CND0333A ## Infrared Optical Module (IrDA) Infrared data link for cellular phones, peripheral devices #### ■ Features - Compliant with IrDA Ver.1.4 - Light emitting function for remote controller - Corresponding low I/O (interface) voltage: 1.5 V - Corresponding reflow solder (260°C) - Ultra-small top view package (1.5 mm \times 8.2 mm \times 1.7 mm) ### ■ Type • GaAlAs LED + IC + PIN Photodiode ### ■ Absolute Maximum Ratings $T_a = 25$ °C±3°C | Parameter | Symbol | Rating | Unit | |--------------------------------|------------------|----------------|------| | Operating supply voltage | V_{CC} | -0.5 to $+3.8$ | V | | LED operating supply voltage | V_{LEDA} | -0.5 to +7.0 | V | | Input/output supply voltage | V _{IO} | -0.5 to +3.8 | V | | TX Input voltage | V _{TX} | -0.5 to +3.8 | V | | Shutdown input voltage | V_{SD} | -0.5 to +3.8 | V | | LED operating supply current * | I_{LEDA} | 300 | mA | | Operating ambient temperature | T _{opr} | -20 to +70 | °C | | Storage temperature | T _{stg} | -30 to +85 | °C | Note) *: $tw \le 90 \mu s$, $Duty \le 25 \%$ ### ■ Operation Condition | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |------------------------------|-------------------|------------|-----|------|-----------------|------| | Operating supply voltage | V _{CC} | | 2.5 | 2.85 | 3.3 | V | | LED operating supply voltage | V _{LEDA} | | 3.0 | | 4.5 | V | | Input/output supply voltage | V _{IO} | | 1.5 | 1.85 | V _{CC} | V | ## $\blacksquare \textbf{ Electrical-Optical Characteristics} \quad V_{LEDA} = 3.0 \text{ V to } 4.5 \text{ V, } V_{CC} = 2.85 \text{ V, } V_{IO} = 1.85 \text{ V, } T_a = 25 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$ | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |--|--------------------|--|--------------|------|----------------------|------| | Shut down supply current *Fig. 1 | I _{CCSD} | $V_{TXD} = 0.5 \text{ V},$
$V_{IO} \ge V_{SD} \ge V_{IO} - 0.5 \text{ V (SD = High)}$ | _ | 0.01 | 0.2 | μΑ | | High level supply current (Idle) *Fig. 1 | I _{CCH} | (FIR mode / RC mode)
$E_I = 0 \text{ mW/cm}^2$, $V_{TXD} = 0.5 \text{ V}$, $V_{SD} \le 0.5 \text{ V}$ | _ | 580 | 800 | μΑ | | | | (SIR mode)
$E_I = 0 \text{ mW/cm}^2, V_{TXD} = 0.5 \text{ V}, V_{SD} \le 0.5 \text{ V}$ | _ | 300 | 400 | | | Low level supply current (Active) *Fig. 1 | I _{CCL} | (FIR mode / RC mode)
$E_I = 9.0 \text{ mW/cm}^2, V_{TXD} = 0.5 \text{ V}, V_{SD} \le 0.5 \text{ V}$ | _ | 980 | 1270 | μА | | | | (SIR mode)
$E_I = 9.0 \text{ mW/cm}^2, V_{TXD} = 0.5 \text{ V}, V_{SD} \le 0.5 \text{ V}$ | _ | 350 | 460 | | | TX High level supply current (Active) *Fig. 1 | I _{CCTXH} | $\begin{aligned} & \text{(FIR mode / RC mode)} \\ & V_{IO} \geq V_{TXD} \geq V_{IO} - 0.5 \text{ V (TXD = High)} \\ & E_{I} = 0 \text{ mW/cm}^{2}, V_{SD} \leq 0.5 \text{ V} \end{aligned}$ | _ | 1200 | 1560 | μА | | | | $(SIR mode) \\ V_{IO} \ge V_{TXD} \ge V_{IO} - 0.5 \text{ V (TXD} = \text{High)} \\ E_I = 0 \text{ mW/cm}^2, V_{SD} \le 0.5 \text{ V}$ | _ | 600 | 780 | | | High level input/output supply current (Idle) *Fig. 1 | I_{IOH} | $ (FIR mode / RC mode) $ $E_I = 0 mW/cm^2, V_{TXD} = 0.5 V, V_{SD} \le 0.5 V $ | 0 | 0 | 5 | μА | | | | (SIR mode)
$E_I = 0 \text{ mW/cm}^2, V_{TXD} = 0.5 \text{ V}, V_{SD} \le 0.5 \text{ V}$ | 0 | 0 | 5 | | | Low level input/output supply current (Active) *Fig. 1 | I_{IOL} | (FIR mode / RC mode)
$E_I = 9.0 \text{ mW/cm}^2, V_{TXD} = 0.5 \text{ V}, V_{SD} \le 0.5 \text{ V}$ | _ | 360 | 470 | μА | | | | (SIR mode)
$E_I = 9.0 \text{ mW/cm}^2, V_{TXD} = 0.5 \text{ V}, V_{SD} \le 0.5 \text{ V}$ | _ | 100 | 130 | | | TX High level input/output supply current (Active) *Fig. 1 | I _{IOTXH} | (FIR mode / RC mode) $V_{IO} \ge V_{TXD} \ge V_{IO} - 0.5 \text{ V (TXD = High)}$ $E_I = 0 \text{ mW/cm}^2, V_{SD} \le 0.5 \text{ V}$ | _ | 80 | 120 | μА | | | | (SIR mode)
$V_{IO} \ge V_{TXD} \ge V_{IO} - 0.5 \text{ V (TXD} = \text{High)}$
$E_I = 0 \text{ mW/cm}^2, V_{SD} \le 0.5 \text{ V}$ | _ | 40 | 60 | | | SD High level input voltage | V _{IHSD} | | $V_{IO}-0.5$ | _ | V _{IO} +0.3 | V | | SD Low level input voltage | V _{ILSD} | | 0 - 0.3 | _ | 0.5 | V | | Maximum reception distance *Fig. 1, 4 | L _{max} | $\begin{split} &V_{SD} \leq 0.5 \text{ V} \\ &\theta_T = 0^{\circ} \pm 15^{\circ} \\ &\text{LEDie} = 3.6 \text{ mW/sr (SIR mode)} \\ &\text{LEDie} = 9 \text{ mW/sr (FIR mode)} \end{split}$ | 21.8 | _ | _ | cm | | RC maximum reception distance *Fig. 1 | L_{maxR} | V_{LEDA} = 3.0 V, V_{SD} ≤ 0.5 V θ_T = 0° ± 15°, RC Receiver sensitivity *2 = 0.05 μW/cm ² | 5.0 | _ | _ | m | | Data Rates *1 | _ | | 0.0096 | | 4.0 | Mbps | Note) *1: Fully Compliant to IrDA1.4 Low Power Specification from 9.6 kbps to 115.2 kbps, 4 Mbps. RC receiver sensitivity is adjusted so that RC transfer distance is 4 m at transmitter LED radiant intensity= 8 mW/sr, peak wave length = 940 nm and duty = 50 %, where irradiance is 0.05 μ W/cm². ^{*2:} Definition of RC receiver sensitivity ## **Panasonic** ## $\blacksquare \text{ Electrical-Optical Characteristics (continued)} \quad V_{LEDA} = 3.0 \text{ V to } 4.5 \text{ V}, V_{CC} = 2.85 \text{ V}, V_{IO} = 1.85 \text{ V}, T_a = 25^{\circ}\text{C} \pm 3^{\circ}\text{C}$ | Parameter | | Symbol | Conditions | Min | Тур | Max | Unit | |---------------------------------------|---|-----------------------|--|-----------------------|-----|----------------------|----------------| | Transmitter | | | | | | | | | Peak emission wavelength *Fig. 1 | | $\lambda_{ m P}$ | (FIR mode / RC mode)
$V_{LEDA} = 3.2 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty} 1/4$ | 880 | 890 | 900 | - nm | | | | | (SIR mode) $V_{LEDA} = 3.2 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty3/16}$ | 875 | 885 | 900 | | | LED operating supply current *Fig. 1 | | I_{LEDA} | (FIR Mode/RC Mode)
$V_{LEDA} = 4.3 \text{ V}, VSD \le 0.5 \text{ V}, Duty 1/4$ | 165 | 207 | 248 | mA | | | | | (FIR Mode/RC Mode)
$V_{LEDA} = 3.0 \text{ V, VSD} \le 0.5 \text{ V, Duty} 1/4$ | 160 | 200 | 240 | | | | | | (SIR Mode)
$V_{LEDA} = 4.3 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty3/16}$ | 70 | 91 | 109 | | | | | | (SIR Mode)
$V_{LEDA} = 3.0 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty3/16}$ | 69 | 90 | 108 | | | | $\theta_{\rm T} = 0 * {\rm Fig. 1, 2}$ | ī | (FIR Mode/RC Mode)
$V_{LEDA} = 3.0 \text{ V}, VSD \le 0.5 \text{ V}, Duty 1/4$ | 27 | 55 | 83 | mW/sr
mW/sr | | Center radiant | | I _e | (SIR Mode)
$V_{LEDA} = 3.0 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty3/16}$ | 13 | 27 | 40 | | | intensity *3 | $\theta_{\rm T} = \pm 15 * {\rm Fig.} 1, 2, 10$ | I _{e15} | (FIR Mode/RC Mode)
$V_{LEDA} = 3.0 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty} 1/4$ | 23 | 38 | 57 | | | | | | (SIR Mode)
$V_{LEDA} = 3.0 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty3/16}$ | 7 | 19 | 28 | | | TX high level input volta | ıge | V _{IH(TX)} | | V _{IO} - 0.5 | _ | V _{CC} +0.3 | V | | TX low level input voltage | | V _{IL(TX)} | | 0 -0.3 | _ | 0.5 | V | | TX pulse width (SIR) *Fig | g. 1, 8 | t _{WT(SIR)} | Bit Rate = 115.2 kbps, $V_T = 1/2 \times V_{IO}$ | _ | 1.6 | _ | μs | | TX pulse width (FIR) *Fig | g. 1, 8 | t _{WT(FIR)} | Bit Rate = 4.0 Mbps, $V_T = 1/2 \times V_{IO}$ | _ | 125 | _ | ns | | Optical pulse width (FIR1) *Fig. 1, 3 | | t _{WO(FIR1)} | $V_{SD} \le 0.5 \text{ V, TXD } t_r / t_f \le 20 \text{ ns,}$
$t_W = 125 \text{ ns} \pm 1 \text{ ns, (Single pulse)}$ | 115 | 125 | 135 | ns | | Optical pulse width (FIR2) *Fig. 1, 3 | | t _{WO(FIR2)} | $V_{SD} \le 0.5 \text{ V, TXD } t_r / t_f \le 20 \text{ ns,}$
$t_W = 250 \text{ ns} \pm 1 \text{ ns, (Double pulse)}$ | 240 | 250 | 260 | ns | | TX half-angle | | θ_{T} | | ±15 | _ | _ | 0 | | Rise time *Fig. 1, 3 | | t _r | $R_L = 50 \Omega$ | _ | _ | 40 | ns | | Fall time *Fig. 1, 3 | | $t_{\rm f}$ | $R_L = 50 \Omega$ | | _ | 40 | ns | | TX wake up time *Fig. 5 | | t_{TWU} | | 200 | | 1 000 | μs | | Intensity delay time *Fig. 1, 3 | | I_{DT} | | _ | _ | 200 | ns | | Maximum pulse width | | t _{WLEDmax} | $TXD = Low \rightarrow High$ | 20 | 50 | 100 | μs | | Overshoot | | O_S | | _ | | 25 | % | Note) *3: Eye-Safety IEC60825-1 Class1 Eye safe $\blacksquare \ \, \text{Electrical-Optical Characteristics (continued)} \quad V_{LEDA} = 3.0 \ V \ \text{to} \ 4.5 \ V, V_{CC} = 2.85 \ V, V_{IO} = 1.85 \ V, T_a = 25 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$ | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |--------------------------------------|-----------------------|--|----------------------|-----|-----------------|----------------------| | Receiver | | | | | | | | Minimum input irradiance *Fig. 1 | E _{I min1} | (SIR mode)
Bit Rate = 115.2 kbps, $V_{SD} \le 0.5 \text{ V}$,
$\theta_T = 0^{\circ} \pm 15^{\circ}$ | _ | | 7.6 | - μW/cm ² | | | E _{I min2} | (FIR Mode)
Bit Rate = 4.0 Mbps, $V_{SD} \le 0.5 \text{ V}$, $\theta_T = 0^{\circ} \pm 15^{\circ}$ | _ | | 19.0 | | | Maximum input irradiance *Fig. 1 | E _{I mix} | $V_{SD} \le 0.5 \text{ V}, \theta_T = 0^{\circ} \pm 15^{\circ}$ | 500 | _ | _ | mW/cm ² | | RX high level output voltage *Fig. 1 | V _{OH(RX)} | Non signal condition $E_I = 0$
$I_{OH} = -200 \ \mu A, \ V_{SD} \le 0.5 \ V$ | V _{IO} -0.3 | | V _{IO} | V | | RX low level output voltage *Fig. 1 | V _{OL(RX)} | $I_{OL} = 1.8 \text{ mA}, V_{SD} \le 0.5 \text{ V}$ | 0 | _ | 0.5 | V | | RX half angle | θ_{R} | | ±15 | _ | _ | 0 | | Output pulse width (SIR) *Fig. 1, 9 | t _{WR(SIR)} | $V_{SD} \le 0.5 \text{ V}, C_L = 15 \text{ pF},$
9.6 kbps to 115.2 kbps | 1.0 | _ | 4.0 | μs | | Output pulse width (FIR1) *Fig. 1, 9 | t _{WR(FIR1)} | $V_{SD} \le 0.5 \text{ V}, C_L = 15 \text{ pF},$
$4 \text{ Mbps}, t_W = 125 \text{ ns}$
(Single pulse) | 85 | _ | 165 | ns | | Output pulse width (FIR2) *Fig. 1, 9 | t _{WR(FIR2)} | $V_{SD} \le 0.5 \text{ V}, C_L = 15 \text{ pF},$
$4 \text{ Mbps}, t_W = 250 \text{ ns}$
(Double pulse) | 195 | | 290 | ns | | RX wake up time *Fig. 1, 6 | t _{Rwu} | $V_{SD} \le 0.5 \text{ V}, E_I = 19.0 \ \mu\text{W/cm}^2$ | _ | 100 | 200 | μs | | Receiver latency time *Fig. 1, 7 | $t_{\rm L}$ | $V_{SD} \le 0.5 \text{ V}, E_I = 19.0 \ \mu\text{W/cm}^2$ | _ | 100 | 200 | μs | | Rise time *Fig. 1, 9 | t _r | $V_{SD} \le 0.5 \text{ V}, C_L = 15 \text{ pF}$ | _ | 10 | _ | ns | | Fall time *Fig. 1, 9 | $t_{\rm f}$ | $V_{SD} \le 0.5 \text{ V}, C_L = 15 \text{ pF}$ | _ | 10 | _ | ns | Panasonic CND0333A ### ■ Electrical-Optical Characteristics (continued) Note) Measurement circuit *Fig. 2: *Fig. 3: *Fig. 4: *Fig. 5: TX Wake up time *Fig. 6: (RXD dose assert for an instant after SD negate.) *Fig. 7: Receiver latency time *Fig. 8: ### ■ Electrical-Optical Characteristics (continued) Note) Measurement circuit (continued) *Fig. 9: **Panasonic** ### ■ Package (Unit: mm) Shield GND ### • Pin name - $1. V_{LEDA}$ - $2.\ V_{IO} \qquad \qquad 7.\ \ N.C.$ - 3. TXD 8. GND - 4. RXD 9. Shield GND $6.\ V_{CC}$ 5. SD 10. Shield GND Ver. AEK 7 0.3 # Request for your special attention and precautions in using the technical information and semiconductors described in this book - (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed. - (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book. - (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book. Consult our sales staff in advance for information on the following applications: - Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body. - It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application. - (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements. - (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products. - (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages. - (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company. 20100202