3.3 V ECL Dual 1:3 Fanout Buffer #### Description The MC100LVEL13 is a dual, fully differential 1:3 fanout buffer. The Low Output-Output Skew of the device makes it ideal for distributing two different frequency synchronous signals. The differential inputs have special circuitry which ensures device stability under open input conditions. When both differential inputs are left open the D input will pull down to V_{EE} , The \overline{D} input will bias around $V_{CC}/2$ and the Q output will go LOW. #### **Features** - 500 ps Typical Propagation Delays - 50 ps Output-Output Skews - ESD Protection: > 2 kV Human Body Model - The 100 Series Contains Temperature Compensation - PECL Mode Operating Range: V_{CC} = 3.0 V to 3.8 V with V_{EE} = 0 V - NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -3.0 V to -3.8 V - Internal Input Pulldown Resistors - Q Output will Default LOW with Inputs Open or at V_{EE} - Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test - Moisture Sensitivity: Level 3 (Pb-Free) - Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34 - Transistor Count = 143 Devices - These Devices are Pb-Free, Halogen Free and are RoHS Compliant #### ON Semiconductor® www.onsemi.com SOIC-20 WB DW SUFFIX CASE 751D #### **MARKING DIAGRAM*** A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping† | |------------------|-------------------------|---------------------| | MC100LVEL13DWG | SOIC-20 WB
(Pb-Free) | 38 Units / Tube | | MC100LVEL13DWR2G | SOIC-20 WB
(Pb-Free) | 1000
Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>. Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. Logic Diagram and Pinout: 20-Lead SOIC (Top View) #### **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |-----------------|--------------------------------| | Qna, Qna | ECL Differential Clock Outputs | | Qnb, Qnb | ECL Differential Clock Outputs | | CLKn, CLKn | ECL Differential Clock Inputs | | V _{CC} | Positive Supply | | V _{EE} | Negative Supply | #### **Table 2. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--|---|-------------------|--------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 to 0 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -8 to 0 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6 to 0
-6 to 0 | V
V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | −65 to +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-20 WB
SOIC-20 WB | 90
60 | °C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-20 WB | 30 to 35 | °C/W | | T _{sol} | Wave Solder (Pb-Free) | < 2 to 3 sec @ 260°C | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 3. LVPECL DC CHARACTERISTICS (V_{CC} = 3.3 V; V_{EE} = 0.0 V (Note 1)) | | | -40°C | | | 25°C | | 85°C | | | | | |-----------------|---|-------------|------|------------|-------------|------|------------|-------------|------|------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 30 | 38 | | 30 | 38 | | 32 | 40 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 2215 | 2295 | 2420 | 2275 | 2345 | 2420 | 2275 | 2345 | 2420 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 1470 | 1605 | 1745 | 1490 | 1595 | 1680 | 1490 | 1595 | 1680 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2135 | | 2420 | 2135 | | 2420 | 2135 | | 2420 | mV | | V_{IL} | Input LOW Voltage (Single-Ended) | 1490 | | 1825 | 1490 | | 1825 | 1490 | | 1825 | mV | | VIHCMR | Input HIGH Voltage Common Mode
Range (Differential) (Note 3)
V _{PP} < 500 mV
V _{PP} ≥ 500 mV | 1.3
1.5 | | 2.9
2.9 | 1.2
1.4 | | 2.9
2.9 | 1.2
1.4 | | 2.9
2.9 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current CLKn CLKn | 0.5
-300 | | | 0.5
–300 | | | 0.5
–300 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary ± 0.3 V. - 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. - 3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V. Table 4. LVNECL DC CHARACTERISTICS ($V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 1)) | | | -40°C | | 25°C | | | 85°C | | | | | |-----------------|--|--------------|-------|--------------|--------------|-------|--------------|--------------|-------|--------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 30 | 38 | | 30 | 38 | | 32 | 40 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 2) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | VIHCMR | Input HIGH Voltage Common Mode Range (Differential) (Note 3) V _{PP} < 500 mV V _{PP} ≥ 500 mV | -2.0
-1.8 | | -0.4
-0.4 | -2.1
-1.9 | | -0.4
-0.4 | -2.1
-1.9 | | -0.4
-0.4 | ٧ | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current CLKn CLKn | 0.5
-300 | | | 0.5
–300 | | | 0.5
–300 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary ± 0.3 V. - 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. - V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V. Table 5. AC CHARACTERISTICS ($V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 1)) | | | -40°C | | 25°C | | | 85°C | | | | | |--------------------------------------|--|-------|-----|----------|-----|-----|----------|-----|-----|----------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Toggle Frequency | | TBD | | | TBD | | | TBD | | GHz | | t _{PLH}
t _{PHL} | Propagation Delay CLK to Q/Q | 410 | | 600 | 430 | 500 | 620 | 450 | | 640 | ps | | t _{sk(O)} | Output-Output Skew
Any Qa to Qa, Any Qb to Qb
Any Qa to Any Qb | | | 50
75 | | | 50
75 | | | 50
75 | ps | | t _{skew} | Duty Cycle Skew t _{PLH} -t _{PHL} | | | 50 | | | 50 | | | 50 | ps | | t _{JITTER} | Cycle-to-Cycle Jitter | | TBD | | | TBD | | | TBD | | ps | | V_{PP} | Input Swing (Note 2) | 150 | | 1000 | 150 | | 1000 | 150 | | 1000 | mV | | t _r
t _f | Output Rise/Fall Times Q (20%-80%) | 230 | | 500 | 230 | | 500 | 230 | | 500 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. V_{EE} can vary ±0.3 V. - 2. V_{PP}^{--} (min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of \approx 40. Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices) #### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1568/D – Interfacing Between LVDS and ECL AN1672/D – The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices #### **PACKAGE DIMENSIONS** #### SOIC-20 WB CASE 751D-05 **ISSUE H** - NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | | | | | | | | |-----|-------------|-------|--|--|--|--|--|--|--| | DIM | MIN | MAX | | | | | | | | | Α | 2.35 | 2.65 | | | | | | | | | A1 | 0.10 | 0.25 | | | | | | | | | b | 0.35 | 0.49 | | | | | | | | | С | 0.23 | 0.32 | | | | | | | | | D | 12.65 | 12.95 | | | | | | | | | E | 7.40 | 7.60 | | | | | | | | | е | 1.27 | BSC | | | | | | | | | Н | 10.05 | 10.55 | | | | | | | | | h | 0.25 | 0.75 | | | | | | | | | L | 0.50 | 0.90 | | | | | | | | | θ | 0 ° | 7 ° | | | | | | | | #### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative