Vishay Roederstein # Interference Suppression Film Capacitor - Class X2 Axial MKT 253 V_{AC} - Continuous Across the Line #### **FEATURES** - · Axial mounting - Low building height - Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u> ROHS COMPLIANT HALOGEN FREE GREEN (5-2008) #### **APPLICATIONS** High stability grade for continuous across the line X2 applications. See also application note: www.vishay.com/doc?28153 | QUICK REFERENCE DATA | | | |---|--|--| | Capacitance range | 0.01 μF to 3.3 μF (preferred values according to E6) | | | Capacitance tolerance | 0.01 μ F to \leq 0.1 μ F: \pm 20 % and \pm 10 % 0.12 μ F to \leq 3.3 μ F: \pm 10 % | | | Rated AC voltage range, U _{RAC} | 253 V _{AC} ; 50 Hz to 60 Hz | | | Permissible DC voltage (1) | 630 V _{DC} | | | Climatic testing class (according to IEC 60068-1) | C ≤ 1.0 μF = 40 / 100 / 21 / C
C > 1.0 μF = 40 / 085 / 21 / C | | | Maximum application temperature | 100 °C | | | Leads | Tinned wire | | | Reference standards | IEC 60384-14 ed-4 (2013) and EN 60384-14, UL 60384-14 ed-2 (2014);
CSA E60384-1:14 ed-3 (2014) and CSA E60384-14:14 ed-2 (2014) | | | Dielectric | Polyester film | | | Electrodes | Metallized | | | Construction | Series construction | | | Encapsulation | Plastic, epoxy resin sealed, flame retardant UL-class 94 V-0 | | | Marking | C-value; tolerance; rated voltage; sub-class; manufacturer's type; code for dielectric material; manufacturer location, year and week; manufacturer's logo or name; safety approvals | | #### Notes - For more detailed data and test requirements, contact rfi@vishay.com - For general information like characteristics and definitions used for film capacitors follow the link: www.vishay.com/doc?28147 - (1) See document "Voltage Proof Test for Metalized Capacitors" (www.vishay.com/doc?28169) #### **COMPOSITION OF CATALOG NUMBER** #### Note • For detailed tape specifications refer to "Packaging information" www.vishay.com/doc?28139 or end of catalog | SPECIFIC REFERENCE DATA | | | | | |---|-----------------------------------|--|--|--| | DESCRIPTION | VALUE | | | | | Rated AC voltage (U _{RAC}) | 253 V | | | | | Permissible DC voltage (U _{RDC}) | 630 V | | | | | Tangent of loss angle | ≤ 100 x 10 ⁻⁴ at 1 kHz | | | | | Rated voltage pulse slope (dU/dt) _R at 350 V _{DC} | | | | | | L 19 mm | 200 V/µs | | | | | L 26.5 mm | 150 V/µs | | | | | L 31.5 mm | 100 V/µs | | | | | L 41.5 mm | 100 V/µs | | | | | R between leads, for C $\leq 0.33~\mu F$ at 100 V; 1 min | > 15 000 MΩ | | | | | RC between leads, for C > 0.33 μF at 100 V; 1 min | > 5000 s | | | | | R between leads and case; 100 V; 1 min | > 30 000 MΩ | | | | | Withstanding (AC) voltage between leads and cover | 2000 V; 1 min | | | | | Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s | 1200 V; 1 min | | | | | Maximum application temperature | 100 °C | | | | ### Vishay Roederstein | ELECT | ELECTRICAL DATA AND ORDERING CODE | | | | | | | |----------------------|------------------------------------|------------------|---------------|-----------------------------------|-------------|--------------------------------|-------------------| | U _{RAC} (V) | CAP.
(μF) | TOLERANCE
(%) | PITCH
(mm) | DIMENSIONS
D x L (mm) | MASS
(g) | SPQ ⁽¹⁾
(pieces) | ORDERING CODE (2) | | | d _t = 0.70 mm ± 0.07 mm | | | | | | | | | 0.010 | ± 20 | 22.5 | 6.0 x 19.0 | 0.9 | 1500 | F17733102000 | | | 0.012 | ± 20 | 22.5 | 6.0 x 19.0 | 0.9 | 1500 | F17733122000 | | | 0.015 | ± 20 | 22.5 | 6.0 x 19.0 | 0.9 | 1500 | F17733152000 | | | 0.018 | ± 20 | 22.5 | 6.0 x 19.0 | 0.9 | 1500 | F17733182000 | | | 0.022 | ± 20 | 22.5 | 6.0 x 19.0 | 0.8 | 1500 | F17733222000 | | | 0.027 | ± 20 | 22.5 | 6.0 x 19.0 | 0.8 | 1500 | F17733272000 | | | 0.033 | ± 20 | 22.5 | 6.0 x 19.0 | 0.8 | 1500 | F17733332000 | | | 0.039 | ± 20 | 22.5 | 6.0 x 19.0 | 0.8 | 1500 | F17733392000 | | | 0.047 | ± 20 | 22.5 | 6.0 x 19.0 | 0.8 | 1500 | F17733472000 | | | | | | d _t = 0.80 mm ± 0.08 n | nm | | | | | 0.056 | ± 20 | 22.5 | 7.0 x 19.0 | 1.1 | 1500 | F17733562000 | | | 0.068 | ± 20 | 22.5 | 7.5 x 19.0 | 1.2 | 1500 | F17733682000 | | | 0.082 | ± 20 | 22.5 | 8.0 x 19.0 | 1.4 | 1500 | F17733822000 | | | 0.10 | ± 20 | 22.5 | 8.5 x 19.0 | 1.6 | 1000 | F17734102000 | | | 0.12 | ± 10 | 22.5 | 9.5 x 19.0 | 1.7 | 1000 | F17734122000 | | | 0.15 | ± 10 | 22.5 | 10.5 x 19.0 | 2.0 | 1000 | F17734152160 | | 253 | 0.15 | ± 10 | 30.0 | 8.0 x 26.5 | 1.9 | 1000 | F17734152000 | | 255 | 0.18 | ± 10 | 30.0 | 9.0 x 26.5 | 2.2 | 1000 | F17734182000 | | | 0.22 | ± 10 | 30.0 | 9.0 x 26.5 | 2.5 | 1000 | F17734222000 | | | 0.27 | ± 10 | 30.0 | 10.5 x 26.5 | 2.9 | 750 | F17734272000 | | | 0.33 | ± 10 | 30.0 | 11.0 x 26.5 | 3.3 | 750 | F17734332000 | | | 0.39 | ± 10 | 30.0 | 12.0 x 26.5 | 3.6 | 750 | F17734392000 | | | 0.47 | ± 10 | 30.0 | 13.0 x 26.5 | 4.4 | 1250 | F17734472000 | | | 0.56 | ± 10 | 30.0 | 14.5 x 26.5 | 5.6 | 1000 | F17734562160 | | | 0.56 | ± 10 | 35.0 | 12.5 x 31.5 | 5.6 | 1000 | F17734562000 | | | 0.68 | ± 10 | 35.0 | 14.0 x 31.5 | 6.0 | 1000 | F17734682000 | | | | | | d _t = 1.0 mm ± 0.1 m | m | | | | | 0.82 | ± 10 | 35.0 | 15.5 x 31.5 | 6.8 | 750 | F17734822000 | | | 1.0 | ± 10 | 35.0 | 17.0 x 31.5 | 8.0 | 750 | F17735102000 | | | 1.2 | ± 10 | 35.0 | 18.5 x 31.5 | 9.3 | 500 | F17735122000 | | | 1.5 | ± 10 | 45.0 | 17.0 x 41.5 | 11.5 | 500 | F17735152000 | | | 1.8 | ± 10 | 45.0 | 18.5 x 41.5 | 14.0 | 450 | F17735182000 | | | 2.2 | ± 10 | 45.0 | 20.0 x 41.5 | 16.0 | 400 | F17735222000 | | | 2.7 | ± 10 | 45.0 | 22.5 x 41.5 | 18.0 | 400 | F17735272000 | | | 3.3 | ± 10 | 45.0 | 25.0 x 41.5 | 24.0 | 400 | F17735332000 | #### Notes [•] For detailed tape specifications refer to packaging information: www.vishay.com/doc?28139 or end of catalog ⁽¹⁾ SPQ = standard packing quantity ⁽²⁾ These capacitors can be delivered on continuous tape and reel; the ordering code is F1773...2900 taped on reel, F1773...2901 taped ammopack ### Vishay Roederstein | APPROVALS | | | | | | |--|---------------------|----------------------|--------------|--------------------------|--| | SAFETY APPROVALS X2 | VOLTAGE | VALUE | FILE NUMBERS | LINK | | | EN 60384-14 (ENEC)
(= IEC 60384-14 ed-4 (2013)) | 253 V _{AC} | 0.01 μF to 3.3 μF X2 | 40005089 | www.vishay.com/doc?28222 | | | UL 60384-14 ed-2 (2014) | 253 V _{AC} | 0.01 μF to 3.3 μF X2 | E354331 | www.vishay.com/doc?28240 | | | CSA E60384-1:14 ed-3 (2014) and CSA E60384-14:14 ed-2 (2014) | 253 V _{AC} | 0.01 μF to 3.3 μF X2 | E354331 | www.vishay.com/doc?28240 | | | CB Test-Certificate | 253 V _{AC} | 0.01 μF to 3.3 μF X2 | DE1-63893 | www.vishay.com/doc?28239 | | The ENEC-approval together with the CB certificate replace all national marks of the following countries (they have already signed the ENEC-agreement): Austria; Belgium; Czech Republic; Denmark; Finland; France; Germany; Greece; Hungary; Ireland; Italy; Luxembourg; Netherlands; Norway; Portugal; Slovenian; Spain; Sweden; Switzerland and United Kingdom. #### **MOUNTING** #### **Normal Use** The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines. For detailed tape specifications refer to packaging information: www.vishay.com/doc?28139 or end of catalog #### Specific Method of Mounting to Withstand Vibration and Shock In order to withstand vibration and shock tests, it must be ensured that capacitor body is in good contact with the printed-circuit board: - For L ≤ 19 mm capacitors shall be mechanically fixed by the leads - For larger pitches the capacitors shall be mounted in the same way and the body clamped - For the maximum product dimensions for length (Lmax.) and diameter (Dmax.) use the following tolerances: $L_{max.} = L + \Delta L \times D_{max.} = D + \Delta D$ pitch = 22.5 mm x Δ L = Δ D = 0.7 mm pitch = 30 mm x Δ L = Δ D = 1.0 mm pitch \geq 35 mm x Δ L = Δ D = 1.5 mm • Eccentricity as shown in the drawing below: #### **SOLDERING CONDITIONS** For general soldering conditions and wave soldering profile, we refer to the application note: "Soldering Guidelines for Film Capacitors": www.vishav.com/doc?28171 #### Storage Temperature \bullet T $_{\rm stq}$ = -25 °C to +35 °C with RH maximum 75 % without condensation #### **Ratings and Characteristics Reference Conditions** Unless otherwise specified, all electrical values apply to an ambient temperature of 23 °C \pm 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %. For reference testing, a conditioning period shall be applied over 96 h \pm 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %. #### **CHARACTERISTICS** Capacitance as a function of ambient temperature (typical curve) Max. RMS voltage as a function of frequency Tangent of loss angle as a function of frequency (typical curve) Impedance as a function of frequency (typical curve) at $T_{amb} = 20$ °C (average), measurement with length 6 mm Insulation resistance as a function of ambient temperature (typical curve) #### **APPLICATION NOTES AND LIMITING CONDITIONS** - For X2 electromagnetic interference suppression in standard across the line applications (50 Hz / 60 Hz) with a maximum of 253 V_{AC} rated voltage including fluctuation of the mains. It is recommended to use these components in a mains with maximum nominal voltage of 230 V_{AC}. Higher continuous applied voltages will shorten the life time - These capacitors are not intended for continuous pulse application. For these situations capacitors of the AC and pulse programs must be used - For series impedance applications we refer to application note: www.vishav.com/doc?28153 - The maximum ambient temperature must not exceed 100 °C - Rated voltage pulse slope: if the pulse voltage is lower than the rated voltage, the values of the specific reference data can be multiplied by 350 V_{DC} and divided by the applied voltage ### Vishay Roederstein #### **INSPECTION REQUIREMENTS** #### **General Notes** Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-14 ed-3 and Specific Reference Data". | GROUP C INSPECTION REQUIREMENTS | | | | | |--|---|---|--|--| | SUB-CLAUSE NUMBER AND TEST | CONDITIONS | PERFORMANCE REQUIREMENTS | | | | SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1 | | | | | | 4.1 Dimensions (detail) | | As specified in chapters "General Data" of this specification | | | | Initial measurements | Capacitance Tangent of loss angle: for $C \le 1 \mu F$ at 10 kHz or for $C > 1 \mu F$ at 1 kHz | | | | | 4.3 Robustness of terminations | Tensile: load 10 N; 10 s
Bending: load 5 N; 4 x 90° | No visible damage | | | | 4.4 Resistance to soldering heat | No pre-drying Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s | | | | | 4.19 Component solvent resistance | Isopropylalcohol at room temperature Method: 2 Immersion time: 5 min ± 0.5 min Recovery time: min. 1 h, max. 2 h | | | | | 4.4.2 Final measurements | Visual examination | No visible damage
Legible marking | | | | | Capacitance | $ \Delta C/C \le 5$ % of the value measured initially | | | | | Tangent of loss angle | Increase of tan δ :
\leq 0.008 for: $C \leq$ 1 μF or
\leq 0.005 for: $C >$ 1 μF
Compared to values measured initially | | | | | Insulation resistance | As specified in section "Insulation
Resistance" of this specification | | | | SUB-GROUP C1B PART OF SAMPLE OF SUB-GROUP C1 | | | | | | Initial measurements | Capacitance Tangent of loss angle: for $C \le 1 \mu F$ at 10 kHz or for $C > 1 \mu F$ at 1 kHz | | | | | 4.20 Solvent resistance of the marking | Isopropylalcohol at room temperature
Method: 1
Rubbing material: cotton wool
Immersion time: 5 min ± 0.5 min | No visible damage
Legible marking | | | | 4.6 Rapid change of temperature | $\theta A = -40 ^{\circ}C$
$\theta B = +100 ^{\circ}C$
5 cycles
Duration t = 30 min | | | | | 4.6.1 Inspection | Visual examination | No visible damage | | | | GROUP C INSPECTION REQUIR SUB-CLAUSE NUMBER AND TEST | CONDITIONS | PERFORMANCE REQUIREMENTS | |---|--|---| | SUB-GROUP C1B PART OF SAMPLE OF | CONDITIONS | FERI ORIMANOE REGUINEMENTS | | SUB-GROUP C1 | | | | 4.7 Vibration | Mounting: see section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz, amplitude: 0.75 mm or acceleration 98 m/s² (whichever is less severe), total duration 6 h | | | 4.7.2 Final inspection | Visual examination | No visible damage | | 4.9 Shock | Mounting: see section "Mounting" for more information pulse shape: half sine acceleration: 490 m/s² duration of pulse: 11 ms | | | 4.9.2 Final measurements | Visual examination | No visible damage | | | Capacitance | $ \Delta C/C \le 5$ % of the value measured initially | | | Tangent of loss angle | Increase of tan δ :
≤ 0.008 for: C ≤ 1 μF or
≤ 0.005 for: C > 1 μF
Compared to values measured initially | | | Insulation resistance | As specified in section "Insulation
Resistance" of this specification | | SUB-GROUP C1
COMBINED SAMPLE OF SPECIMENS OF
SUB-GROUPS C1A AND C1B | | | | 4.11 Climatic sequence | | | | 4.11.1 Initial measurements | Capacitance: measured in 4.4.2 and 4.9.2 Tangent of loss angle: measured initially in C1A and C1B | | | 4.11.2 Dry heat | Temperature: 100 °C
Duration: 16 h | | | 4.11.3 Damp heat cyclic Test Db First cycle 4.11.4 Cold | Temperature: -40 °C
Duration: 2 h | | | 4.11.5 Damp heat cyclic Test Db remaining cycles | | | | GROUP C INSPECTION REQUIREMENTS | | | | | |---|---|--|--|--| | SUB-CLAUSE NUMBER AND TEST | CONDITIONS | PERFORMANCE REQUIREMENTS | | | | SUB-GROUP C1
COMBINED SAMPLE OF SPECIMENS OF
SUB-GROUPS C1A AND C1B | | | | | | 4.11.6 Final measurements | Visual examination | No visible damage
Legible marking | | | | | Capacitance | $ \Delta C/C \leq 5$ % of the value measured in 4.11.1. | | | | | Tangent of loss angle | Increase of $\tan \delta$:
≤ 0.008 for: $C \leq 1~\mu F$ or
≤ 0.005 for: $C > 1~\mu F$
Compared to values measured in 4.11.1. | | | | | Voltage proof
1200 V _{DC} ; 1 min between terminations | No permanent breakdown or flash-over | | | | | Insulation resistance | \geq 50 % of values specified in section "Insulation Resistance" of this specification | | | | SUB-GROUP C2 | | | | | | 4.12 Damp heat steady state | 21 days; 40 °C; 90 % to 95 % RH
no load | | | | | 4.12.1 Initial measurements | Capacitance Tangent of loss angle: for $C \le 1 \mu F$ at 10 kHz or for $C > 1 \mu F$ at 1 kHz | | | | | 4.12.3 Final measurements | Visual examination | No visible damage
Legible marking | | | | | Capacitance | $ \Delta C/C \le 5$ % of the value measured in 4.12.1. | | | | | Tangent of loss angle | Increase of tan δ :
≤ 0.008 for: C \leq 1 μ F or
≤ 0.005 for: C $>$ 1 μ F
Compared to values measured in 4.12.1. | | | | | Voltage proof
1200 V _{DC} ; 1 min between terminations | No permanent breakdown or flash-over | | | | | Insulation resistance | ≥ 50 % of values specified in section
"Insulation Resistance" of this specification | | | | SUB-GROUP C3 | | | | | | 4.13.1 Initial measurements | Capacitance Tangent of loss angle: for C ≤ 1 μF at 10 kHz or for C > 1 μF at 1 kHz | | | | | 4.13 Impulse voltage | 3 successive impulses, full wave, peak voltage: X2: 2.5 kV for C ≤ 1 μF X2: 2.5 kV/√C for C > 1 μF Max. 24 pulses | No self healing breakdowns or flash-over | | | | GROUP C INSPECTION REQUISES NUMBER AND TEST | CONDITIONS | PERFORMANCE REQUIREMENTS | |---|---|---| | SUB-GROUP C3 | | | | 4.14 Endurance | Duration: 1000 h 1.25 x U_{RAC} at 100 °C Once in every hour the voltage is increased to 1000 V_{RMS} for 0.1 s via resistor of 47 Ω ± 5 % | | | 4.14.7 Final measurements | Visual examination | No visible damage
Legible marking | | | Capacitance | ∆C/C ≤10 % compared to values measured in 4.13.1. | | | Tangent of loss angle | Increase of $\tan \delta$:
≤ 0.008 for: $C \leq 1$ μF or
≤ 0.005 for: $C > 1$ μF
Compared to values measured in 4.13.1. | | | Voltage proof
1200 V _{DC} ; 1 min between terminations
2000 V _{AC} ; 1 min between terminations
and case | No permanent breakdown or flash-over | | | Insulation resistance | ≥ 50 % of values specified in section "Insulation Resistance" of this specification | | SUB-GROUP C4 | | | | 4.15 Charge and discharge | 10 000 cycles Charged to 350 V_{DC} Discharge resistance: $R = \frac{350 \ V_{DC}}{2 \ x \ C \ (dU/dt)}$ | | | 4.15.1 Initial measurements | Capacitance Tangent of loss angle: for $C \le 1 \mu F$ at 10 kHz or for $C > 1 \mu F$ at 1 kHz | | | 4.15.3 Final measurements | Capacitance | ∆C/C ≤10 % compared to values measured in 4.15.1. | | | Tangent of loss angle | Increase of $\tan \delta$:
≤ 0.008 for: $C \leq 1$ μF or
≤ 0.005 for: $C > 1$ μF
Compared to values measured in 4.15.1. | | | Insulation resistance | ≥ 50 % of values specified in section
"Insulation Resistance" of this specification | | SUB-GROUP C5 | | | | 4.16 Radio frequency characteristic | Resonance frequency | ≥ 0.9 times the value as specified in section
"Resonant Frequency" of this specification | | GROUP C INSPECTION REQUIREMENTS | | | | |-----------------------------------|--|--|--| | SUB-CLAUSE NUMBER AND TEST | CONDITIONS | PERFORMANCE REQUIREMENTS | | | SUB-GROUP C6 | | | | | 4.17 Passive flammability Class C | Bore of gas jet: \emptyset 0.5 mm
Fuel: butane
Test duration for actual volume V in mm ³ : $V \le 250$: 5 s $250 < V \le 500$: 10 s $500 < V \le 1750$: 20 s $V > 1750$: 30 s One flame application | After removing test flame from capacitor, the capacitor must not continue to burn for more than 30 s. No burning particle must drop from the sample. | | | SUB-GROUP C7 | | | | | 4.18 Active flammability | 20 cycles of 2.5 kV discharges on the test capacitor connected to U _{RAC} | The cheese cloth around the capacitors shall not burn with a flame. No electrical measurements are required. | | ### **Legal Disclaimer Notice** Vishay ### **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.