# 3.3 V ECL Quad Differential Receiver # MC100LVEL17 # Description The MC100LVEL17 is a 3.3 V ECL, quad differential receiver. The device is functionally equivalent to the E116 device with the capability of operation from either a -3.3 V or +3.3 V supply voltage. Under open input conditions, the $\overline{D}$ input will be biased at $V_{CC}/2$ and the D input will be pulled down to $V_{EE}$ . This operation will force the Q output LOW and ensure stability. The $V_{BB}$ pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to $V_{BB}$ as a switching reference voltage. $V_{BB}$ may also rebias AC coupled inputs. When used, decouple $V_{BB}$ and $V_{CC}$ via a 0.01 $\mu F$ capacitor and limit current sourcing or sinking to 0.5 mA. When not used, $V_{BB}$ should be left open. #### **Features** - 325 ps Propagation Delay - High Bandwidth Output Transitions - The 100 Series Contains Temperature Compensation - PECL Mode Operating Range: V<sub>CC</sub> = 3.0 V to 3.8 V with V<sub>EE</sub> = 0 V - NECL Mode Operating Range: V<sub>CC</sub> = 0 V with V<sub>EE</sub> = -3.0 V to -3.8 V - Internal Input Pulldown Resistors D Inputs; Pullup and Pulldown on D Inputs - Q Output will Default LOW with Inputs Open or at VEE - These Devices are Pb-Free, Halogen Free and are RoHS Compliant 1 # ON Semiconductor® www.onsemi.com SOIC-20 WB DW SUFFIX CASE 751D-05 #### MARKING DIAGRAM\* A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package # **ORDERING INFORMATION** | Device | Package | Shipping <sup>†</sup> | |------------------|-------------------------|-----------------------| | MC100LVEL17DWR2G | SOIC-20 WB<br>(Pb-Free) | 1000 /<br>Tape & Reel | <sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. <sup>\*</sup>For additional marking information, refer to Application Note <u>AND8002/D</u>. Warning: All $V_{CC}$ and $V_{EE}$ pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. Logic Diagram and Pinout: (Top View) # **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |--------------------|-------------------------------| | Dn, <del>D</del> n | ECL Differential Data Inputs | | Qn, Qn | ECL Differential Data Outputs | | $V_{BB}$ | Reference Voltage Output | | V <sub>CC</sub> | Positive Supply | | V <sub>EE</sub> | Negative Supply | #### **Table 2. ATTRIBUTES** | Characteristics | Value | |--------------------------------------------------------------------|-----------------------------| | Internal Input Pulldown Resistor | 75 kΩ | | Internal Input Pullup Resistor | 75 kΩ | | ESD Protection Human Body Model Machine Model Charged Device Model | > 2 kV<br>> 200 V<br>> 4 kV | | Moisture Sensitivity (Note 1) | Level 3 | | Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | Transistor Count | 141 | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | | <sup>1.</sup> For additional information, see Application Note AND8003/D. **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|-------------------|------| | V <sub>CC</sub> | PECL Mode Power Supply | V <sub>EE</sub> = 0 V | | 8 to 0 | V | | V <sub>EE</sub> | NECL Mode Power Supply | V <sub>CC</sub> = 0 V | | -8 to 0 | V | | VI | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6 to 0<br>-6 to 0 | V | | l <sub>out</sub> | Output Current | Continuous<br>Surge | | 50<br>100 | mA | | I <sub>BB</sub> | V <sub>BB</sub> Sink/Source | | | ±0.5 | mA | | T <sub>A</sub> | Operating Temperature Range | | | -40 to +85 | °C | | T <sub>stg</sub> | Storage Temperature Range | | | -65 to +150 | °C | | θJA | Thermal Resistance (Junction-to-Ambient) | 0 lfpm<br>500 lfpm | SOIC-20 WB<br>SOIC-20 WB | 90<br>60 | °C/W | | θЈС | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-20 WB | 30 to 35 | °C/W | | T <sub>sol</sub> | Wave Solder (Pb-Free) | < 2 to 3 sec @ 260°C | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 4. LVPECL DC CHARACTERISTICS ( $V_{CC} = 3.3 \text{ V}; V_{EE} = 0.0 \text{ V} \text{ (Note 1))}$ | | | | -40°C | | 25°C | | | 85°C | | | | |--------------------|-------------------------------------------------------------------------------------------------|-------------|-------|------------|-------------|------|------------|-------------|------|------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I <sub>EE</sub> | Power Supply Current | | 26 | 31 | | 26 | 31 | | 27 | 33 | mA | | V <sub>OH</sub> | Output HIGH Voltage (Note 2) | 2215 | 2295 | 2420 | 2275 | 2345 | 2420 | 2275 | 2345 | 2420 | mV | | V <sub>OL</sub> | Output LOW Voltage (Note 2) | 1470 | 1605 | 1745 | 1490 | 1595 | 1680 | 1490 | 1595 | 1680 | mV | | V <sub>IH</sub> | Input HIGH Voltage (Single-Ended) | 2135 | | 2420 | 2135 | | 2420 | 2135 | | 2420 | mV | | V <sub>IL</sub> | Input LOW Voltage (Single-Ended) | 1490 | | 1825 | 1490 | | 1825 | 1490 | | 1825 | mV | | V <sub>BB</sub> | Output Voltage Reference | 1.92 | | 2.04 | 1.92 | | 2.04 | 1.92 | | 2.04 | V | | V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 3)<br>Vpp < 500 mV<br>Vpp ≥ 500 mV | 1.3<br>1.5 | | 2.9<br>2.9 | 1.2<br>1.4 | | 2.9<br>2.9 | 1.2<br>1.4 | | 2.9<br>2.9 | V | | I <sub>IH</sub> | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I <sub>IL</sub> | Input LOW Current Dn Dn | 0.5<br>-300 | | | 0.5<br>–300 | | | 0.5<br>–300 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary ±0.3 V. Outputs are terminated through a 50 Ω resistor to V<sub>CC</sub> 2.0 V. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V<sub>PP</sub>min and 1 V. Table 5. LVNECL DC CHARACTERISTICS ( $V_{CC} = 0.0 \text{ V}$ ; $V_{EE} = -3.3 \text{ V}$ (Note 1)) | | | | -40°C | | 25°C | | | | | | | |--------------------|-------------------------------------------------------------------------------------------------|--------------|-------|--------------|--------------|-------|--------------|--------------|-------|--------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I <sub>EE</sub> | Power Supply Current | | 26 | 31 | | 26 | 31 | | 27 | 33 | mA | | V <sub>OH</sub> | Output HIGH Voltage (Note 2) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V <sub>OL</sub> | Output LOW Voltage (Note 2) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | $V_{IH}$ | Input HIGH Voltage (Single-Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V <sub>IL</sub> | Input LOW Voltage (Single-Ended) | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | $V_{BB}$ | Output Voltage Reference | -1.38 | | -1.26 | -1.38 | | -1.26 | -1.38 | | -1.26 | V | | V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 3)<br>Vpp < 500 mV<br>Vpp ≥ 500 mV | -2.0<br>-1.8 | | -0.4<br>-0.4 | -2.1<br>-1.9 | | -0.4<br>-0.4 | -2.1<br>-1.9 | | -0.4<br>-0.4 | V | | I <sub>IH</sub> | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I <sub>IL</sub> | Input LOW Current Dn Dn | 0.5<br>-300 | | | 0.5<br>–300 | | | 0.5<br>–300 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary ±0.3 V. Outputs are terminated through a 50 Ω resistor to V<sub>CC</sub> 2.0 V. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V<sub>PP</sub>min and 1 V. Table 6. AC CHARACTERISTICS (V<sub>CC</sub> = 3.3 V; V<sub>EE</sub> = 0.0 V or V<sub>CC</sub> = 0.0 V; V<sub>EE</sub> = -3.3 V (Note 1)) | | | | -40°C | | 25°C | | 85°C | | | | | |--------------------------------------|----------------------------------------------------------------------------------------|------------|-------|-----------------|------------|------|-----------------|------------|-----|-----------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f <sub>max</sub> | Maximum Toggle Frequency | | | | | 1.75 | | | | | GHz | | t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay Diff D to Q S.E. | 330<br>280 | | 530<br>580 | 350<br>300 | | 550<br>600 | 360<br>310 | | 560<br>610 | ps | | t <sub>SKEW</sub> | Skew Output-to-Output (Note 2) Part-to-Part (Diff) (Note 2) Duty Cycle (Diff) (Note 3) | | | 75<br>200<br>25 | | | 75<br>200<br>25 | | | 75<br>200<br>25 | ps | | t <sub>JITTER</sub> | Random Clock Jitter (RMS) | | | | | 0.7 | | | | | ps | | $V_{PP}$ | Input Swing (Note 4) | 150 | | 1000 | 150 | | 1000 | 150 | | 1000 | mV | | t <sub>r</sub><br>t <sub>f</sub> | Output Rise/Fall Times Q (20%-80%) | 280 | | 550 | 280 | | 550 | 280 | | 550 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. $V_{EE}$ can vary $\pm 0.3$ V. - 2. Skews are valid across specified voltage range, part-to-part skew is for a given temperature. - 3. Duty cycle skew is the difference between a t<sub>PLH</sub> and t<sub>PHL</sub> propagation delay through a device. - 4. V<sub>PP</sub>(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40. Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices) # **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AND8001/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices SOIC-20 WB CASE 751D-05 **ISSUE H** **DATE 22 APR 2015** - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. - PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL | | MILLIMETERS | | | | | | | | |-----|-------------|-------|--|--|--|--|--|--| | DIM | MIN | MAX | | | | | | | | Α | 2.35 | 2.65 | | | | | | | | A1 | 0.10 | 0.25 | | | | | | | | b | 0.35 | 0.49 | | | | | | | | С | 0.23 | 0.32 | | | | | | | | D | 12.65 | 12.95 | | | | | | | | E | 7.40 | 7.60 | | | | | | | | е | 1.27 | BSC | | | | | | | | Н | 10.05 | 10.55 | | | | | | | | h | 0.25 | 0.75 | | | | | | | | L | 0.50 | 0.90 | | | | | | | | A | 0 ° | 7 ° | | | | | | | #### RECOMMENDED **SOLDERING FOOTPRINT\*** DIMENSIONS: MILLIMETERS ## **GENERIC MARKING DIAGRAM\*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package \*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | | |------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. <sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative