STL80N3LLH6 ## N-channel 30 V, 0.0046 Ω, 21 A PowerFLAT™ 5x6 STripFET™ VI DeepGATE™ Power MOSFET ### **Features** | Order code | V _{DSS} | R _{DS(on)}
max | I _D | |-------------|------------------|----------------------------|---------------------| | STL80N3LLH6 | 30 V | $0.0052~\Omega$ | 21 A ⁽¹⁾ | - 1. The value is rated according R_{thi-pcb} - \blacksquare R_{DS(on)} * Q_g industry benchmark - Extremely low on-resistance R_{DS(on)} - High avalanche ruggedness - Low gate drive power losses - Very low switching gate charge ### **Applications** ■ Switching applications ## Description This device is an N-channel Power MOSFET developed using the 6th generation of STripFETTM DeepGATETM technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest $R_{DS(on)}$ in all packages. Figure 1. Internal schematic diagram Table 1. Device summary | Order code | Marking | Package | Packaging | |-------------|----------|----------------|---------------| | STL80N3LLH6 | 80N3LLH6 | PowerFLAT™ 5x6 | Tape and reel | Contents STL80N3LLH6 ### **Contents** | 1 | Electrical ratings 3 | |------|---| | 2 | Electrical characteristics 4 | | | 2.1 Electrical characteristics (curves) | | 3 | Test circuits 8 | | 4 | Package mechanical data | | 5 | Revision history12 | | | Electrical characteristics | | | coleic | | | Ops | | | 15) | | | AUCITO | | | Droom | | | ete ' | | -WSC | | | Oh | | | | | | | | STL80N3LLH6 Electrical ratings # 1 Electrical ratings Table 2. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |------------------------------------|--|------------|------| | V _{DS} | Drain-source voltage | 30 | V | | V _{GS} | Gate-source voltage | ± 20 | V | | I _D ⁽¹⁾ | Drain current (continuous) at T _C = 25 °C | 80 | Α | | I _D ⁽¹⁾ | Drain current (continuous) at T _C = 70 °C | 60 | Α | | I _D ⁽¹⁾ | Drain current (continuous) at T _C = 100 °C | 51 | Α | | I _D ⁽²⁾ | Drain current (continuous) at T _{pcb} = 25 °C | 21 | Α | | I _D ⁽²⁾ | Drain current (continuous) at T _{pcb} =70 °C | 15.7 | Α | | I _D ⁽²⁾ | Drain current (continuous) at T _{pcb} =100 °C | 13.1 | Α | | I _{DM} ⁽³⁾ | Drain current (pulsed) | 84 | Α | | P _{TOT} (1) | Total dissipation at T _C = 25 °C | 60 | W | | P _{TOT} (2) | Total dissipation at T _{pcb} = 25 °C | 4 | W | | | Derating factor | 0.03 | W/°C | | T _J
T _{stg} | Operating junction temperature Storage temperature | -55 to 150 | °C | ^{1.} The value is rated according to $R_{\mbox{\scriptsize thj-c}}$. Table 3. Thermal resistance | Symbol | Parameter | Value | Unit | |--------------------------|--|-------|------| | R _{thj-case} | Thermal resistance junction-case (drain, steady state) | 2.08 | °C/W | | R _{thj-pcb} (1) | Thermal resistance junction-ambient | 31.3 | °C/W | ^{1.} When mounted on FR-4 board of 1inch 2 , 2oz Cu, t < 10 sec. ^{2.} The value is rated according to $R_{\mbox{\scriptsize thj-pcb.}}$ ^{3.} Pulse width limited by safe operating area. **Electrical characteristics** STL80N3LLH6 #### **Electrical characteristics** 2 $(T_{CASE} = 25 \, ^{\circ}C \text{ unless otherwise specified})$ Table 4. On/off states | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|---|---|------|------------------|------------------|--------------------------| | V _{(BR)DSS} | Drain-source breakdown voltage | $I_D = 250 \ \mu A, \ V_{GS} = 0$ | 30 | | | V | | I _{DSS} | Zero gate voltage drain current (V _{GS} = 0) | $V_{DS} = 30 \text{ V},$
$V_{DS} = 30 \text{ V at T}_{C} = 125 \text{ °C}$ | | | 1
10 | μ Α
μ Α | | I _{GSS} | Gate body leakage current (V _{DS} = 0) | V _{GS} = ±20 V | | | ±100 | nA | | V _{GS(th)} | Gate threshold voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 1 | 1.7 | 2.5 | ٧ | | R _{DS(on)} | Static drain-source on resistance | V _{GS} = 10 V, I _D = 10.5 A
V _{GS} = 4.5 V, I _D = 10.5 A | | 0.0046
0.0067 | 0.0052
0.0076 | Ω
Ω | | Table 5 | Dunamia | coleje | | | | | | Table 5. | Dynamic | -W2 | 1 | 1 | | 1 | Table 5. **Dynamic** | | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |------|---|---|--|--------------------|--------------------|--------------------|----------------| | | C _{iss}
C _{oss}
C _{rss} | Input capacitance Output capacitance Reverse transfer capacitance | V _{DS} = 25 V, f=1 MHz,
V _{GS} =0 | 1350
230
140 | 1690
290
176 | 2030
350
210 | pF
pF
pF | | | Q _g Total gate charge Q _{gs} Gate-source charge Q _{gd} Gate-drain charge | | V_{DD} =15 V, I_{D} = 21 A
V_{GS} =4.5 V
(see Figure 14) | | 17
8
6 | | nC
nC
nC | | c0/8 | R_{G} | Gate input resistance | f=1 MHz Gate DC Bias = 0
Test signal level = 20 mV
open drain | 1.25 | 1.7 | 2 | Ω | | Ops | | | | | | | | Table 6. Switching times | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|--|--|------|-----------------------|------|----------------------| | $t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f} | Turn-on delay time Rise time Turn-off delay time Fall time | V_{DD} =15 V, I_{D} = 10.5 A, R_{G} =4.7 Ω , V_{GS} =10 V (see Figure 13) | - | 9.5
30
37
12 | - | ns
ns
ns
ns | Table 7. Source drain diode | Symbol | Parameter | Test conditions | Min | Тур. | Max | Unit | |---------------------------------|-------------------------------|--|-----|------|-----|------| | I _{SD} | Source-drain current | | - | . (| 21 | Α | | I _{SDM} ⁽¹⁾ | Source-drain current (pulsed) | | - | 10, | 84 | Α | | V _{SD} ⁽²⁾ | Forward on voltage | I _{SD} = 21 A, V _{GS} =0 | Qy, | 0. | 1.1 | V | | t _{rr} | Reverse recovery time | I _{SD} = 10.5 A, | | 24 | | ns | | Q_{rr} | Reverse recovery charge | di/dt = 100 A/μs, | - | 16.8 | | nC | | I _{RRM} | Reverse recovery current | V _{DD} =25 V | | 1.4 | | Α | ^{1.} Pulse width limited by safe operating area Obsolete Product(s) ^{2.} Pulsed: pulse duration=300µs, duty cycle 1.5% Electrical characteristics STL80N3LLH6 ### 2.1 Electrical characteristics (curves) Figure 2. Safe operating area Figure 3. Thermal impedance K δ=0.5: 0.2 10⁻¹ 0.1 2th-pcb=k*Rthj-pcb, Rthj-pcb=63.5°C/W Single pulse 10⁻³ 10⁻¹ 10⁻ Figure 4. Output characteristics Figure 5. Transfer characteristics Figure 6. Normalized B_{VDSS} vs temperature Figure 7. Static drain-source on resistance AM08919v1 AM08920v1 Vgs С (pF) (V) VDD=15V ID=17A 12 2500 10 2000 8 1500 6 1000 4 500 2 Crss 10 20 30 40 50 Qg(nC) VDS(V) Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature temperature Figure 11. Normalized on resistance vs temperature Figure 12. Source-drain diode forward characteristics Test circuits STL80N3LLH6 ## 3 Test circuits Figure 13. Switching times test circuit for resistive load Figure 14. Gate charge test circuit Figure 15. Test circuit for inductive load switching and diode recovery times Figure 16. Unclamped inductive load test circuit Figure 17. Unclamped inductive waveform Figure 18. Switching time waveform 57 ## 4 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. Obsolete Productis). Obsolete Productis Table 8. PowerFLAT 5x6 type S-R mechanical data | Dim | | mm | | |-----|-------|-------|-------| | | Min. | Тур. | Max. | | Α | 0.80 | | 1.00 | | A1 | 0.02 | | 0.05 | | A2 | | 0.25 | | | b | 0.30 | | 0.50 | | D | | 5.20 | | | E | | 6.15 | .(5) | | D2 | 4.11 | | 4.31 | | E2 | 3.50 | | 3.70 | | е | | 1.27 | 0 | | L | 0.50 | | 0.80 | | K | 1.275 | 10,10 | 1.575 | Figure 19. PowerFLAT 5x6 type S-R drawing Figure 20. PowerFLAT™ 5x6 recommended footprint (dimensions in mm) Revision history STL80N3LLH6 # 5 Revision history Table 9. Document revision history | | Date | Revision | Changes | |--------|-------------|----------|--| | | 12-Nov-2009 | 1 | First release. | | | 30-Mar-2010 | 2 | R _{DS(on)} values changed in <i>Table 4: On/off states</i> | | | 26-Sep-2011 | 3 | Document status promoted from preliminary data to datasheet; Inserted I_D value @ 70 °C, in <i>Table 2: Absolute maximum ratings</i>. | | | 02-Dec-2011 | 4 | Section 4: Package mechanical data has been updated. Minor text changes. | | Obsole | ite Pro | ductl | Section 4: Package mechanical data has been updated. Minor text changes. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com