

Vishay Semiconductors

RoHS COMPLIANT

HALOGEN

FREE

Thyristor High Voltage, Phase Control SCR, 25 A

3L TO-220 FullPAK

PRIMARY CHARACTERISTICS				
I _{T(AV)} 16 A				
V _{DRM} /V _{RRM}	800 V, 1200 V			
V _{TM}	1.25 V			
I _{GT}	45 mA			
TJ	-40 °C to 125 °C			
Package	3L TO-220 FullPAK			
Circuit configuration	Single SCR			

FEATURES

- · Designed and gualified for industrial level
- Fully isolated package (V_{INS} = 2500 V_{RMS})
- UL pending
- 125 °C max. operating junction temperature
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

 Typical usage is in input rectification crowbar (soft start) and AC switch in motor control, UPS, welding, and battery charge

DESCRIPTION

The VS-25TTS...FP... high voltage series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications. The glass passivation technology used has reliable operation up to 125 °C junction temperature.

OUTPUT CURRENT IN TYPICAL APPLICATIONS					
APPLICATIONS	SINGLE-PHASE BRIDGE	THREE-PHASE BRIDGE	UNITS		
Capacitive input filter $T_A = 55 \text{ °C}$, $T_J = 125 \text{ °C}$, common heatsink of 1 °C/W	18	22	A		

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER	TEST CONDITIONS	VALUES	UNITS		
I _{T(AV)}	Sinusoidal waveform	16	٨		
I _{RMS}		25	A		
V _{RRM} /V _{DRM}		800, 1200	V		
I _{TSM}		350	A		
V _T	16 A, T _J = 25 °C	1.25	V		
dV/dt		500	V/µs		
dl/dt		150	A/µs		
TJ		-40 to +125	°C		

VOLTAGE RATINGS						
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM PEAK DIRECT VOLTAGE V	I _{RRM} /I _{DRM} AT 125 ℃ mA			
VS-25TTS08FP-M3	800	800	10			
VS-25TTS12FP-M3	1200	1200	10			

Revision: 09-Jan-18 Document Number: 96300 1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

VS-25TTS08FP-M3, VS-25TTS12FP-M3

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
PANAMETEN	STMDUL	TEST CONDITIONS	TYP. MAX.	UNITS	
Maximum average on-state current	I _{T(AV)}	$T_C = 51 \text{ °C}$, 180° conduction half sine wave	16		
Maximum RMS on-state current	I _{RMS}		25	^	
Maximum peak, one-cycle,	I	10 ms sine pulse, rated V _{RRM} applied	300	A	
non-repetitive surge current	I _{TSM}	10 ms sine pulse, no voltage reapplied	350		
Manufacture 124 for the size of	124	10 ms sine pulse, rated V _{RRM} applied	450	A2-	
Maximum I ² t for fusing	l ² t	10 ms sine pulse, no voltage reapplied	630	A ² s	
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1ms to 10 ms, no voltage reapplied	6300	A²√s	
Maximum on-state voltage drop	V _{TM}	16 A, T _J = 25 °C	1.25	V	
On-state slope resistance	r _t	T 105 %	12.0	mΩ	
Threshold voltage	V _{T(TO)}	T _J = 125 °C	1.0	V	
Maximum reverse and direct leakage current	1/1	$T_J = 25 \text{ °C}$ $V_B = \text{Rated } V_{BBM}/V_{DBM}$	0.5		
Maximum reverse and direct leakage current	I _{RM} /I _{DM}	$T_J = 125 \text{ °C}$ $V_R = \text{Rated } V_{RRM} / V_{DRM}$	10		
Holding current	Ι _Η	Anode supply = 6 V, resistive load, initial I_T = 1 A, T_J = 25 $^\circ C$	- 150	mA	
Maximum latching current	١L	Anode supply = 6 V, resistive load, $T_J = 25 \text{ °C}$ 200			
Maximum rate of rise of off-state voltage	dV/dt	$T_J = T_J max.$, linear to 80 %, $V_{DRM} = R_g - k = Open$	500	V/µs	
Maximum rate of rise of turned-on current	dl/dt		150	A/µs	

TRIGGERING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum peak gate power	P _{GM}		8.0	w
Maximum average gate power	P _{G(AV)}		2.0	vv
Maximum peak positive gate current	+ I _{GM}		1.5	А
Maximum peak negative gate voltage	- V _{GM}		10	V
	I _{GT}	Anode supply = 6 V, resistive load, T_J = - 10 °C	60	mA
Maximum required DC gate current to trigger		Anode supply = 6 V, resistive load, T_J = 25 °C	45	
		Anode supply = 6 V, resistive load, $T_J = 125 \text{ °C}$	20	
Maximum required DC gate		Anode supply = 6 V, resistive load, T_J = - 10 °C	2.5	
Maximum required DC gate voltage to trigger	V _{GT}	Anode supply = 6 V, resistive load, $T_J = 25 \text{ °C}$	2.0	
		Anode supply = 6 V, resistive load, T_J = 125 °C	1.0	V
Maximum DC gate voltage not to trigger	V_{GD}	T _{.I} = 125 °C. V _{DBM} = Rated value	0.25	
Maximum DC gate current not to trigger	I _{GD}			mA

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Typical turn-on time	t _{gt}	T _J = 25 °C	0.9	
Typical reverse recovery time	t _{rr}	T _{.1} = 125 °C	4	μs
Typical turn-off time	t _q	1J = 123 C	110	

VS-25TTS08FP-M3, VS-25TTS12FP-M3

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range		T _J , T _{Stg}		-40 to 125	°C
Maximum thermal resistance, junction to case		R _{thJC}	DC operation	2.5	
Maximum thermal resistance, junction to ambient		R _{thJA}		62	°C/W
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth, and greased	0.5	
Approximate weight				2	g
Approximate weight				0.07	oz.
Mounting torque minim	minimum			6 (5)	kgf ⋅ cm
	maximum			12 (10)	(lbf ⋅ in)
Marking davies				25TTS08FP	
Marking device			Case style 3L TO-220 FullPAK	25TTS12FP	

Fig. 1 - Current Rating Characteristics

Fig. 2 - Current Rating Characteristics

Fig. 4 - On-State Power Loss Characteristics

Revision: 09-Jan-18

3

Document Number: 96300

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-25TTS08FP-M3, VS-25TTS12FP-M3

Vishay Semiconductors

Fig. 5 - Maximum Non-Repetitive Surge Current

Fig. 7 - On-State Voltage Drop Characteristics

 Revision: 09-Jan-18
 4
 Document Number: 96300

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 DiodesEurope@vishay.com

 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Instantaneous Gate Current (A) Fig. 9 - Gate Characteristics

ORDERING INFORMATION TABLE

ORDERING INFORMATION (Example)					
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION		
VS-25TTS08FP-M3	50	1000	Antistatic plastic tubes		
VS-25TTS12FP-M3	50	1000	Antistatic plastic tubes		

LINKS TO RELATED DOCUMENTS				
Dimensions www.vishay.com/doc?96155				
Part marking information	www.vishay.com/doc?95456			

Revision: 09-Jan-18 For technical questions within your region: Diode

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

5

Vishay Semiconductors

3L TO-220 FullPAK

DIMENSIONS in millimeters

Bottom view

Notes

- ⁽¹⁾ All dimensions are in mm
- ⁽²⁾ Package body size exclude mold flash and burrs. Moldflash should be less than 6 mils

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.