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 112

4.20 CLEAR_COLOR_A

Specify clear value for the alpha channel

Encoding

32 24 23 8 7 0

0x0F Reserved Alpha

Parameters

alpha

Alpha value used when the color buffer is cleared. The initial value is 0

Graphics context

 The value of alpha is part of the graphics context, as described in section 4.1

See also

 CLEAR_COLOR_RGB, CLEAR

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 113

4.21 CLEAR_COLOR_RGB

Specify clear values for red, green and blue channels

Encoding

31 24 23 16 15 8 7 0

0x02 Red Blue Green

Parameters

red

Red value used when the color buffer is cleared. The initial value is 0

green

Green value used when the color buffer is cleared. The initial value is 0

blue

Blue value used when the color buffer is cleared. The initial value is 0

Description

Sets the color values used by a following CLEAR.

Examples

To clear the screen to bright blue:

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(CLEAR(1, 1, 1));

To clear part of the screen to gray, part to blue using scissor rectangles:

dl(CLEAR_COLOR_RGB(100, 100, 100));

dl(CLEAR(1, 1, 1));

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(SCISSOR_SIZE(30, 120));

dl(CLEAR(1, 1, 1));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 114

Graphics context

 The values of red, green and blue are part of the graphics context, as described in

section 4.1

See also

 CLEAR_COLOR_A, CLEAR

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 115

4.22 CLEAR_STENCIL

Specify clear value for the stencil buffer

Encoding

31 24 23 8 7 0

0x11 Reserved s

Parameters

s

Value used when the stencil buffer is cleared. The initial value is 0

Graphics context

 The value of s is part of the graphics context, as described in section 4.1

See also

 CLEAR

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 116

4.23 CLEAR_TAG

Specify clear value for the tag buffer

Encoding

31 24 23 8 7 0

0x12 Reserved t

Parameters

t

Value used when the tag buffer is cleared. The initial value is 0.

Graphics context

 The value of s is part of the graphics context, as described in section 4.1

See also

 TAG, TAG_MASK, CLEAR

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 117

4.24 COLOR_A

Set the current color alpha

Encoding

31 24 23 8 7 0

0x10 Reserved alpha

Parameters

alpha

Alpha for the current color. The initial value is 255

Description

Sets the alpha value applied to drawn elements - points, lines, and bitmaps. How

the alpha value affects image pixels depends on BLEND_FUNC; the default behavior

is a transparent blend.

Examples

Drawing three characters with transparency 255, 128, and 64:

dl(BEGIN(BITMAPS));

dl(VERTEX2II(50, 30, 31, 0x47));

dl(COLOR_A(128));

dl(VERTEX2II(58, 38, 31, 0x47));

dl(COLOR_A(64));

dl(VERTEX2II(66, 46, 31, 0x47));

Graphics context

 The value of alpha is part of the graphics context, as described in section 4.1

See also

 COLOR_RGB, BLEND_FUNC

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 118

4.25 COLOR_MASK

Enable or disable writing of color components

Encoding

31 24 23 4 3 2 1 0

0x20 reserved r g b a

Parameters

r

Enable or disable the red channel update of the FT800 color buffer. The initial

value is 1 and means enable.

g

Enable or disable the green channel update of the FT800 color buffer. The

initial value is 1 and means enable.

b

Enable or disable the blue channel update of the FT800 color buffer. The initial

value is 1 and means enable.

a

Enable or disable the alpha channel update of the FT800 color buffer. The

initial value is 1 and means enable.

Description

The color mask controls whether the color values of a pixel are updated. Sometimes

it is used to selectively update only the red, green, blue or alpha channels of the

image. More often, it is used to completely disable color updates while updating the

tag and stencil buffers.

Examples

Draw a '8' digit in the middle of the screen. Then paint an invisible 40-pixel circular

touch area into the tag buffer:

dl(BEGIN(BITMAPS));

dl(VERTEX2II(68, 40, 31, 0x38));

dl(POINT_SIZE(40 * 16));

dl(COLOR_MASK(0, 0, 0, 0));

dl(BEGIN(POINTS));

dl(TAG(0x38));

dl(VERTEX2II(80, 60, 0, 0));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 119

Graphics context

 The values of r, g, b and a are part of the graphics context, as described in section

4.1

See also

 TAG_MASK

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 120

4.26 COLOR_RGB

Set the current color red, green and blue

Encoding

31 24 23 16 15 8 7 0

 0x04 Red Blue Green

Parameters

red

Red value for the current color. The initial value is 255

green

Green value for the current color. The initial value is 255

blue

Blue value for the current color. The initial value is 255

Description

Sets red, green and blue values of the FT800 color buffer which will be applied to the

following draw operation.

Examples

Drawing three characters with different colors:

dl(BEGIN(BITMAPS));

dl(VERTEX2II(50, 38, 31, 0x47));

dl(COLOR_RGB(255, 100, 50));

dl(VERTEX2II(80, 38, 31, 0x47));

dl(COLOR_RGB(50, 100, 255));

dl(VERTEX2II(110, 38, 31, 0x47));

Graphics context

The values of red, green and blue are part of the graphics context, as described in

section 4.1

See also

COLOR_A

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 121

4.27 DISPLAY

End the display list. FT800 will ignore all the commands following this command.

Encoding

31 24 23 0

 0x0 Reserved

Parameters

 None

Graphics context

 None

See also

 None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 122

4.28 END

End drawing a graphics primitive.

Encoding

31 24 23 0

0x21 Reserved

Parameters

None

Description

It is recommended to have an END for each BEGIN. Whereas advanced users can

avoid the usage of END in order to save extra graphics instructions in the display list

RAM.

Graphics context

None

See also

BEGIN

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 123

4.29 JUMP

Execute commands at another location in the display list

Encoding

31 24 23 16 15 0

0x1E Reserved dest

Parameters

dest

Display list address to be jumped.

Graphics context

None

See also

CALL

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 124

4.30 LINE_WIDTH

Specify the width of lines to be drawn with primitive LINES in 1/16th pixel precision.

Encoding

31 24 23 12 11 0

0x0E Reserved width

Parameters

width

Line width in 1/16 pixel. The initial value is 16.

Description

Sets the width of drawn lines. The width is the distance from the center of the line to

the outermost drawn pixel, in units of 1/16 pixel. The valid range is from 16 to 4095

in terms of 1/16th pixel units.

Please note the LINE_WIDTH command will affect the LINES, LINE_STRIP, RECTS,

EDGE_STRIP_A/B/R/L primitives.

Examples

The second line is drawn with a width of 80, for a 5 pixel radius:

dl(BEGIN(LINES));

dl(VERTEX2F(16 * 10, 16 * 30));

dl(VERTEX2F(16 * 150, 16 * 40));

dl(LINE_WIDTH(80));

dl(VERTEX2F(16 * 10, 16 * 80));

dl(VERTEX2F(16 * 150, 16 * 90));

Graphics context

The value of width is part of the graphics context, as described in section 4.1

See also

None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 125

4.31 MACRO

 Execute a single command from a macro register.

Encoding

31 24 23 1 0

0x25 Reserved m

Parameters

m

Macro register to read. Value 0 means the FT800 will fetch the command

from REG_MACRO_0 to execute. Value 1 means the FT800 will fetch the

command from REG_MACRO_1 to execute. The content of REG_MACRO_0 or

REG_MACRO_1 shall be a valid display list command, otherwise the behavior

is undefined.

Graphics context

None

See also

None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 126

4.32 POINT_SIZE

Specify the radius of points

Encoding

31 24 23 17 16 0

0x0D Reserved Size

Parameters

size

Point radius in 1/16 pixel. The initial value is 16.

Description

Sets the size of drawn points. The width is the distance from the center of the point

to the outermost drawn pixel, in units of 1/16 pixels. The valid range is from 16 to

8191 with respect to 1/16th pixel unit.

Examples

The second point is drawn with a width of 160, for a 10 pixel radius:

dl(BEGIN(POINTS));

dl(VERTEX2II(40, 30, 0, 0));

dl(POINT_SIZE(160));

dl(VERTEX2II(120, 90, 0, 0));

Graphics context

The value of size is part of the graphics context, as described in section 4.1

See also

None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 127

4.33 RESTORE_CONTEXT

Restore the current graphics context from the context stack

Encoding

31 24 23 0

 0x23 Reserved

Parameters

None

Description

Restores the current graphics context, as described in section 4.1. Four (4) levels of

SAVE and RESTORE are available in the FT800. Any extra RESTORE_CONTEXT will

load the default values into the present context.

Examples

Saving and restoring context means that the second 'G' is drawn in red, instead of

blue:

dl(BEGIN(BITMAPS));

dl(COLOR_RGB(255, 0, 0));

dl(SAVE_CONTEXT());

dl(COLOR_RGB(50, 100, 255));

dl(VERTEX2II(80, 38, 31, 0x47));

dl(RESTORE_CONTEXT());

dl(VERTEX2II(110, 38, 31, 0x47));

Graphics context

None

See also

SAVE_CONTEXT

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 128

4.34 RETURN

Return from a previous CALL command.

Encoding

31 24 23 0

 0x24 Reserved

Parameters

None

Description

CALL and RETURN have 4 levels of stack in addition to the current pointer. Any

additional CALL/RETURN done will lead to unexpected behavior.

Graphics context

 None

See also

 CALL

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 129

4.35 SAVE CONTEXT

Push the current graphics context on the context stack

Encoding

31 24 23 0

 0x22 Reserved

Parameters

None

Description

Saves the current graphics context, as described in section 4.1. Any extra

SAVE_CONTEXT will throw away the earliest saved context.

Examples

Saving and restoring context means that the second 'G' is drawn in red, instead of

blue:

dl(BEGIN(BITMAPS));

dl(COLOR_RGB(255, 0, 0));

dl(SAVE_CONTEXT());

dl(COLOR_RGB(50, 100, 255));

dl(VERTEX2II(80, 38, 31, 0x47));

dl(RESTORE_CONTEXT());

dl(VERTEX2II(110, 38, 31, 0x47));

Graphics context

 None

See also

 RESTORE_CONTEXT

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 130

4.36 SCISSOR_SIZE

Specify the size of the scissor clip rectangle

Encoding

31 24 23 20 19 10 9 0

0x1C Reserved Width Height

Parameters

width

The width of the scissor clip rectangle, in pixels. The initial value is 512.

The valid value range is from 0 to 512.

height

The height of the scissor clip rectangle, in pixels. The initial value is 512.

The valid value range is from 0 to 512.

Description

Sets the width and height of the scissor clip rectangle, which limits the drawing area.

Examples

Setting a 40 x 30 scissor rectangle clips the clear and bitmap drawing:

dl(SCISSOR_XY(40, 30));

dl(SCISSOR_SIZE(80, 60));

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(CLEAR(1, 1, 1));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(35, 20, 31, 0x47));

Graphics context

 The values of width and height are part of the graphics context 4.1

See also

None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 131

4.37 SCISSOR_XY

Specify the top left corner of the scissor clip rectangle

Encoding

31 24 23 19 17 9 8 0

0x1B Reserved x y

Parameters

x

The x coordinate of the scissor clip rectangle, in pixels. The initial value is 0

y

The y coordinate of the scissor clip rectangle, in pixels. The initial value is 0

Description

Sets the top-left position of the scissor clip rectangle, which limits the drawing area.

Examples

Setting a 40 x 30 scissor rectangle clips the clear and bitmap drawing:

dl(SCISSOR_XY(40, 30));

dl(SCISSOR_SIZE(80, 60));

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(CLEAR(1, 1, 1));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(35, 20, 31, 0x47));

Graphics context

 The values of x and y are part of the graphics context 4.1

See also

 None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 132

4.38 STENCIL_FUNC

Set function and reference value for stencil testing

Encoding

31 24 23 20 19 16 15 8 7 0

0x0A Reserved func ref mask

Parameters

func

Specifies the test function, one of NEVER, LESS, LEQUAL, GREATER, GEQUAL,

EQUAL, NOTEQUAL, or ALWAYS. The initial value is ALWAYS. About the value

of these constants, please check Figure 8: The constants of ALPHA_FUNC

ref

Specifies the reference value for the stencil test. The initial value is 0

mask

Specifies a mask that is ANDed with the reference value and the stored stencil

value. The initial value is 255

Description

Stencil test rejects or accepts pixels depending on the result of the test function

defined in func parameter, which operates on the current value in the stencil buffer

against the reference value.

Examples

Draw two points, incrementing stencil at each pixel, then draw the pixels with value

2 in red:

dl(STENCIL_OP(INCR, INCR));

dl(POINT_SIZE(760));

dl(BEGIN(POINTS));

dl(VERTEX2II(50, 60, 0, 0));

dl(VERTEX2II(110, 60, 0, 0));

dl(STENCIL_FUNC(EQUAL, 2, 255));

dl(COLOR_RGB(100, 0, 0));

dl(VERTEX2II(80, 60, 0, 0));

Graphics context

The values of func, ref and mask are part of the graphics context, as described in

section 4.1

See also

STENCIL_OP, STENCIL_MASK

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 133

4.39 STENCIL_MASK

Control the writing of individual bits in the stencil planes

Encoding

31 24 23 8 7 0

 0x13 reserved mask

Parameters

mask

The mask used to enable writing stencil bits. The initial value is 255

Graphics context

The value of mask is part of the graphics context, as described in section 4.1

See also

STENCIL_FUNC, STENCIL_OP, TAG_MASK

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 134

4.40 STENCIL_OP

Set stencil test actions

Encoding

31 24 23 6 5 3 2 0

0x0C reserved sfail spass

Parameters

sfail

Specifies the action to take when the stencil test fails, one of KEEP, ZERO,

REPLACE, INCR, DECR, and INVERT. The initial value is KEEP (1)

spass

Specifies the action to take when the stencil test passes, one of the same

constants as sfail. The initial value is KEEP (1)

NAME VALUE

ZERO 0

KEEP 1

REPLACE 2

INCR 3

DECR 4

INVERT 5

Figure 12: STENCIL_OP constants definition

Description

The stencil operation specifies how the stencil buffer is updated. The operation

selected depends on whether the stencil test passes or not.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 135

Examples

Draw two points, incrementing stencil at each pixel, then draw the pixels with value

2 in red:

dl(STENCIL_OP(INCR, INCR));

dl(POINT_SIZE(760));

dl(BEGIN(POINTS));

dl(VERTEX2II(50, 60, 0, 0));

dl(VERTEX2II(110, 60, 0, 0));

dl(STENCIL_FUNC(EQUAL, 2, 255));

dl(COLOR_RGB(100, 0, 0));

dl(VERTEX2II(80, 60, 0, 0));

Graphics context

The values of sfail and spass are part of the graphics context, as described in

section 4.1

See also

STENCIL_FUNC, STENCIL_MASK

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 136

4.41 TAG

Attach the tag value for the following graphics objects drawn on the screen. The initial

tag buffer value is 255.

Encoding

31 24 23 8 7 0

0x03 Reserved s

Parameters

s

Tag value. Valid value range is from 1 to 255.

Description

 The initial value of the tag buffer of the FT800 is specified by command CLEAR_TAG

and taken effect by command CLEAR. TAG command can specify the value of the tag

buffer of the FT800 that applies to the graphics objects when they are drawn on the

screen. This TAG value will be assigned to all the following objects, unless the

TAG_MASK command is used to disable it. Once the following graphics objects are

drawn, they are attached with the tag value successfully. When the graphics objects

attached with the tag value are touched, the register REG_TOUCH_TAG will be updated

with the tag value of the graphics object being touched.

 If there is no TAG commands in one display list, all the graphics objects rendered by

the display list will report tag value as 255 in REG_TOUCH_TAG when they were

touched.

Graphics context

The value of s is part of the graphics context, as described in section 4.1

See also

CLEAR_TAG, TAG_MASK

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 137

4.42 TAG_MASK

Control the writing of the tag buffer

Encoding

31 24 23 1 0

0x14 Reserved

m
a
s
k

Parameters

mask

Allow updates to the tag buffer. The initial value is one and it means the tag

buffer of the FT800 is updated with the value given by the TAG command.

Therefore, the following graphics objects will be attached to the tag value

given by the TAG command.

The value zero means the tag buffer of the FT800 is set as the default value,

rather than the value given by TAG command in the display list.

Description

Every graphics object drawn on screen is attached with the tag value which is

defined in the FT800 tag buffer. The FT800 tag buffer can be updated by TAG

command.

The default value of the FT800 tag buffer is determined by CLEAR_TAG and

CLEAR commands. If there is no CLEAR_TAG command present in the display

list, the default value in tag buffer shall be 0.

TAG_MASK command decides whether the FT800 tag buffer takes the value

from the default value of the FT800 tag buffer or the TAG command of the

display list.

Graphics context

The value of mask is part of the graphics context, as described in section 4.1

See also

TAG, CLEAR_TAG, STENCIL_MASK, COLOR_MASK

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 138

4.43 VERTEX2F

Start the operation of graphics primitives at the specified screen coordinate, in 1/16th

pixel precision.

Encoding

31 30 29 15 14 0

0b’01 X Y

Parameters

x

Signed x-coordinate in 1/16 pixel precision

y

Signed y-coordinate in 1/16 pixel precision

Description

The range of coordinates is from -16384 to +16383 in terms of 1/16th pixel units.

The negative x coordinate value means the coordinate in the left virtual screen from

(0, 0), while the negative y coordinate value means the coordinate in the upper

virtual screen from (0, 0). If drawing on the negative coordinate position, the

drawing operation will not be visible.

Graphics context

None

See also

None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 139

4.44 VERTEX2II

Start the operation of graphics primitive at the specified coordinates in pixel precision.

Encoding

31 30 29 21 20 12 11 7 6 0

0b’10 X Y handle cell

Parameters

x

x-coordinate in pixels, from 0 to 511.

y

y-coordinate in pixels, from 0 to 511.

handle

Bitmap handle. The valid range is from 0 to 31. From 16 to 31, the bitmap

handle is dedicated to the FT800 built-in font.

cell

Cell number. Cell number is the index of bitmap with same bitmap layout and

format. For example, for handle 31, the cell 65 means the character "A" in

the largest built in font.

Description

The range of coordinates is from -16384 to +16383 in terms of pixel unit. The

handle and cell parameters are ignored unless the graphics primitive is specified as

bitmap by command BEGIN, prior to this command.

Graphics context

None

See also

None

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 140

5 Co-Processor Engine commands

 CMD_TEXT - draw text

 CMD_BUTTON - draw a button

 CMD_CLOCK - draw an analog clock

 CMD_GAUGE - draw a gauge

CMD_GRADIENT - draw a smooth color

gradient

 CMD_KEYS - draw a row of key

 CMD_PROGRESS - draw a progress bar

 CMD_SLIDER - draw a slider

 CMD_SCROLLBAR - draw a scroll bar

 CMD_DIAL - draw a rotary dial control

 CMD_TOGGLE - draw a toggle switch

 CMD_NUMBER - draw a decimal number

The co-processor engine is fed via a 4 Kbyte FIFO in FT800 memory at RAM_CMD. The

MCU writes commands into the FIFO, and the co-processor engine reads and executes

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 141

the commands. The MCU updates register REG_CMD_WRITE to indicate that there are

new commands in the FIFO, and the co-processor engine updates REG_CMD_READ after

commands have been executed.

So to compute the available free space in the FIFO, the MCU can compute:

fullness = (REG_CMD_WRITE -REG_CMD_READ) mod 4096

freespace = (4096 - 4) -fullness;

This calculation does not report 4096 bytes of free space, to prevent completely

wrapping the FIFO and making it appear empty.

If enough space is available in the FIFO, the MCU writes the commands at the

appropriate location in the FIFO RAM, then updates REG_CMD_WRITE. To simplify the

MCU code, the FT800 hardware automatically wraps continuous writes from (RAM_CMD

+ 4095) back to (RAM_CMD + 0).

FIFO entries are always 4 bytes wide - it is an error for either REG_CMD_READ or

REG_CMD_WRITE to have a value that is not a multiple of 4 bytes. Each command

issued to the co-processor engine may take 1 or more words: the length depends on the

command itself, and any appended data. Some commands are followed by variable-

length data, so the command size may not be a multiple of 4 bytes. In this case the co-

processor engine ignores the extra 1, 2 or 3 bytes and continues reading the next

command at the following 4 byte boundary.

5.1 Co-processor handling of Display list commands

Most co-processor engine commands write to the current display list. The current write

location in the display list is held in REG_CMD_DL. Whenever the co-processor engine

writes a word to the display list, it does so at REG_CMD_DL then increments

REG_CMD_DL. The special command CMD_DLSTART sets REG_CMD_DL to zero, for the

start of a new display list.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 142

All display list commands can be written as co-processor engine commands. The co-

processor engine copies these commands into the current display list at REG_CMD_DL.

For example, this series of co-processor engine commands writes a small display list:

 cmd(CMD_DLSTART); // start a new display list

cmd(CLEAR_COLOR_RGB(255, 100, 100)); // set clear color

cmd(CLEAR(1, 1, 1)); // clear screen

cmd(DISPLAY()); // display

Of course, this display list could have been written directly to RAM_DL. The advantage of

this technique is that you can mix low-level operations and high level co-processor

engine commands in a single stream:

cmd(CMD_DLSTART); // start a new display list

cmd(CLEAR_COLOR_RGB(255, 100, 100)); // set clear color

cmd(CLEAR(1, 1, 1)); // clear screen

cmd_button(20, 20, // x, y

60, 60, // width, height in pixels

30, // font 30

0, // default options

"OK!");

cmd(DISPLAY()); // display

5.2 Synchronization

At some points, it is necessary to wait until the co-processor engine has processed all

outstanding commands. When the co-processor engine completes the last outstanding

command in the command buffer, it raises the INT_CMDEMPTY interrupt. Another

approach is that the MCU can poll REG_CMD_READ until it is equal to REG_CMD_WRITE.

One situation that requires synchronization is to read the value of REG_CMD_DL, when

the MCU needs to do direct writes into the display list. In this situation the MCU should

wait until the co-processor engine is idle before reading REG_CMD_DL.

5.3 ROM and RAM Fonts

The graphics engine hardware draws bitmap graphics, and it is useful for software to

treat these graphics as fonts.

Font metrics - e.g. character height and width - are used by software when placing font

characters. For the ROM character bitmaps, these font metrics are in ROM. The co-

processor engine uses these metrics when drawing text in any of the 16 built-in ROM

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 143

fonts, numbered 16-31. Users can load similar font metrics into RAM, and hence create

additional user-defined fonts in bitmap handles 0-14. Bitmap handle 15 is reserved for

co-processor command CMD_Button/CMD_Keys/CMD_Gradient.

Each 148-byte font metric block has this format:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 144

Table 9 FT800 Font metrics block format

Address Size Value

p + 0 128 width of each font character, in pixels

p + 128 4 font bitmap format, for example L1, L4 or L8

p + 132 4 font line stride, in bytes

p + 136 4 font width, in pixels

p + 140 4 font height, in pixels

p + 144 4 pointer to font graphic data in memory

For the ROM fonts, these blocks are also in ROM, in an array of length 16. The address of

this array is held in ROM location 0xffffc. For example to find the width of character 'g'

(ASCII 0x67) in font 31:

read 32-bit pointer p from 0xffffc

widths = p + (148 * (31 - 16)) (table starts at font 16)

read byte from memory at widths[0x67]

For the built-in ROM font of the FT800, the valid character range for one bitmap handle

is printable ASCII code, i.e., from 32 to 127, both inclusive. For custom RAM font, the

ASCII code range of valid characters is from 1 to 127.

To use a custom font in the user-interface objects:

 Select a bitmap handle from 0 to 14

 Load the font bitmap into memory

 Set the bitmap parameters using commands BITMAP_SOURCE,

BITMAP_LAYOUT and BITMAP_SIZE.

 Create and download a font metric block in RAM. The address of metric block

shall be 4 bytes aligned.

 Use command CMD_SETFONT to register the new font with the selected

handle.

 Use the selected handle in any co-processor command font argument.

5.4 Cautions

For some of the widgets, if the input parameter values are more than 512 pixel

resolution, the generated widgets may not be proper.

Behavior of CMD_TRACK is not defined if the center of the track object (in case of rotary

track) or top left of the track object (in case of linear track) is outside the display region.

Only signed and unsigned integers are supported in CMD_NUMBER (fractional part is not

supported).

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 145

The behavior of widgets is not defined if the input parameters values are outside the

valid range.

5.5 Fault Scenarios

Some commands can cause co-processor engine faults. These faults arise because the

co-processor engine cannot continue. For example:

 An invalid JPEG is supplied to CMD_LOADIMAGE

 An invalid data stream is supplied to CMD_INFLATE

 An attempt is made to write more than 2048 instructions into a display list

In the fault condition, the co-processor engine sets REG_CMD_READ to 0xfff (an illegal

value because all command buffer data shall be 32-bit aligned), raises the

INT_CMDEMPTY interrupt, and stops accepting new commands. When the host MCU

recognizes the fault condition, it should recover as follows:

 Set REG_CPURESET to 1, to hold the co-processor engine in the reset

condition

 Set REG_CMD_READ and REG_CMD_WRITE to zero

 Set REG_CPURESET to 0, to restart the co-processor engine

5.6 widgets physical dimension

This section contains the common physical dimensions of the widgets.

 All rounded corners have a radius that is computed from the font used for the

widget (curvature of lowercase 'o' character). The radius is computed as Font

height*3/16

 All 3D shadows are drawn with: (1) highlight offset 0.5 pixels above and left

of the object (2) shadow offset 1.0 pixel below and right of the object.

 For widgets such as progress bar, scrollbar and slider, the output widget will

be a vertical widget in case width and height are of same value.

5.7 widgets color settings

Co-processor engine widgets are drawn with the color designated by the precedent

commands: CMD_FGCOLOR, CMD_BGCOLOR and COLOR_RGB. According to these

commands, the co-processor engine will determine to render the different area of co-

processor engine widgets in different color.

Usually, CMD_FGCOLOR affects the interaction area of co-processor engine widgets if

they are designed for interactive UI element, for example, CMD_BUTTON, CMD_DIAL.

CMD_BGCOLOR applies to the co-processor engine widgets with background. Please see

the table below for more details.

Table 10 Widgets color setup table

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 146

Widget CMD_FGCOLOR CMD_BGCOLOR COLOR_RGB

CMD_TEXT NO NO YES

CMD_BUTTON YES NO YES(label)

CMD_GAUGE NO YES
YES(needle and

mark)

CMD_KEYS YES NO YES(text)

CMD_PROGRESS NO YES YES

CMD_SCROLLBAR YES(Inner bar) YES(Outer bar) NO

CMD_SLIDER YES(Knob)
YES(Right bar of

knob)

YES(Left bar of

knob)

CMD_DIAL YES(Knob) NO YES(Marker)

CMD_TOGGLE YES(Knob) YES(Bar) YES(Text)

CMD_NUMBER NO NO YES

CMD_CALIBRATE YES(Animating dot) YES(Outer dot) NO

CMD_SPINNER NO NO YES

5.8 Co-processor engine graphics state

The co-processor engine maintains a small amount of internal states for graphics

drawing. This state is set to the default at co-processor engine reset, and by

CMD_COLDSTART. The state values are not affected by CMD_DLSTART or CMD_SWAP,

so an application need only set them once at startup.

Table 11 Co-processor engine graphics state

State Default Commands

background color dark blue (0x002040) CMD_BGCOLOR

foreground color light blue (0x003870) CMD_FGCOLOR

gradient color white (0xffffff) CMD_GRADCOLOR

spinner None CMD_SPINNER

object trackers all disabled CMD_TRACK

interrupt timer None CMD_INTERRUPT

Bitmap transform matrix:

[

]

 [

]

CMD_LOADIDENTITY,

CMD_TRANSLATE,
CMD_ROTATE, etc.

Bitmap Handle 15
CMD_GRADCOLOR,
CMD_KEYS, CMD_BUTTON

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 147

5.9 Definition of parameter OPTION

The following table defines the parameter OPTION mentioned in this chapter.

Table 12 Parameter OPTION definition

Name Value Description Commands

OPT_3D 0

Co-processor

widget is drawn in

3D effect. The

default option.

CMD_BUTTON,CMD_CLOCK,CMD_KEYS,
CMD_GAUGE,CMD_SLIDER, CMD_DIAL,

CMD_TOGGLE,CMD_PROGRESS,
CMD_SCROLLBAR

OPT_RGB565 0

Co-processor option

to decode the JPEG

image to RGB565

format

CMD_IMAGE

OPT_MONO 1

Co-processor option

to decode the JPEG

image to L8 format,

i.e., monochrome

CMD_IMAGE

OPT_NODL 2

No display list

commands

generated for

bitmap decoded

from JPEG image

CMD_IMAGE

OPT_FLAT 256

Co-processor

widget is drawn

without 3D effect

CMD_BUTTON,CMD_CLOCK,CMD_KEYS,
CMD_GAUGE,CMD_SLIDER, CMD_DIAL,

CMD_TOGGLE,CMD_PROGRESS,
CMD_SCROLLBAR

OPT_SIGNED 256

The number is

treated as 32 bit

signed integer

CMD_NUMBER

OPT_CENTERX 512

Co-processor

widget centers

horizontally

CMD_KEYS,CMD_TEXT, CMD_NUMBER

OPT_CENTERY 1024

Co-processor

widget centers

vertically

CMD_KEYS,CMD_TEXT, CMD_NUMBER

OPT_CENTER 1536

Co-processor

widget centers

horizontally and

vertically.

CMD_KEYS,CMD_TEXT, CMD_NUMBER

OPT_RIGHTX 2048
The label on the Co-

processor widget is
CMD_KEYS,CMD_TEXT, CMD_NUMBER

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 148

Name Value Description Commands

right justified

OPT_NOBACK 4096

Co-processor

widget has no

background drawn

CMD_CLOCK, CMD_GAUGE

OPT_NOTICKS 8192

Co-processor clock

widget is drawn

without hour ticks.

Gauge widget is

drawn without

major and minor

ticks

CMD_CLOCK, CMD_GAUGE

OPT_NOHM 16384

Co-processor clock

widget is drawn

without hour and

minutes hands, only

seconds hand is

drawn

CMD_CLOCK

OPT_NOPOINTER 16384

The Co-processor

gauge has no

pointer

CMD_GAUGE

OPT_NOSECS 32768

Co-processor clock

widget is drawn

without seconds

hand

CMD_CLOCK

OPT_NOHANDS 49152

Co-processor clock

widget is drawn

without hour,

minutes and

seconds hands

CMD_CLOCK

5.10 Co-processor engine resources

The co-processor engine does not change hardware graphics state. That is, graphics

states such as color and line width are not to be changed by co-processor engine.

However, the widgets do reserve some hardware resources, which user programs need

take into account:

 Bitmap handle 15 is used by the 3D-effect buttons, keys and gradient.

 One graphics context is used by objects, so the effective stack depth for

SAVE_CONTEXT and RESTORE_CONTEXT commands is 3 levels.

5.11 Command groups

These commands begin and finish the display list:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 149

 CMD_DLSTART - start a new display list

 CMD_SWAP - swap the current display list

Commands to draw graphics objects:

 CMD_TEXT - draw text

 CMD_BUTTON - draw a button

 CMD_CLOCK - draw an analog clock

 CMD_BGCOLOR - set the background color

 CMD_FGCOLOR - set the foreground color

 CMD_GRADCOLOR - set the 3D effects for CMD_BUTTON and CMD_KEYS

highlight color

 CMD_GAUGE - draw a gauge

 CMD_GRADIENT - draw a smooth color gradient

 CMD_KEYS - draw a row of keys

 CMD_PROGRESS - draw a progress bar

 CMD_SCROLLBAR - draw a scroll bar

 CMD_SLIDER - draw a slider

 CMD_DIAL - draw a rotary dial control

 CMD_TOGGLE - draw a toggle switch

 CMD_NUMBER - draw a decimal number

Commands to operate on memory:

 CMD_MEMCRC - compute a CRC-32 for memory

 CMD_MEMZERO - write zero to a block of memory

 CMD_MEMSET - fill memory with a byte value

 CMD_MEMWRITE - write bytes into memory

 CMD_MEMCPY - copy a block of memory

 CMD_APPEND - append memory to display list

Commands for loading image data into FT800 memory:

 CMD_INFLATE - decompress data into memory

 CMD_LOADIMAGE - load a JPEG image

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 150

Commands for setting the bitmap transform matrix:

 CMD_LOADIDENTITY - set the current matrix to identity

 CMD_TRANSLATE - apply a translation to the current matrix

 CMD_SCALE - apply a scale to the current matrix

 CMD_ROTATE - apply a rotation to the current matrix

 CMD_SETMATRIX - write the current matrix as a bitmap transform

 CMD_GETMATRIX - retrieves the current matrix coefficients

Other commands:

 CMD_COLDSTART - set co-processor engine state to default values

 CMD_INTERRUPT - trigger interrupt INT_CMDFLAG

 CMD_REGREAD - read a register value

 CMD_CALIBRATE - execute the touch screen calibration routine

 CMD_SPINNER - start an animated spinner

 CMD_STOP - stop any spinner, screensaver or sketch

 CMD_SCREENSAVER - start an animated screensaver

 CMD_SKETCH - start a continuous sketch update

 CMD_SNAPSHOT - take a snapshot of the current screen

 CMD_LOGO - play device logo animation

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 151

5.12 CMD_DLSTART - start a new display list

When the co-processor engine executes this command, it waits until the current display

list is scanned out, then sets REG_CMD_DL to zero.

C prototype

void cmd_dlstart();

Command layout

+0 CMD_DLSTART (0xffffff00)

Examples

cmd_dlstart();

...

cmd_dlswap();

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 152

5.13 CMD_SWAP - swap the current display list

When the co-processor engine executes this command, it requests a display list swap

immediately after current display list is scanned out. Internally, the co-processor engine

implements this command by writing to REG_DLSWAP. Please see REG_DLSWAP

Definition.

This co-processor engine command will not generate any display list command into

display list memory RAM_DL.

C prototype

void cmd_swap();

Command layout

+0 CMD_DLSWAP(0xffffff01)

Examples

 None

5.14 CMD_COLDSTART - set co-processor engine state to
default values

This command sets co-processor engine to reset default states.

C prototype

void cmd_coldstart();

Command layout

+0 CMD_COLDSTART(0xffffff32)

Examples

Change to a custom color scheme, and then restore the default colors:

cmd_fgcolor(0x00c040);

cmd_gradcolor(0x000000);

cmd_button(2, 32, 76, 56, 26, 0,

"custom");

cmd_coldstart();

cmd_button(82, 32, 76, 56, 26, 0,

"default");

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 153

5.15 CMD_INTERRUPT - trigger interrupt INT_CMDFLAG

When the co-processor engine executes this command, it triggers interrupt

INT_CMDFLAG.

C prototype

void cmd_interrupt(uint32_t ms);

Parameters

ms

Delay before interrupt triggers, in milliseconds. The interrupt is guaranteed

not to fire before this delay. If ms is zero, the interrupt fires immediately.

Command layout

+0 CMD_INTERRUPT(0xffffff02)

+4 ms

Examples

To trigger an interrupt after a JPEG has finished loading:

cmd_loadimage();

...

cmd_interrupt(0); // previous load image complete, trigger interrupt

To trigger an interrupt in 0.5 seconds:

cmd_interrupt(500);

...

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 154

5.16 CMD_APPEND - append memory to display list

Appends a block of memory to the current display list memory address where the offset

is specified in REG_CMD_DL.

C prototype

void cmd_append(uint32_t ptr,

uint32_t num);

Parameters

ptr

Start of source commands in main memory

num

Number of bytes to copy. This must be a multiple of 4.

Command layout

+0 CMD_APPEND(0xffffff1e)

+4 Ptr

+8 Num

Description

 After appending is done, the co-processor engine will increase the REG_CMD_DL by

num to make sure the display list is in order.

Examples

...

cmd_dlstart();

cmd_append(0, 40); // copy 10 commands from main memory address 0

cmd(DISPLAY); // finish the display list

cmd_swap();

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 155

5.17 CMD_REGREAD - read a register value

C prototype

void cmd_regread(uint32_t ptr,

uint32_t result);

Parameters

ptr

Address of register to read

result

The register value to be read at ptr address.

Command layout

+0 CMD_REGREAD(0xffffff19)

+4 Ptr

+8 Result

Examples

To capture the exact time when a command completes:

uint16_t x = rd16(REG_CMD_WRITE);

cmd_regread(REG_CLOCK, 0);

...

printf("%08x\n", rd32(RAM_CMD + x + 8));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 156

5.18 CMD_MEMWRITE - write bytes into memory

Writes the following bytes into the FT800 memory. This command can be used to set

register values, or to update memory contents at specific times.

C prototype

void cmd_memwrite(uint32_t ptr,

uint32_t num);

Parameters

 Ptr

 The memory address to be written

num

Number of bytes to be written.

Description

 The data byte should immediately follow in the command buffer. If the number of bytes

is not a multiple of 4, then 1, 2 or 3 bytes should be appended to ensure 4-byte

alignment of the next command, these padding bytes can have any value. The

completion of this function can be detected when the value of REG_CMD_READ is equal

to REG_CMD_WRITE.

 Caution: if using this command, it may corrupt the memory of the FT800 if used

improperly.

Command layout

+0 CMD_MEMWRITE(0xffffff1a)

+4 ptr

+8 Num

+12 Byte0

+13 Byte1

.. ..

+n ..

Examples

To change the backlight brightness to 64 (half intensity) for a particular screen shot:

...

cmd_swap(); // finish the display list

cmd_dlstart(); // wait until after the swap

cmd_memwrite(REG_PWM_DUTY, 4); // write to the PWM_DUTY register

cmd(100);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 157

5.19 CMD_INFLATE - decompress data into memory

Decompress the following compressed data into the FT800 memory, RAM_G. The data

should have been compressed with the DEFLATE algorithm, e.g. with the ZLIB library.

This is particularly useful for loading graphics data.

C prototype

void cmd_inflate(uint32_t ptr);

Parameters

ptr

Destination address. The data byte should immediate follow in the command

buffer.

Description

If the number of bytes is not a multiple of 4, then 1, 2 or 3 bytes should be

appended to ensure 4-byte alignment of the next command. These padding

bytes can have any value

Command layout

+0 CMD_INFLATE(0xffffff22)

+4 ptr

+8 Byte0

+9 Byte1

.. ..

+n ..

Examples

To load graphics data to main memory address 0x8000:

cmd_inflate(0x8000);

... // zlib-compressed data follows

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 158

5.20 CMD_LOADIMAGE - load a JPEG image

Decompress the following JPEG image data into an FT800 bitmap, in main memory. The

image data should be a regular baseline JPEG (JFIF) image.

C prototype

void cmd_loadimage(uint32_t ptr,

uint32_t options);

Parameters

ptr

Destination address

options

By default, option OPT_RGB565 means the loaded bitmap is in RGB565

format. Option OPT_MONO means the loaded bitmap to be monochrome, in L8

format. The command appends display list commands to set the source,

layout and size of the resulting image. Option OPT_NODL prevents this -

nothing is written to the display list. OPT_NODL can be OR'ed with OPT_MONO

or OPT_RGB565.

Description

The data byte should immediately follow in the command buffer. If the number of bytes

is not a multiple of 4, then 1, 2 or 3 bytes should be appended to ensure 4-byte

alignment of the next command. These padding bytes can have any value.

The application on the host processor has to parse the JPEG header to get the properties

of the JPEG image and decide to decode. Behavior is unpredictable in cases of non

baseline jpeg images or the output data generated is more than the RAM_G size.

Command layout

+0 CMD_LOADIMAGE(0xffffff24)

+4 Ptr

+8 Options

+12 Byte0

+13 Byte1

.. ..

+n ..

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 159

Examples

To load a JPEG image at address 0 then draw the bitmap at (10,20) and (100,20):

cmd_loadimage(0, 0);

... // JPEG file data follows

cmd(BEGIN(BITMAPS))

cmd(VERTEX2II(10, 20, 0, 0)); // draw bitmap at (10,20)

cmd(VERTEX2II(100, 20, 0, 0)); // draw bitmap at (100,20)

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 160

5.21 CMD_MEMCRC - compute a CRC-32 for memory

Computes a CRC-32 for a block of FT800 memory

C prototype

void cmd_memcrc(uint32_t ptr,

uint32_t num,

uint32_t result);

Parameters

ptr

Starting address of the memory block

num

Number of bytes in the source memory block

result

Output parameter; written with the CRC-32 after command execution. The

completion of this function is detected when the value of REG_CMD_READ is

equal to REG_CMD_WRITE.

Command layout

+0 CMD_MEMCRC(0xffffff18)

+4 Ptr

+8 Num

+12 Result

Examples

To compute the CRC-32 of the first 1K byte of FT800 memory, first record the value

of REG_CMD_WRITE, execute the command, wait for completion, then read the 32-

bit value at result:

uint16_t x = rd16(REG_CMD_WRITE);

cmd_crc(0, 1024, 0);

...

printf("%08x\n", rd32(RAM_CMD + x + 12));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 161

5.22 CMD_MEMZERO - write zero to a block of memory

C prototype

void cmd_memzero(uint32_t ptr,

uint32_t num);

Parameters

ptr

Starting address of the memory block

num

Number of bytes in the memory block

The completion of this function is detected when the value of REG_CMD_READ is

equal to REG_CMD_WRITE.

Command layout

+0 CMD_MEMZERO(0xffffff1c)

+4 ptr

+8 num

Examples

To erase the first 1K of main memory:

cmd_memzero(0, 1024);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 162

5.23 CMD_MEMSET - fill memory with a byte value

C prototype

void cmd_memset(uint32_t ptr,

uint32_t value,

uint32_t num);

Parameters

ptr

Starting address of the memory block

value

Value to be written to memory

num

Number of bytes in the memory block

The completion of this function is detected when the value of REG_CMD_READ is

equal to REG_CMD_WRITE.

Command layout

+0 CMD_MEMSET(0xffffff1b)

+4 ptr

+8 Value

+12 num

Examples

To write 0xff the first 1K of main memory:

cmd_memset(0, 0xff, 1024);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 163

5.24 CMD_MEMCPY - copy a block of memory

C prototype

void cmd_memcpy(uint32_t dest,

uint32_t src,

uint32_t num);

Parameters

dest

address of the destination memory block

src

address of the source memory block

num

number of bytes to copy

The completion of this function is detected when the value of REG_CMD_READ is

equal to REG_CMD_WRITE.

Command layout

+0 CMD_MEMCPY(0xffffff1d)

+4 dst

+8 src

+12 num

Examples

To copy 1K byte of memory from 0 to 0x8000:

cmd_memcpy(0x8000, 0, 1024);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 164

5.25 CMD_BUTTON - draw a button

C prototype

void cmd_button(int16_t x,

int16_t y,

int16_t w,

int16_t h,

int16_t font,

uint16_t options,

const char* s);

Parameters

x

x-coordinate of button top-left, in pixels

y

y-coordinate of button top-left, in pixels

font

bitmap handle to specify the font used in button label. See ROM and RAM

Fonts.

options

By default, the button is drawn with a 3D effect and the value is zero.

OPT_FLAT removes the 3D effect. The value of OPT_FLAT is 256.

s

button label. It must be one string terminated with null character, i.e. '\0' in C

language. For built-in ROM font of FT800, the valid character inside of s is

printable ASCII code, i.e., from 32 to 127, both inclusive. For custom RAM

font, the ASCII code of valid character inside of s is from 1 to 127.

Description

Refer to Co-processor engine widgets physical dimensions for more information.

Command layout

+0 CMD_BUTTON(0xffffff0d)

+4 X

+6 Y

+8 W

+10 H

+12 Font

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 165

+14 Options

+16 S

+17 ..

.. ..

+n 0

Examples

A 140x00 pixel button with large text:

cmd_button(10, 10, 140, 100, 31, 0,

"Press!");

Without the 3D look:

cmd_button(10, 10, 140, 100, 31,

OPT_FLAT, "Press!");

Several smaller buttons:

cmd_button(10, 10, 50, 25, 26, 0,

"One");

cmd_button(10, 40, 50, 25, 26, 0,

"Two");

cmd_button(10, 70, 50, 25, 26, 0,

"Three");

Changing button color

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 166

cmd_fgcolor(0xb9b900),

cmd_button(10, 10, 50, 25, 26, 0,

"Banana");

cmd_fgcolor(0xb97300),

cmd_button(10, 40, 50, 25, 26, 0,

"Orange");

cmd_fgcolor(0xb90007),

cmd_button(10, 70, 50, 25, 26, 0,

"Cherry");

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 167

5.26 CMD_CLOCK - draw an analog clock

C prototype

void cmd_clock(int16_t x,

int16_t y,

int16_t r,

uint16_t options,

uint16_t h,

uint16_t m,

uint16_t s,

uint16_t ms);

Parameters

x

x-coordinate of clock center, in pixels

y

y-coordinate of clock center, in pixels

options

By default the clock dial is drawn with a 3D effect and the name of this option

is OPT_3D. Option OPT_FLAT removes the 3D effect. With option

OPT_NOBACK, the background is not drawn. With option OPT_NOTICKS, the

twelve hour ticks are not drawn. With option OPT_NOSECS, the seconds hand

is not drawn. With option OPT_NOHANDS, no hands are drawn. With option

OPT_NOHM, no hour and minutes hands are drawn.

h

hours

m

minutes

s

seconds

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 168

ms

milliseconds

Description

 The details of physical dimension are

 The 12 tick marks are placed on a circle of radius r*(200/256).

 Each tick is a point of radius r*(10/256)

 The seconds hand has length r*(200/256) and width r*(3/256)

 The minutes hand has length r*(150/256) and width r*(9/256)

 The hours hand has length r*(100/256) and width r*(12/256)

Refer to Co-processor engine widgets physical dimensions for more information.

Command layout

+0 CMD_CLOCK(0xffffff14)

+4 X

+6 Y

+8 R

+10 Options

+12 H

+14 M

+16 S

+18 Ms

Examples

A clock with radius 50 pixels, showing a time of 8.15:

cmd_clock(80, 60, 50, 0, 8, 15, 0, 0);

Setting the background color

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 169

cmd_bgcolor(0x401010);

cmd_clock(80, 60, 50, 0, 8, 15, 0, 0);

Without the 3D look:

cmd_clock(80, 60, 50, OPT_FLAT, 8, 15,

0, 0);

The time fields can have large values. Here the hours are (7 x 3600s) and minutes

are (38 x 60s), and seconds is 59. Creating a clock face showing the time as

7.38.59:

cmd_clock(

80, 60, 50, 0,

0, 0, (7 * 3600) + (38 * 60) + 59, 0);

No seconds hand:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 170

cmd_clock(80, 60, 50, OPT_NOSECS, 8,

15, 0, 0);

No background:

cmd_clock(80, 60, 50, OPT_NOBACK, 8,

15, 0, 0);

No ticks:

cmd_clock(80, 60, 50, OPT_NOTICKS, 8,

15, 0, 0);

No hands:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 171

cmd_clock(80, 60, 50, OPT_NOHANDS, 8,

15, 0, 0);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 172

5.27 CMD_FGCOLOR - set the foreground color

C prototype

void cmd_fgcolor(uint32_t c);

Parameters

c

New foreground color, as a 24-bit RGB number. Red is the most significant 8

bits, blue is the least. So 0xff0000 is bright red. Foreground color is applicable

for things that the user can move such as handles and buttons

("affordances").

Command layout

+0 CMD_FGCOLOR(0xffffff0a)

+4 C

Examples

The top scrollbar uses the default foreground color, the others with a changed color:

cmd_scrollbar(20, 30, 120, 8, 0, 10, 40,

100);

cmd_fgcolor(0x703800);

cmd_scrollbar(20, 60, 120, 8, 0, 30, 40,

100);

cmd_fgcolor(0x387000);

cmd_scrollbar(20, 90, 120, 8, 0, 50, 40,

100);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 173

5.28 CMD_BGCOLOR - set the background color

C prototype

void cmd_bgcolor(uint32_t c);

Parameters

c

New background color, as a 24-bit RGB number. Red is the most significant 8

bits, blue is the least. So 0xff0000 is bright red.

Background color is applicable for things that the user cannot move. Example

behind gauges and sliders etc.

Command layout

+0 CMD_BGCOLOR(0xffffff09)

+4 C

Examples

The top scrollbar uses the default background color, the others with a changed color:

cmd_scrollbar(20, 30, 120, 8, 0, 10, 40,

100);

cmd_bgcolor(0x402000);

cmd_scrollbar(20, 60, 120, 8, 0, 30, 40,

100);

cmd_bgcolor(0x202020);

cmd_scrollbar(20, 90, 120, 8, 0, 50, 40,

100);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 174

5.29 CMD_GRADCOLOR - set the 3D button highlight color

C prototype

void cmd_gradcolor(uint32_t c);

Parameters

c

New highlight gradient color, as a 24-bit RGB number. Red is the most

significant 8 bits, blue is the least. So 0xff0000 is bright red.

Gradient is supported only for Button and Keys widgets.

Command layout

+0 CMD_GRADCOLOR(0xffffff34)

+4 C

Examples

Changing the gradient color: white (the default), red, green and blue

cmd_fgcolor(0x101010);

cmd_button(2, 2, 76, 56, 31, 0, "W");

cmd_gradcolor(0xff0000);

cmd_button(82, 2, 76, 56, 31, 0, "R");

cmd_gradcolor(0x00ff00);

cmd_button(2, 62, 76, 56, 31, 0, "G");

cmd_gradcolor(0x0000ff);

cmd_button(82, 62, 76, 56, 31, 0, "B");

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 175

The gradient color is also used for keys:

cmd_fgcolor(0x101010);

cmd_keys(10, 10, 140, 30, 26, 0,

"abcde");

cmd_gradcolor(0xff0000);

cmd_keys(10, 50, 140, 30, 26, 0,

"fghij");

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 176

5.30 CMD_GAUGE - draw a gauge

C prototype

void cmd_gauge(int16_t x,

int16_t y,

int16_t r,

uint16_t options,

uint16_t major,

uint16_t minor,

uint16_t val,

uint16_t range);

Parameters

x

X-coordinate of gauge center, in pixels

y

Y-coordinate of gauge center, in pixels

r

Radius of the gauge, in pixels

options

By default the gauge dial is drawn with a 3D effect and the value of options is

zero. OPT_FLAT removes the 3D effect. With option OPT_NOBACK, the

background is not drawn. With option OPT_NOTICKS, the tick marks are not

drawn. With option OPT_NOPOINTER, the pointer is not drawn.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 177

major

Number of major subdivisions on the dial, 1-10

minor

Number of minor subdivisions on the dial, 1-10

val

Gauge indicated value, between 0 and range, inclusive

range

Maximum value

Description

The details of physical dimension are

 The tick marks are placed on a 270 degree arc, clockwise starting at south-

west position

 Minor ticks are lines of width r*(2/256), major r*(6/256)

 Ticks are drawn at a distance of r*(190/256) to r*(200/256)

 The pointer is drawn with lines of width r*(4/256), to a point

r*(190/256)from the center

 The other ends of the lines are each positioned 90 degrees perpendicular to

the pointer direction, at a distance r*(3/256) from the center

Refer to Co-processor engine widgets physical dimensions for more information.

Command layout

+0 CMD_GAUGE(0xffffff13)

+4 X

+6 Y

+8 R

+10 Options

+12 Major

+14 Minor

+16 Value

+18 Range

Examples

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 178

A gauge with radius 50 pixels, five divisions of four ticks each, indicating 30%:

cmd_gauge(80, 60, 50, 0, 5, 4, 30, 100);

Without the 3D look:

cmd_gauge(80, 60, 50, OPT_FLAT, 5, 4,

30, 100);

Ten major divisions with two minor divisions each:

cmd_gauge(80, 60, 50, 0, 10, 2, 30,

100);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 179

Setting the minor divisions to 1 makes them disappear:

cmd_gauge(80, 60, 50, 0, 10, 1, 30,

100);

Setting the major divisions to 1 gives minor divisions only:

cmd_gauge(80, 60, 50, 0, 1, 10, 30,

100);

A smaller gauge with a brown background:

cmd_bgcolor(0x402000);

cmd_gauge(80, 60, 25, 0, 5, 4, 30, 100);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 180

Scale 0-1000, indicating 1000:

cmd_gauge(80, 60, 50, 0, 5, 2, 1000,

1000);

Scaled 0-65535, indicating 49152:

cmd_gauge(80, 60, 50, 0, 4, 4, 49152,

65535);

No background:

cmd_gauge(80, 60, 50, OPT_NOBACK, 4,

4, 49152, 65535);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 181

No tick marks:

cmd_gauge(80, 60, 50, OPT_NOTICKS, 4,

4, 49152, 65535);

No pointer:

cmd_gauge(80, 60, 50,

OPT_NOPOINTER, 4, 4, 49152, 65535);

Drawing the gauge in two passes, with bright red for the pointer:

GAUGE_0 = OPT_NOPOINTER;

GAUGE_1 = OPT_NOBACK |

OPT_NOTICKS;

cmd_gauge(80, 60, 50, GAUGE_0, 4, 4,

49152, 65535);

cmd(COLOR_RGB(255, 0, 0));

cmd_gauge(80, 60, 50, GAUGE_1, 4, 4,

49152, 65535);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 182

Add a custom graphic to the gauge by drawing its background, a bitmap, then its

foreground:

GAUGE_0 = OPT_NOPOINTER |

OPT_NOTICKS;

 GAUGE_1 = OPT_NOBACK;

cmd_gauge(80, 60, 50, GAUGE_0, 4, 4,

49152, 65535);

cmd(COLOR_RGB(130, 130, 130));

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(80 - 32, 60 -32, 0, 0));

cmd(COLOR_RGB(255, 255, 255));

cmd_gauge(80, 60, 50, GAUGE_1, 4, 4,

49152, 65535);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 183

5.31 CMD_GRADIENT - draw a smooth color gradient

C prototype

void cmd_gradient(int16_t x0,

int16_t y0,

uint32_t rgb0,

int16_t x1,

int16_t y1,

uint32_t rgb1);

Parameters

x0

x-coordinate of point 0, in pixels

y0

y-coordinate of point 0, in pixels

rgb0

Color of point 0, as a 24-bit RGB number. R is the most significant8 bits, B is

the least. So 0xff0000 is bright red.

x1

x-coordinate of point 1, in pixels

y1

y-coordinate of point 1, in pixels

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 184

rgb1

Color of point 1

Description

All the color's step values are calculated based on smooth curve interpolated from

the RGB0 to RGB1 parameter. The smooth curve equation is independently

calculated for all three colors and the equation used is R0 + t * (R1 - R0), where t is

interpolated between 0 and 1. Gradient must be used with Scissor function to get

the intended gradient display.

Command layout

+0 CMD_GRAGIENT(0xffffff0b)

+4 X0

+6 Yo

+8 RGB0

+12 X1

+14 Y1

+16 RGB1

Examples

A horizontal gradient from blue to red

cmd_gradient(0, 0, 0x0000ff, 160, 0,

0xff0000);

A vertical gradient

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 185

cmd_gradient(0, 0, 0x808080, 0, 120,

0x80ff40);

The same colors in a diagonal gradient

cmd_gradient(0, 0, 0x808080, 160, 120,

0x80ff40);

Using a scissor rectangle to draw a gradient stripe as a background for a title:

cmd(SCISSOR_XY(20, 40));

cmd(SCISSOR_SIZE(120, 32));

cmd_gradient(20, 0, 0x606060, 140, 0,

0x404080);

cmd_text(23, 40, 29, 0, "Heading 1");

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 186

5.32 CMD_KEYS - draw a row of keys

C prototype

void cmd_keys(int16_t x,

 int16_t y,

int16_t w,

int16_t h,

int16_t font,

uint16_t options,

const char* s);

Parameters

x

x-coordinate of keys top-left, in pixels

y

y-coordinate of keys top-left, in pixels

font

Bitmap handle to specify the font used in key label. The valid range is from 0

to 31

options

By default the keys are drawn with a 3D effect and the value of option is zero.

OPT_FLAT removes the 3D effect. If OPT_CENTER is given the keys are drawn

at minimum size centered within the w x h rectangle. Otherwise the keys are

expanded so that they completely fill the available space. If an ASCII code is

specified, that key is drawn 'pressed' - i.e. in background color with any 3D

effect removed.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 187

w

 The width of the keys

h

 The height of the keys

s

key labels, one character per key. The TAG value is set to the ASCII value of

each key, so that key presses can be detected using the REG_TOUCH_TAG

register.

Description

The details of physical dimension are

 The gap between keys is 3 pixels

 For OPT_CENTERX case, the keys are (font width + 1.5) pixels wide

,otherwise keys are sized to fill available width

Refer to Co-processor engine widgets physical dimensions for more information.

Command layout

+0 CMD_KEYS(0xffffff0e)

+4 X

+6 Y

+8 W

+10 H

+12 Font

+14 Options

+16 S

.. ..

+n 0

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 188

Examples

A row of keys:

cmd_keys(10, 10, 140, 30, 26, 0,

"12345");

Without the 3D look:

cmd_keys(10, 10, 140, 30, 26,

OPT_FLAT, "12345");

Default vs. centered:

cmd_keys(10, 10, 140, 30, 26, 0,

"12345");

cmd_keys(10, 60, 140, 30, 26,

OPT_CENTER, "12345");

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 189

Setting the options to show '2' key pressed ('2' is ASCII code 0x32):

cmd_keys(10, 10, 140, 30, 26, 0x32,

"12345");

A calculator-style keyboard using font 29:

cmd_keys(22, 1, 116, 28, 29, 0, "789");

cmd_keys(22, 31, 116, 28, 29, 0, "456");

cmd_keys(22, 61, 116, 28, 29, 0, "123");

cmd_keys(22, 91, 116, 28, 29, 0, "0.");

A compact keyboard drawn in font 20:

cmd_keys(2, 2, 156, 21, 20,

OPT_CENTER, "qwertyuiop");

cmd_keys(2, 26, 156, 21, 20,

OPT_CENTER, "asdfghijkl");

cmd_keys(2, 50, 156, 21, 20,

OPT_CENTER, "zxcvbnm");

cmd_button(2, 74, 156, 21, 20, 0, "");

Showing the f (ASCII 0x66) key

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 190

pressed:

k = 0x66;

cmd_keys(2, 2, 156, 21, 20, k |

OPT_CENTER, "qwertyuiop");

cmd_keys(2, 26, 156, 21, 20, k |

OPT_CENTER, "asdfghijkl");

cmd_keys(2, 50, 156, 21, 20, k |

OPT_CENTER, "zxcvbnm");

cmd_button(2, 74, 156, 21, 20, 0, "");

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 191

5.33 CMD_PROGRESS - draw a progress bar

C prototype

void cmd_progress(int16_t x,

int16_t y,

int16_t w,

int16_t h,

uint16_t options,

uint16_t val,

uint16_t range);

Parameters

x

x-coordinate of progress bar top-left, in pixels

y

y-coordinate of progress bar top-left, in pixels

w

width of progress bar, in pixels

h

height of progress bar, in pixels

options

By default the progress bar is drawn with a 3D effect and the value of options

is zero. Options OPT_FLAT removes the 3D effect and its value is 256

val

Displayed value of progress bar, between 0 and range inclusive

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 192

range

Maximum value

Description

The details of physical dimensions are

 x,y,w,h give outer dimensions of progress bar. Radius of bar (r) is

min(w,h)/2

 Radius of inner progress line is r*(7/8)

Refer to Co-processor engine widgets physical dimensions for more information.

Command layout

+0 CMD_PROGRESS(0xffffff0f)

+4 X

+6 Y

+8 W

+10 H

+12 options

+14 val

+16 range

Examples

A progress bar showing 50% completion:

cmd_progress(20, 50, 120, 12, 0, 50,

100);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 193

Without the 3D look:

cmd_progress(20, 50, 120, 12,

OPT_FLAT, 50, 100);

A 4 pixel high bar, range 0-65535, with a brown background:

cmd_bgcolor(0x402000);

cmd_progress(20, 50, 120, 4, 0, 9000,

65535);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 194

5.34 CMD_SCROLLBAR – draw a scroll bar

C prototype

void cmd_scrollbar(int16_t x,

int16_t y,

int16_t w,

int16_t h,

uint16_t options,

uint16_t val,

uint16_t size,

uint16_t range);

Parameters

x

x-coordinate of scroll bar top-left, in pixels

y

y-coordinate of scroll bar top-left, in pixels

w

Width of scroll bar, in pixels. If width is greater than height, the scroll bar is

drawn horizontally

h

Height of scroll bar, in pixels. If height is greater than width, the scroll bar is

drawn vertically

options

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 195

By default the scroll bar is drawn with a 3D effect and the value of options is

zero. Options OPT_FLAT removes the 3D effect and its value is 256

val

Displayed value of scroll bar, between 0 and range inclusive

range

Maximum value

Description

Refer to CMD_PROGRESS for more information on physical dimension.

Command layout

+0 CMD_SCROLLBAR(0xffffff11)

+4 X

+6 Y

+8 W

+10 H

+12 options

+14 val

+16 Size

+18 Range

Examples

A scroll bar indicating 10-50%:

cmd_scrollbar(20, 50, 120, 8, 0, 10, 40,

100);

Without the 3D look:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 196

cmd_scrollbar(20, 50, 120, 8, OPT_FLAT,

10, 40, 100);

A brown-themed vertical scroll bar:

cmd_bgcolor(0x402000);

cmd_fgcolor(0x703800);

cmd_scrollbar(140, 10, 8, 100, 0, 10, 40,

100);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 197

5.35 CMD_SLIDER – draw a slider

C prototype

void cmd_slider(int16_t x,

int16_t y,

int16_t w,

int16_t h,

uint16_t options,

uint16_t val,

uint16_t range);

Parameters

x

x-coordinate of slider top-left, in pixels

y

y-coordinate of slider top-left, in pixels

w

width of slider, in pixels. If width is greater than height, the scroll bar is

drawn horizontally

h

height of slider, in pixels. If height is greater than width, the scroll bar is

drawn vertically

options

By default the slider is drawn with a 3D effect. OPT_FLAT removes the 3D

effect

val

Displayed value of slider, between 0 and range inclusive

range

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 198

Maximum value

Description

Refer to CMD_PROGRESS for more information on physical Dimension.

Command layout

+0 CMD_SLIDER(0xffffff10)

+4 X

+6 Y

+8 W

+10 H

+12 options

+14 val

+16 Range

Examples

A slider set to 50%:

cmd_slider(20, 50, 120, 8, 0, 50, 100);

Without the 3D look:

cmd_slider(20, 50, 120, 8, OPT_FLAT,

50, 100);

A brown-themed vertical slider with range 0-

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 199

65535:

cmd_bgcolor(0x402000);

cmd_fgcolor(0x703800);

cmd_slider(76, 10, 8, 100, 0, 20000,

65535);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 200

5.36 CMD_DIAL – draw a rotary dial control

C prototype

void cmd_dial(int16_t x,

int16_t y,

int16_t r,

uint16_t options,

uint16_t val);

Parameters

x

x-coordinate of dial center, in pixels

y

y-coordinate of dial center, in pixels

r

radius of dial, in pixels.

Options

By default the dial is drawnwith a 3D effect and the value of options is zero.

Options OPT_FLAT removes the 3D effect and its value is 256

val

Specify the position of dial points by setting value between 0 and 65535

inclusive. 0 means that the dial points straight down, 0x4000 left, 0x8000 up,

and0xc000 right.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 201

Description

The details of physical dimension are

 The marker is a line of width r*(12/256), drawn at a distance r*(140/256)to

r*(210/256) from the center

Refer to Co-processor engine widgets physical dimensions for more information.

Command layout

+0 CMD_DIAL(0xffffff2d)

+4 X

+6 Y

+8 r

+10 options

+12 val

Examples

A dial set to 50%:

cmd_dial(80, 60, 55, 0, 0x8000);

Without the 3D look:

cmd_dial(80, 60, 55, OPT_FLAT, 0x8000);

Dials set to 0%, 33% and 66%:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 202

cmd_dial(28, 60, 24, 0, 0x0000);

cmd_text(28, 100, 26, OPT_CENTER,

“0%”);

cmd_dial(80, 60, 24, 0, 0x5555);

cmd_text(80, 100, 26, OPT_CENTER,

“33%”);

cmd_dial(132, 60, 24, 0, 0xaaaa);

cmd_text(132, 100, 26, OPT_CENTER,

“66%”);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 203

5.37 CMD_TOGGLE – draw a toggle switch

C prototype

void cmd_toggle(int16_t x,

int16_t y,

int16_t w,

int16_t font,

uint16_t options,

uint16_t state,

const char* s);

Parameters

x

x-coordinate of top-left of toggle, in pixels

y

y-coordinate of top-left of toggle, in pixels

w

width of toggle, in pixels

font

font to use for text, 0-31. See ROM and RAM Fonts

options

By default the toggle is drawn with a 3D effect and the value of options is

zero. Options OPT_FLAT removes the 3D effect and its value is 256

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 204

state

state of the toggle: 0 is off, 65535 is on.

S

String label for toggle. A character value of 255 (in C it can be written as \xff)

separates the two labels.

Description

The details of physical dimension are

 Outer bar radius I is font height*(20/16)

 Knob radius is r-1.5

Refer to Co-processor engine widgets physical dimensions for more information.

Command layout

+0 CMD_TOGGLE(0xffffff12)

+4 X

+6 Y

+8 W

+10 Font

+12 Options

+14 State

+16 S

.. ..

.. 0

Examples

Using a medium font, in the two states

cmd_toggle(60, 20, 33, 27, 0, 0, “no” “

\xff” “yes”);

cmd_toggle(60, 60, 33, 27, 0, 65535,

“no” “\xff" “yes”);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 205

Without the 3D look

cmd_toggle(60, 20, 33, 27, OPT_FLAT, 0,

“no” “\xff” “yes”);

cmd_toggle(60, 60, 33, 27, OPT_FLAT,

65535, “no” “\xff” “yes”);

With different background and foreground colors:

cmd_bgcolor(0x402000);

cmd_fgcolor(0x703800);

cmd_toggle(60, 20, 33, 27, 0, 0, “no”

“\xff” “yes”);

cmd_toggle(60, 60, 33, 27, 0, 65535,

“no” “\xff” “yes”);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 206

5.38 CMD_TEXT - draw text

C prototype

void cmd_text(int16_t x,

 int16_t y,

int16_t font,

uint16_t options,

const char* s);

Parameters

x

x-coordinate of text base, in pixels

y

y-coordinate of text base, in pixels

font

Font to use for text, 0-31. See ROM and RAM Fonts

options

By default (x,y) is the top-left pixel of the text and the value of options is

zero. OPT_CENTERX centers the text horizontally, OPT_CENTERY centers it

vertically. OPT_CENTER centers the text in both directions. OPT_RIGHTX

right-justifies the text, so that the x is the rightmost pixel. The value of

OPT_RIGHTX is 2048.

Text string

 The text string itself which should be terminated by a null character

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 207

Command layout

+0 CMD_TEXT(0xffffff0c)

+4 X

+6 Y

+8 Font

+10 Options

+12 S

.. ..

.. 0 (null character to terminate string)

Examples

Plain text at (0,0) in the largest font:

cmd_text(0, 0, 31, 0, “Text!”);

Using a smaller font:

cmd_text(0, 0, 26, 0, “Text!”);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 208

Centered horizontally:

cmd_text(80, 60, 31, OPT_CENTERX, “Text!”);

Right-justified:

cmd_text(80, 60, 31, OPT_RIGHTX, “Text!”);

Centered vertically:

cmd_text(80, 60, 31, OPT_CENTERY, “Text!”);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 209

Centered both horizontally and vertically:

cmd_text(80, 60, 31, OPT_CENTER, “Text!”);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 210

5.39 CMD_NUMBER - draw a decimal number

C prototype

void cmd_number(int16_t x,

int16_t y,

int16_t font,

uint16_t options,

int32_t n);

Parameters

x

x-coordinate of text base, in pixels

y

y-coordinate of text base, in pixels

font

font to use for text, 0-31. See ROM and RAM Fonts

options

By default (x,y) is the top-left pixel of the text. OPT_CENTERX centers the

text horizontally, OPT_CENTERY centers it vertically. OPT_CENTER centers the

text in both directions. OPT_RIGHTX right-justifies the text, so that the x is

the rightmost pixel. By default the number is displayed with no leading

zeroes, but if a width 1-9 is specified in the options, then the number is

padded if necessary with leading zeroes so that it has the given width. If

OPT_SIGNED is given, the number is treated as signed, and prefixed by a

minus sign if negative.

n

The number to display, either unsigned or signed 32-bit

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 211

Command layout

+0 CMD_NUMBER(0xffffff2e)

+4 X

+6 Y

+8 Font

+10 Options

+12 n

Examples

A number:

cmd_number(20, 60, 31, 0, 42);

Centered:

cmd_number(80, 60, 31, OPT_CENTER, 42);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 212

Signed output of positive and negative numbers:

cmd_number(20, 20, 31, OPT_SIGNED, 42);

cmd_number(20, 60, 31, OPT_SIGNED, -42);

Forcing width to 3 digits, right-justified

cmd_number(150, 20, 31, OPT_RIGHTX | 3,

42);

cmd_number(150, 60, 31, OPT_SIGNED |

OPT_RIGHTX | 3, -1);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 213

CMD_LOADIDENTI–Y - Set the current matrix to the identity matrix This

command instructs the co-processor engine of the FT800 to set the current matrix

to the identity matrix, so that co-processor engine is able to form the new matrix

as requested by CMD_SCALE, CMD_ROTATE,CMD_TRANSLATE command. For

more information on the identity matrix, please see Bitmap transformation matrix

section.

C prototype

void cmd_loadidentity();

Command layout

+0 CMD_LOADIDENTITY(0xffffff26)

5.40 CMD_SETMATRIX - write the current matrix to the
display list

The co-processor engine assigns the value of the current matrix to the bitmap

transform matrix of the graphics engine by generating display list commands, i.e.,

BITMAP_TRANSFORM_A-F. After this command, the following bitmap rendering

operation will be affected by the new transform matrix.

C prototype

void cmd_setmatrix();

Command layout

+0 CMD_SETMATRIX(0xffffff2a)

Parameter

 None

5.41 CMD_GETMATRIX - retrieves the current matrix
coefficients

To retrieve the current matrix within the context of co-processor engine. Please

note the matrix within the context of co-processor engine will not apply to the

bitmap transformation until it is passed to graphics engine through

CMD_SETMATRIX.

C prototype

void cmd_getmatrix(int32_t a,

int32_t b,

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 214

int32_t c,

int32_t d,

int32_t e,

int32_t f);

Parameters

a

output parameter; written with matrix coefficient a. See the parameter a of

the command BITMAP_TRANSFORM_A for formatting.

b

output parameter; written with matrix coefficient b. See the parameter b of

the command BITMAP_TRANSFORM_B for formatting.

c

output parameter; written with matrix coefficient c. See the parameter c of

the command BITMAP_TRANSFORM_C for formatting.

d

output parameter; written with matrix coefficient d. See the parameter d of

the command BITMAP_TRANSFORM_D for formatting.

e

output parameter; written with matrix coefficient e. See the parameter e of

the command BITMAP_TRANSFORM_E for formatting.

f

output parameter; written with matrix coefficient f. See the parameter f of the

command BITMAP_TRANSFORM_F for formatting.

Command layout

+0 CMD_GETMATRIX(0xffffff33)

+4 A

+8 B

+12 C

+16 D

+20 E

+24 F

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 215

5.42 CMD_GETPTR - get the end memory address of inflated
data

C prototype

void cmd_getptr(uint32_t result

);

Parameters

result

 The end address of decompressed data done by CMD_INFLATE.

 The starting address of decompressed data as was specified by CMD_INFLATE,

while the end address of decompressed data can be retrieved by this command.

 It is one out parameter and can be passed in as any value with CMD_GETPTR to

RAM_CMD.

Command layout

+0 CMD_GETPTR (0xffffff23)

+4 result

Examples
cmd_inflate(1000); //Decompress the data into RAM_G + 1000

...... //Following the zlib compressed data

While(rd16(REG_CMD_WRITE) != rd16(REG_CMD_READ)); //Wait till the

compression was done

uint16_t x = rd16(REG_CMD_WRITE);

uint32_t ending_address = 0;

cmd_getptr(0);

ending_address = rd32(RAM_CMD + x + 4);

Code snippet 13 CMD_GETPTR command example

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 216

5.43 CMD_GETPROPS - get the image properties
decompressed by CMD_LOADIMAGE

C prototype

void cmd_getprops(uint32_t &ptr, uint32_t &width, uint32_t &height);

Parameters

ptr

 The address of image in RAM_G which was decompressed by last

CMD_LOADIMAGE before this command. It is an output parameter.

width

 The width of image which was decompressed by last CMD_LOADIMAGE before

this command. It is an output parameter.

height

 The height of image which was decompressed by last CMD_LOADIMAGE before

this command. It is an output parameter.

Command layout

+0 CMD_GETPROPS (0xffffff25)

+4 ptr

+8 width

+12 Height

Description

 This command is used to retrieve properties of image which was decompressed by

CMD_LOADIMAGE. All the parameters will be filled out by coprocessor after this

command is executed successfully.

Examples

 Please refer to the CMD_GETPTR

5.44 CMD_SCALE - apply a scale to the current matrix

C prototype

void cmd_scale(int32_t sx,

int32_t sy);

Parameters

sx

x scale factor, in signed 16. 16 bit fixed-point form.

sy

y scale factor, in signed 16. 16 bit fixed-point form.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 217

Command layout

+0 CMD_SCALE(0xffffff28)

+4 sx

+8 sy

Examples

To zoom a bitmap 2X:

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_scale(2 * 65536, 2 * 65536);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 218

To zoom a bitmap 2X around its center:

 cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_translate(65536 * 32, 65536 * 32);

cmd_scale(2 * 65536, 2 * 65536);

cmd_translate(65536 * -32, 65536 * -

32);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 219

5.45 CMD_ROTATE - apply a rotation to the current matrix

C prototype

void cmd_rotate(int32_t a);

Parameters

a

Clockwise rotation angle, in units of 1/65536 of a circle

Command layout

+0 CMD_ROTATE(0xffffff29)

+4 a

Examples

To rotate the bitmap clockwise by 10 degrees with respect to the top left of the

bitmap:

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_rotate(10 * 65536 / 360);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

To rotate the bitmap counter clockwise by 33 degrees wrt top left of the bitmap:

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_rotate(-33 * 65536 / 360);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 220

Rotating a 64 x 64 bitmap around its center:

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_translate(65536 * 32, 65536 * 32);

cmd_rotate(90 * 65536 / 360);

cmd_translate(65536 * -32, 65536 * -

32);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 221

5.46 CMD_TRANSLATE - apply a translation to the current
matrix

C prototype

void cmd_translate(int32_t tx,

int32_t ty);

Parameters

tx

x translate factor, in signed 16.16 bit fixed-point form.

ty

y translate factor, in signed 16.16 bit fixed-point form.

Command layout

+0 CMD_TRANSLATE(0xffffff27)

+4 Tx

+8 Ty

Examples

To translate the bitmap 20 pixels to the right:

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_translate(20 * 65536, 0);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 222

To translate the bitmap 20 pixels to the left:

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_translate(-20 * 65536, 0);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 223

5.47 CMD_CALIBRATE - execute the touch screen calibration
routine

The calibration procedure collects three touches from the touch screen, then computes

and loads an appropriate matrix into REG_TOUCH_TRANSFORM_A-F. To use it, create a

display list and then use CMD_CALIBRATE. The co-processor engine overlays the touch

targets on the current display list, gathers the calibration input and updates

REG_TOUCH_TRANSFORM_A-F.

C prototype

void cmd_calibrate(uint32_t result);

Parameters

result

output parameter; written with 0 on failure of calibration.

The completion of this function is detected when the value of REG_CMD_READ is equal

to REG_CMD_WRITE.

Command layout

+0 CMD_CALIBRATE(0xffffff15)

+4 result

Examples
cmd_dlstart();

cmd(CLEAR(1,1,1));

cmd_text(80, 30, 27, OPT_CENTER, "Please tap on the dot");

cmd_calibrate();

Code snippet 14 CMD_CALIBRATE example

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 224

5.48 CMD_SPINNER - start an animated spinner

The spinner is an animated overlay that shows the user that some task is continuing. To

trigger the spinner, create a display list and then use CMD_SPINNER. The co-processor

engine overlays the spinner on the current display list, swaps the display list to make it

visible, then continuously animates until it receives CMD_STOP. REG_MACRO_0 and

REG_MACRO_1 registers are utilized to perform the animation kind of effect. The

frequency of points movement is with respect to the display frame rate configured.

Typically for 480x272 display panels the display rate is ~60fps. For style 0 and 60fps,

the point repeats the sequence within 2 seconds. For style 1 and 60fps, the point repeats

the sequence within 1.25 seconds. For style 2 and 60fps, the clock hand repeats the

sequence within 2 seconds. For style 3 and 60fps, the moving dots repeat the sequence

within 1 second.

Note that only one of CMD_SKETCH, CMD_SCREENSAVER, or CMD_SPINNER can be

active at one time.

C prototype

void cmd_spinner(int16_t x,

int16_t y,

uint16_t style,

uint16_t scale);

Command layout

+0 CMD_SPINNER(0xffffff16)

+4 X

+6 Y

+8 Style

+10 Scale

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 225

Parameters

 X

 The X coordinate of top left of spinner

 Y

 The Y coordinate of top left of spinner

 Style

 The style of spinner. Valid range is from 0 to 3.

 Scale

 The scaling coefficient of spinner. 0 means no scaling.

Examples

Create a display list, then start the spinner:

cmd_dlstart();

cmd(CLEAR(1,1,1));

cmd_text(80, 30, 27, OPT_CENTER, "Please

wait...");

cmd_spinner(80, 60, 0, 0);

Spinner style 0, a circle of dots:

cmd_spinner(80, 60, 0, 0);

Style 1, a line of dots:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 226

cmd_spinner(80, 60, 1, 0);

Style 2, a rotating clock hand:

cmd_spinner(80, 60, 2, 0);

Style 3, two orbiting dots:

cmd_spinner(80, 60, 3, 0);

Half screen, scale 1:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 227

cmd_spinner(80, 60, 0, 1);

Full screen, scale 2:

cmd_spinner(80, 60, 0, 2);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 228

5.49 CMD_SCREENSAVER - start an animated screensaver

After the screensaver command, the co-processor engine continuously updates

REG_MACRO_0 with VERTEX2F with varying (x,y) coordinates. With an appropriate

display list, this causes a bitmap to move around the screen without any MCU work.

Command CMD_STOP stops the update process.

Note that only one of CMD_SKETCH, CMD_SCREENSAVER, or CMD_SPINNER can be

active at one time.

C prototype

void cmd_screensaver();

Description

REG_MACRO_0 is updated with respect to frequency of frames displayed (depending

on the display registers configuration). Typically for 480x272 display the frame rate

is around 60 frame per second.

Command layout

+0 CMD_SCREENSAVER(0xffffff2f)

Examples

To start the screensaver, create a display list using a MACRO instruction – the co-

processor engine will update it continuously:

cmd_screensaver();

cmd(BITMAP_SOURCE(0));

cmd(BITMAP_LAYOUT(RGB565, 128, 64));

cmd(BITMAP_SIZE(NEAREST,BORDER,BORDER, 40, 30));

cmd(BEGIN(BITMAPS));

cmd(MACRO(0));

cmd(DISPLAY());

 Code snippet 15 CMD_SCREENSAVER example

 Here is the result:

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 229

5.50 CMD_SKETCH - start a continuous sketch update

After the sketch command, the co-processor engine continuously samples the touch

inputs and paints pixels into a bitmap, according to the touch (x, y). This means that the

user touch inputs are drawn into the bitmap without any need for MCU work. Command

CMD_STOP stops the sketch process.

Note that only one of CMD_SKETCH, CMD_SCREENSAVER, or CMD_SPINNER can be

active at one time.

This command is applicable for FT800 and FT801 users is recommended to use

CMD_CSKETCH since the optimization has been done for capacitive touch.

C prototype

void cmd_sketch(int16_t x,

int16_t y,

uint16_t w,

uint16_t h,

uint32_t ptr,

uint16_t format);

Parameters

x

x-coordinate of sketch area top-left, in pixels

y

y-coordinate of sketch area top-left, in pixels

w

Width of sketch area, in pixels

h

Height of sketch area, in pixels

ptr

Base address of sketch bitmap

format

Format of sketch bitmap, either L1 or L8

Description

 Please note that update frequency of bitmap data in graphics memory depends on

sampling frequency of ADC built-in circuit of FT800, which is up to 1000 Hz.

Command layout

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 230

+0 CMD_SKETCH(0xffffff30)

+4 X

+6 Y

+8 W

+10 H

+12 Ptr

+16 Format

Examples

To start sketching into a 480x272 L1 bitmap:

cmd_memzero(0, 480 * 272 / 8);

cmd_sketch(0, 0, 480, 272, 0, L1);

//Then to display the bitmap

cmd(BITMAP_SOURCE(0));

cmd(BITMAP_LAYOUT(L1, 60, 272));

cmd(BITMAP_SIZE(NEAREST, BORDER, BORDER, 480, 272));

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(0, 0, 0, 0));

//Finally, to stop sketch updates

cmd_stop();

Code snippet 16 CMD_SKETCH example

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 231

5.51 CMD_STOP - stop any of spinner, screensaver or sketch

 This command is to inform the co-processor engine to stop the periodic operation,

which is triggered by CMD_SKETCH , CMD_SPINNER or CMD_SCREENSAVER.

C prototype

void cmd_stop();

Command layout

+0 CMD_STOP(0xffffff17)

Parameters

 None

Description

 For CMD_SPINNER and CMD_SCREENSAVER, REG_MACRO_0 and REG_MACRO_1 will

be stopped updating.

 For CMD_SKETCH or CMD_CSKETCH, the bitmap data in RAM_G will be stopped

updating.

Examples

 See CMD_SKETCH,CMD_CSKETCH, CMD_SPINNER, CMD_SCREENSAVER

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 232

5.52 CMD_SETFONT - set up a custom font

CMD_SETFONT is used to register one custom defined bitmap font into the FT800 co-

processor engine. After registration, the FT800 co-processor engine is able to use the

bitmap font with its co-processor command.

About the details about how to set up custom font, please refer to ROM and RAM Fonts.

C prototype

void cmd_setfont(uint32_t font,

uint32_t ptr);

Command layout

+0 CMD_SETFONT(0xffffff2b)

+4 font

+8 ptr

Parameters

font

The bitmap handle from 0 to 14. Bitmap handle 15 can be used conditionally.

Please see 4.6

ptr

The metric block address in RAM. 4 bytes aligned is required.

Examples

With a suitable font metric block loaded in RAM at address 1000, to set it up for use

with objects as font 7:

cmd_setfont(7, 1000);

cmd_button(20, 20, // x,y

 120, 40, // width,height in pixels

 7, // font 7, just loaded

 0, // default options,3D style

 "custom font!");

Code snippet 17 CMD_SETFONT example

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 233

5.53 CMD_TRACK - track touches for a graphics object

This command will enable co-processor engine to track the touch on the particular

graphics object with one valid tag value assigned. Then, co-processor engine will update

the REG_TRACKER periodically with the frame rate of LCD display panel.

Co-processor engine tracks the graphics object in rotary tracker mode and linear tracker

mode:

 rotary tracker mode – Track the angle between the touching point and the center

of graphics object specified by tag value. The value is in units of 1/65536 of a

circle. 0 means that the angle is straight down, 0x4000 left, 0x8000 up, and

0xC000 right from the center.

 Linear tracker mode – If parameter w is greater than h, track the relative

distance of touching point to the width of graphics object specified by tag value.

If parameter w is not greater than h, Track the relative distance of touching

point to the height of graphics object specified by tag value. The value is in units

of 1/65536 of the width or height of graphics object. The distance of touching

point refers to the distance from the top left pixel of graphics object to the

coordinate of touching point.

C prototype

void cmd_track(int16_t x,

int16_t y,

int16_t w,

int16_t h,

int16_t tag);

Parameters

x

For linear tracker functionality, x-coordinate of track area top-left, in pixels.

For rotary tracker functionality, x-coordinate of track area center, in pixels.

y

For linear tracker functionality, y-coordinate of track area top-left, in pixels.

For rotary tracker functionality, y-coordinate of track area center, in pixels.

w

Width of track area, in pixels.

h

Height of track area, in pixels.

Please note:

A w and h of (1,1) means that the tracker is rotary, and reports an

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 234

angle value in REG_TRACKER. A w and h of (0,0) disables the track

functionality of co-processor engine.

tag

tag of the graphics object to be tracked, 1-255

Command layout

+0 CMD_TRACK(0xffffff2c)

+4 X

+6 Y

+8 W

+10 h

+12 tag

Examples

Horizontal track of rectangle dimension 40x12pixels and the present touch is

at 50%:

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(RECTS));

dl(VERTEX2F(60 * 16,50 * 16));

dl(VERTEX2F(100 * 16,62 * 16));

dl(COLOR_RGB(255, 0, 0));

dl(VERTEX2F(60 * 16,50 * 16));

dl(VERTEX2F(80 * 16,62 * 16));

dl(COLOR_MASK(0 ,0 ,0 ,0));

dl(TAG(1));

dl(VERTEX2F(60 * 16,50 * 16));

dl(VERTEX2F(100 * 16,62 * 16));

cmd_track(60 * 16, 50 * 16, 40, 12, 1);

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 235

Vertical track of rectangle dimension 12x40 pixels and the present touch is at 50%:

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(RECTS));

dl(VERTEX2F(70 * 16,40 * 16));

dl(VERTEX2F(82 * 16,80 * 16));

dl(COLOR_RGB(255, 0, 0));

dl(VERTEX2F(70 * 16,40 * 16));

dl(VERTEX2F(82 * 16,60 * 16));

dl(COLOR_MASK(0 ,0 ,0 ,0));

dl(TAG(1));

dl(VERTEX2F(70 * 16,40 * 16));

dl(VERTEX2F(82 * 16,80 * 16));

cmd_track(70 * 16, 40 * 16, 12, 40, 1);

Circular track centered at (80,60) display location

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(TAG(1));

dl(BEGIN(POINTS));

dl(POINT_SIZE(20 * 16));

dl(VERTEX2F(80 * 16, 60 * 16));

cmd_track(80 * 16, 60 * 16, 1, 1, 1);

To draw a dial with tag 33 centered at (80, 60), adjustable by touch:

uint16_t angle = 0x8000;

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 236

cmd_track(80, 60, 1, 1, 33);

while (1) {

...

cmd(TAG(33));

cmd_dial(80, 60, 55, 0, angle);

...

uint32_t tracker = rd32(REG_TRACKER);

if ((tracker & 0xff) == 33)

angle = trackeI> 16;

...

}

To make an adjustable slider with tag 34:

uint16_t val = 0x8000;

cmd_track(20, 50, 120, 8, 34);

Ile (1) {

...

cmd(TAG(34));

cmd_slider(20, 50, 120, 8, val, 65535);

...

uint32_t tracker = rd32(REG_TRACKER);

if ((tracker & 0xff) == 33)

val = tracker >> 16;

...

}

–

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 237

5.54 CMD_SNAPSHOT - take a snapshot of the current screen

This command causes the co-processor engine to take a snapshot of the current screen,

and write the result into RAM_G as a ARGB4 bitmap. The size of the bitmap is the size of

the screen, given by the REG_HSIZE and REG_VSIZE registers.

During the snapshot process, the display should be disabled by setting REG_PCLK to 0 to

avoid display glitch.

Because co-processor engine needs to write the result into the destination address, the

destination address must be never used or referenced by graphics engine.

C prototype

void cmd_snapshot(uint32_t ptr);

Parameters

ptr

Snapshot destination address, in RAM_G

Command layout

+0 CMD_SNAPSHOT(0xffffff1f)

+4 ptr

Examples

To take a snapshot of the current 160 x 120 screen, then use it as a bitmap in the

new display list:

wr(REG_PCLK,0);//Turn off the PCLK

wr16(REG_HSIZE,120);

wr16(REG_WSIZE,160);

cmd_snapshot(0);//Taking snapshot.

wr(REG_PCLK,5);//Turn on the PCLK

wr16(REG_HSIZE,272);

wr16(REG_WSIZE,480);

cmd_dlstart();

cmd(CLEAR(1,1,1));

cmd(BITMAP_SOURCE(0));

cmd(BITMAP_LAYOUT(ARGB4, 2 * 160, 120));

cmd(BITMAP_SIZE(NEAREST, BORDER, BORDER, 160, 120));

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(10, 10, 0, 0));

 Code snippet 18 CMD_SNAPSHOT 160x120–screen

5.55 CMD_LOGO - play FTDI logo animation

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 238

The logo command causes the co-processor engine to play back a short animation of the

FTDI logo. During logo playback the MCU should not access any FT800 resources. After

2.5 seconds have elapsed, the co-processor engine writes zero to REG_CMD_READ and

REG_CMD_WRITE, and starts waiting for commands. After this command is complete,

the MCU shall write the next command to the starting address of RAM_CMD.

C prototype

void cmd_logo();

Command layout

+0 CMD_LOGO(0xffffff31)

Examples

To play back the logo animation:
cmd_logo();

delay(3000); // Optional to wait

While((0 != rd16(REG_CMD_WRITE)) &&

 (rd16(REG_CMD_WRITE) != rd16(REG_CMD_READ)));//Wait till both

read & write pointer register are equal to zero

Code snippet 19 CMD_LOGO command example

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 239

6 FT801 operation

6.1 FT801 introduction

FT800 and FT801 share exactly the same graphics and audio feature sets. The touch

capabilities of the FT800 devices are designed for controlling touch on a resistive panel,

while FT801 is for capacitive touch and allows up to 5 touch points. Therefore, the FT801

has a different touch engine and touch control register set from the FT800. All the

registers which name starts with “REG_TOUCH” have been assigned to new name

“REG_CTOUCH”.

6.2 FT801 touch engine

The FT801 has the new Capacitive Touch Screen Engine(CTSE) built in with the following

features:

 I2C interface to Capacitive Touch Panel Module(CTPM)

 Support up to 5 touching points at the same time

 Support CTPM with Focaltech FT5x06 series or Azotech IQS5xx series drive chip

 Compatibility mode and Extended mode

By default, the FT801 touch engine works in compatibility mode and only one touching

point is detected. In extended mode, the FT801 touch engine can detect up to 5

touching points simultaneously.

6.3 FT801 touch registers

FT801 has re-defined the touch registers of the FT800 as below:

Register Definition 76 REG_CTOUCH_MODE Definition

31 2 1 0

REG_CTOUCH_MODE Definition

Address: 0x1024F0 Reset Value: 0x3

Bit 0 - 1 : The host can set these two bits to control the touch screen sampling

mode of the FT801 touch engine, as per:

 00: Off mode. No sampling happens.

 01: Not defined.

 10: Not defined.

 11: On Mode.

Bit 2 - 31: Reserved

R/WReserved

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 240

Register Definition 77 REG_CTOUCH_EXTENDED Definition

31 1

REG_CTOUCH_EXTEND Definition

Address: 0x1024F4 Reset Value: 0x1

Bit 0 : This bit controls the detection mode of the FT801 touch engine, as per:

 0: Extended mode, multi-touch detection mode, up to 5 touch points

 1: Compability mode, single touch detection mode

R/WReserved

0

Register Definition 78 REG_CTOUCH_TOUCH0_XY Definition

31 16 15 0

Reset Value: 0x80008000

REG_CTOUCH_TOUCH0_XY Definition

Address: 0x102510

Bit 0 - 15 : The value of these bits are the Y coordinates of the first touch point.

Bit 16 - 31: The value of these bits are X coordinates of the first touch point.

RORO

Note: This register is applicable for extended mode and compability

mode. For compability mode, this register reflects the position of the only touch

point.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 241

Register Definition 79 REG_CTOUCH_TOUCH1_XY Definition

31 16 15 0

Reset Value: 0x80008000

Note: This register is only applicable in the extended mode

REG_CTOUCH_TOUCH1_XY Definition

Address: 0x102508

Bit 0 - 15 : The value of these bits are the Y coordinates of the second touch point.

Bit 16 - 31: The value of these bits are X coordinates of the second touch point.

RORO

Register Definition 80 REG_CTOUCH_TOUCH2_XY Definition

31 16 15 0

Note: This register is only applicable in the extended mode

REG_CTOUCH_TOUCH2_XY Definition

Address: 0x102574

Bit 0 - 15 : The value of these bits are the Y coordinates of the third touch point.

Bit 16 - 31: The value of these bits are X coordinates of the third touch point.

RORO

Reset Value: 0x80008000

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 242

Register Definition 81 REG_CTOUCH_TOUCH3_XY Definition

31 16 15 0

Note: This register is only applicable in the extended mode

REG_CTOUCH_TOUCH3_XY Definition

Address: 0x102578

Bit 0 - 15 : The value of these bits are the Y coordinates of the fourth touch point.

Bit 16 - 31: The value of these bits are X coordinates of the fourth touch point.

RORO

Reset Value: 0x80008000

Register Definition 82 REG_CTOUCH_TOUCH4_X Definition

Reset Value: 0x8000

REG_CTOUCH_TOUCH4_X Definition

Address: 0x102538

Bit 0 - 15 : The value of these bits are the X coordinates of the fifth touch point.

Note: This register is only applicable in the extended mode

15 0

RO

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 243

Register Definition 83 REG_CTOUCH_TOUCH4_Y Definition

Note: This register is only applicable in the extended mode

REG_CTOUCH_TOUCH4_Y Definition

Address: 0x10250C Reset Value: 0x8000

Bit 0 - 15 : The value of these bits are the Y coordinates of the fifth touch point.

15 0

RO

 REG_CTOUCH_TRANSFORM_A Definition

REG_CTOUCH_TRANSFORM_A has the same definition with REG_TOUCH_TRANSFORM_A.

See REG_TOUCH_TRANSFORM_A for more details

 REG_CTOUCH_TRANSFORM_B Definition

REG_CTOUCH_TRANSFORM_B has the same definition with REG_TOUCH_TRANSFORM_B.

See REG_TOUCH_TRANSFORM_B for more details

 REG_CTOUCH_TRANSFORM_C Definition

REG_CTOUCH_TRANSFORM_C has the same definition with REG_TOUCH_TRANSFORM_C.

See REG_TOUCH_TRANSFORM_C for more details

 REG_CTOUCH_TRANSFORM_D Definition

REG_CTOUCH_TRANSFORM_D has the same definition with REG_TOUCH_TRANSFORM_D.

See REG_TOUCH_TRANSFORM_D for more details

 REG_CTOUCH_TRANSFORM_E Definition

REG_CTOUCH_TRANSFORM_E has the same definition with REG_TOUCH_TRANSFORM_E.

See REG_TOUCH_TRANSFORM_E for more details

 REG_CTOUCH_TRANSFORM_F Definition

REG_CTOUCH_TRANSFORM_F has the same definition with REG_TOUCH_TRANSFORM_F.

See REG_TOUCH_TRANSFORM_F for more details

Note: Calibration should only be performed in compatibility mode (default), in the same

way as with resistive displays.

 REG_CTOUCH_RAW_XY Definition

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 244

31 16 15 0

Reset Value: 0xFFFFFFFF

Note: This register is only available in compatibility mode

Bit 0 - 15 : The value of these bits are Y coordinates of touch point but before going

through transform matrix

Bit 16 - 31: The value of these bits are X coordinates of touch point but before going

through transform matrix

REG_CTOUCH_RAW_XY Definition

Address: 0x102508

RORO

 REG_CTOUCH_TAG Definition

This register is available in both mode. In extended mode, only the first touch point, i.e.,

REG_CTOUCH_TOUCH0_XY is used to query the tag value and update this register with

the result. It shares the same definition with REG_TOUCH_TAG.

6.4 Register summary

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 245

Table 13 Touch Registers map table

6.5 Calibration

Calibration process initiated by CMD_CALIBRATE is only available in the compatibility

mode. However, the results of calibration process are applicable to both compatibility

mode and extended mode. As such, users are recommended to finish the calibration

process before entering into extended mode.

After calibration process is done, the registers REG_CTOUCH_TRANSFORM_A~F will be

updated as coefficient of transformation matrix.

6.6 CMD_CSKETCH – Capacitive touch specific sketch

This command has the same functionality as CMD_SKETCH except it has done the

optimization for a capacitive touch panel. Because capacitive touch panels have lower

sampling frequencies (around 100Hz) to report the coordinates, the sketch functionality

updates less frequently compared to resistive touch. CMD_CSKETCH introduces a linear

interpolation algorithm to provide a smoother effect when drawing the output line.

REG_ CTOUCH_ EXTEND REG_ CTOUCH_ EXTEND 0x1 0x0 REG_ TOUCH_ ADC_ MODE 0x01 1058036 4 bytes

REG_ CTOUCH_ TOUCH0 _ X

Y
REG_ CTOUCH_ TOUCH0 _ XY 0x80008000 0x80008000 REG_ TOUCH_ SCREEN_ XY 0x80008000 1058064 4 bytes

RE G_CT OUCH_RAW _X Y
RE G_CT OUCH_T OUCH1_

X Y
0xFFFFFFFF 0x80008000 REG_ TOUCH_ RAW_ XY 0xFFFFFFFF 1058056 4 bytes

 RE G_CT OUCH_T AG RE G_CT OUCH_T AG 0x0 0x0 RE G_T OUCH_T AG 0x0 1058072 4 bytes

1058092 4 bytes0x10000

RE G_CT OUCH_T RANS F

ORM _F

RE G_CT OUCH_T RANS F

ORM _F
0x0

RE G_T OUCH_T RANS FOR

M _F
0x0 1058096 4 bytes0x0

RE G_CT OUCH_T RANS F

ORM _E

RE G_CT OUCH_T RANS F

ORM _E
0x10000

RE G_T OUCH_T RANS FOR

M _E
0x10000

0x0

RE G_CT OUCH_T RANS F

ORM _D

RE G_CT OUCH_T RANS F

ORM _D
0x0

RE G_T OUCH_T RANS FOR

M _D
0x0 1058088 4 bytes0x0

0x0
RE G_T OUCH_T RANS FOR

M _C
0x0 1058084 4 bytes

1058076 4 bytes0x10000

RE G_CT OUCH_T RANS F

ORM _B

RE G_CT OUCH_T RANS F

ORM _B
0x0

RE G_T OUCH_T RANS FOR

M _B
0x0 1058080 4 bytes0x0

RE G_CT OUCH_T RANS F

ORM _A

RE G_CT OUCH_T RANS F

ORM _A
0x10000

RE G_T OUCH_T RANS FOR

M _A
0x10000

FT801- C Mode FT801 – E Mode
Default Value

(C Mode)
 FT800 Address

0x8000
RE G_CT OUCH_T OUCH4_

Y
0x7FFF REG_ TOUCH_ RZ 0x7FFF 1058060 2 bytes

Default

Value

 Default Value

(Extend Mode)

0x80008000

0x80008000

0x8000 0x0 1058104 2 bytes

NA 1058168 4 bytes

0x0 1058164 4 bytes

Bit width

Note: C Mode: Compatibility Mode, default mode after FT801 reset

 E Mode: Extented Mode

NA

NA

NA

NA

RE G_CT OUCH_T OUCH4_

X
0x0 REG_ ANALOG

RE G_CT OUCH_T OUCH3_

X Y
NA REG_ TOUCH_ DIRECT_ Z1Z2

RE G_CT OUCH_T OUCH2_

X Y
0x0 REG_ TOUCH_ DIRECT_ XY

RE G_CT OUCH_T RANS F

ORM _C

RE G_CT OUCH_T RANS F

ORM _C

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 246

Please note this command is not applicable to FT800 silicon.

C prototype

void cmd_csketch(int16_t x,

int16_t y,

uint16_t w,

uint16_t h,

uint32_t ptr,

uint16_t format,

uint16_t freq);

Command layout

+0 CMD_CSKETCH(0xffffff35)

+4 X

+6 Y

+8 W

+10 H

+12 Ptr

+16 Format

+18 Freq

Parameters

x

x-coordinate of sketch area top-left, in pixels

y

y-coordinate of sketch area top-left, in pixels

w

Width of sketch area, in pixels

h

Height of sketch area, in pixels

ptr

Base address of sketch bitmap

format

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 247

Format of sketch bitmap, either L1 or L8

freq

The oversampling frequency. The typical value is 1500 to make sure the

lines are connected smoothly. The value zero means no oversampling

operation.

Description

This command is only valid for FT801 silicon. FT801 co-processor will oversample

the coordinates reported by the capacitive touch panel in the frequency of ‘freq’ and

forms the lines with a smoother effect.

Examples

Check the CMD_SKETCH example

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 248

Appendix A – Document References

1) FT800 Datasheet: DS_FT800_Embedded_Video_Engine

2) OpenGL Reference Manual: The Official Reference Document to OpenGL, Version 1.4

3) FT801 Datasheet: DS_FT801

4) Application note of FT800 FT801 Internal Clock Trimming:

AN_299_FT800_FT801_Internal_Clock_Trimming

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT800.pdf
http://sharepoint.ftdi.local/documents/Support%20Engineering/Application%20Notes/AN_299_FT800_FT801_Internal_Clock_Trimming.docx

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 249

Appendix B – Acronyms and Abbreviations

Terms Description

CS Chip select

DL/dl Display list

EVE Embedded Video Engine

GPIO General Purpose Input/output

Hz/KHz/MHz Hertz/Kilo Hertz/Mega Hertz

I2C Inter-Integrated Circuit

LSB least significant bit

MCU Micro controller unit

MSB most significant bit

OS operating system

PWM Pulse-width modulation

PWR Power

RAM Random access memory

RGB Red Blue Green

SPI Serial Peripheral Interface

USB Universal Serial Bus

USB-IF USB Implementers Forum

RO Read only

fps Frame per second

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 250

Appendix C – Memory Map

Start

Address

End

Address

Size NAME Description

00 0000h 03 FFFFh 256

kB

RAM_G Main graphics RAM

0C 0000h 0C 0003h 4 B ROM_CHIPID FT800 chip identification and

revision information:

Byte [0:1] Chip ID: “0800”

Byte [2:3] Version ID: “0100”

FT801 chip identification and

revision information:

Byte [0:1] Chip ID: “0801”

Byte [2:3] Version ID: “0100”

0B B23Ch 0F FFFBh 275

kB

ROM_FONT Font table and bitmap

0F FFFCh 0F FFFFh 4 B ROM_FONT_ADDR Font table pointer address

10 0000h 10 1FFFh 8 kB RAM_DL Display List RAM

10 2000h 10 23FFh 1 kB RAM_PAL Palette RAM

10 2400h 10 257Fh 380 B REG_* Registers

10 8000 h 10 8FFFh 4 kB RAM_CMD Graphics Engine Command Buffer

1C 2000 h 1C 27FFh 2 kB RAM_SCREENSHOT Screenshot readout buffer

Note 1: The addresses beyond this table are reserved and shall not be read or written

unless otherwise specified.

Note 2: The ROM_CHIPID utilizes a part of shadow address from ROM_FONT address

space.

 FT800 Series Programmer Guide
 Version 2.0

 Document Reference No.: FT_000793 Clearance No.: FTDI#349

 Copyright © 2014 Future Technology Devices International Limited 251

Appendix D – Revision History

Document Title: FT800 Series Programmer Guide

Document Reference No.: FT_000793

Clearance No.: FTDI#349

Product Page: http://www.ftdichip.com/FTProducts.htm

Document Feedback: Send Feedback

Revision Changes Date

0.1 Initial Draft Release 2012-08-01

2.0 FT801 content added 2014-08-01

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20FT800%20Programmer%20Guide%20Version%201.0

