

CLC1003

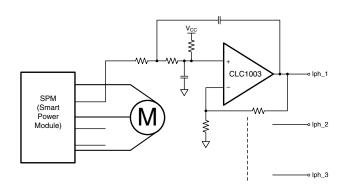
Low Distortion, Low Offset, RRIO Amplifier

General Description

The CLC1003 is a single channel, high-performance, voltage feedback amplifier with near precision performance, low input voltage noise, and ultra low distortion. The CLC1003 offers 1mV maximum input offset voltage, 3.5nV/√Hz broadband input voltage noise, and 0.00005% THD at 1kHz. These amplifiers also provide 55MHz gain bandwidth product and 12V/µs slew rate making them well suited for applications requiring precision DC performance and high AC performance. This high-performance amplifier also offers a rail-to-rail input and output, simplifying single supply designs and offering larger dynamic range possibilities. The inputs extend beyond the rails by 500mV.

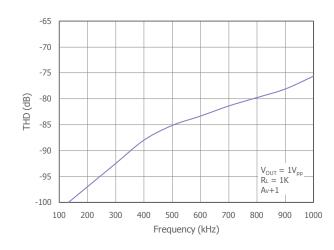
The CLC1003 is designed to operate from 2.5V to 12V supplies and operate over the extended temperature range of -40°C to +125°.

FEATURES


- 1mV maximum input offset voltage
- 0.00005% THD at 1kHz
- 5.3nV/√Hz input voltage noise > 10kHz
- -90dB/-85dB HD2/HD3 at 100kHz, $R_I = 100\Omega$
- <-100dB HD2 and HD3 at 10kHz, $R_I = 1k\Omega$
- Rail-to-rail input and output
- 55MHz unity gain bandwidth
- 12V/µs slew rate
- +80mA, -55mA output current
- -40°C to +125°C operating temperature range
- Fully specified at 3 and ±5V supplies
- CLC1003: ROHS compliant TSOT-5, SOIC-8 package options

APPLICATIONS

- Active filters
- Sensor interface
- High-speed transducer amp
- Medical instrumentation
- Probe equipment
- Test equipment
- Smoke detectors
- Hand-held analytic instruments
- Current sense applications


Ordering Information - back page

Typical Application

Current Sensing in 3-Phase Motor

THD vs. Frequency

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

V _S	0V to +14V
V _{IN} V _S - 0.5V t	0.5V + 0.5V

Operating Conditions

Supply Voltage Range	2.5V to 12V
Operating Temperature Range	40°C to 125°C
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10s)	260°C

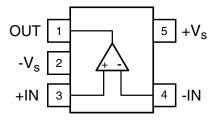
Package Thermal Resistance

θ _{JA} (TSOT-5)	215°C/W
θ _{JA} (SOIC-8)	150°C/W

Package thermal resistance $(\theta_{\text{JA}}), \; \text{JEDEC}$ standard, multi-layer test boards, still air.

Electrical Characteristics at +3V

 T_A = 25°C, V_S = +3V, R_f = 1k $\Omega,\,R_L$ = 1k Ω to $V_S/2;\,G$ = 2; unless otherwise noted.

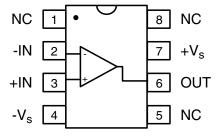

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency	Frequency Domain Response					
GBWP	-3dB Gain Bandwidth Product	G = 10, V _{OUT} = 0.05V _{pp}		31		MHz
UGBW	Unity Gain Bandwidth	$V_{OUT} = 0.05V_{pp}, R_f = 0$ 50			MHz	
BW _{SS}	-3dB Bandwidth	$V_{OUT} = 0.05V_{pp}$		24		MHz
BW _{LS}	Large Signal Bandwidth	$V_{OUT} = 2V_{pp}$		3.3		MHz
Time Doma	in			,		
t _R , t _F	Rise and Fall Time	V _{OUT} = 2V step; (10% to 90%)		150		ns
t _S	Settling Time to 0.1%	V _{OUT} = 2V step		78		ns
OS	Overshoot	V _{OUT} = 2V step		0.3		%
SR	Slew Rate	2V step		11		V/µs
Distortion/N	loise Response		,	,		
LIDO	On dilla massaria Distantia a	$2V_{pp}$, 10kHz, $R_L = 1$ kΩ		-98		dBc
HD2	2nd Harmonic Distortion	$2V_{pp}$, 100kHz, R _L = 100Ω		-85		dBc
LIDO		$2V_{pp}$, 10kHz, $R_L = 1$ kΩ		-95		dBc
HD3	3rd Harmonic Distortion	$2V_{pp}$, 100kHz, R _L = 100Ω		-81		dBc
THD	Total Harmonic Distortion	$1V_{pp}$, 1kHz, G = 1, R _L = 2kΩ		0.0005		%
		>10kHz		5.5		nV/√Hz
e _n	Input Voltage Noise	>100kHz		3.9		nV/√Hz
DC Perform	nance		<u> </u>			
V _{IO}	Input Offset Voltage			0.088		mV
d _{VIO}	Average Drift			1.3		μV/°C
I _B	Input Bias Current			-0.340		μΑ
dl _B	Average Drift			0.8		nA/°C
I _{OS}	Input Offset Current			0.2		μΑ
PSRR	Power Supply Rejection Ratio	DC		100		dB
A _{OL}	Open Loop Gain	$V_{OUT} = V_S / 2$		104		dB
I _S	Supply Current	per channel		1.85		mA
Input Chara	acteristics		,	,		,
R _{IN}	Input Resistance	Non-inverting, G = 1		30		ΜΩ
C _{IN}	Input Capacitance			1.1		pF
CMIR	Common Mode Input Range			-0.5 to 3.5		V
CMRR	Common Mode Rejection Ratio	DC, V _{CM} = 0.5V to 2.5V		94		dB
Output Cha	racteristics		,			
V	Output Swing	R _L = 150Ω		0.085 to 2.80		V
V _{OUT}	Output Swilly	$R_L = 1k\Omega$		0.04 to 2.91		V
I _{OUT}	Output Current			+75, -40		mA
I _{SC}	Short Circuit Current	$V_{OUT} = V_S / 2$		+95, -50		mA

Electrical Characteristics at ±5V

 T_A = 25°C, V_S = ±5V, R_f = 1k $\Omega,\,R_L$ = 1k Ω to GND; G = 2; unless otherwise noted.

e _n Input Voltage Noise	Symbol	Parameter	Conditions	Min	Тур	Max	Units
Unity Gain Bandwidth Vour = 0.05Vpp, R _T = 0 55 MHz	Frequency	Frequency Domain Response					
BWss bWss bWss bWss bWss bWss bWss bWss	GBWP	-3dB Gain Bandwidth Product	$G = 10, V_{OUT} = 0.05V_{pp}$		35		MHz
BML _S	UGBW	Unity Gain Bandwidth	$V_{OUT} = 0.05V_{pp}, R_f = 0$		55		MHz
BML _S	BW _{SS}	-3dB Bandwidth	$V_{OUT} = 0.05V_{pp}$		25		MHz
Time Domain Vour = 2V step; (10% to 90%) 125	BW _{LS}	Large Signal Bandwidth			3.6		MHz
t ₈ Settling Time to 0.1% V _{OUT} = 2V step 80 ns OS Overshoot V _{OUT} = 2V step 0.3 0.3 % SR Stew Rate 4V step 12 V/µs SR Stew Rate 4V step 12 V/µs Use Marker Response HD2 2nd Harmonic Distortion 2V _{pp} , 10kHz, R _L = 1kΩ -125 dBc HD3 3rd Harmonic Distortion 2V _{pp} , 10kHz, R _L = 1kΩΩ -127 dBc HD3 3rd Harmonic Distortion 1V _{pp} , 1kHz, R _L = 1kΩΩ -127 dBc THD Total Harmonic Distortion 1V _{pp} , 1kHz, R _L = 1kΩΩ 0.00005 % en Input Voltage Noise 5.3 1nV/I/Hz 5.3 nV/I/Hz DC Performmore V _{IO} Input Voltage Noise -1 0.00005 % nV/I/Hz DC Performmore V _{IO} Input Voltage Noise -1 0.050 1 mV V _{IO} Input	Time Doma	in	,	'	, '		'
OS Overshoot V _{OUT} = 2V step 0.3 % SR Slew Rate 4V step 12 V/μs Distortion/Noise Response HD2 2nd Harmonic Distortion 2V _{pp} , 10kHz, R _L = 1kΩ -125 dBc 2V _{pp} , 10kHz, R _L = 1kΩ -90 dBc 2V _{pp} , 10kHz, R _L = 1kΩ -127 dBc 3rd Harmonic Distortion 1V _{pp} , 10kHz, R _L = 1kΩ -127 dBc THD Total Harmonic Distortion 1V _{pp} , 10kHz, R _L = 1kΩ 0.00005 % B 1 Total Harmonic Distortion 1V _{pp} , 10kHz, R _L = 1kΩ 0.00005 % THD Total Harmonic Distortion 1V _{pp} , 10kHz, R _L = 1kΩ 0.00005 % B 1 Input Oltage 10kHz 0.00005 % B 1 Input Oltage 1 0.050 1 nV/l/Hz B Input Offset Voltage 1 1 0.050 1 nA/°C B Input Offset Voltage 2.0 0.0 0.0 0.0 0.0 0.0 <td< td=""><td>t_R, t_F</td><td>Rise and Fall Time</td><td>V_{OUT} = 2V step; (10% to 90%)</td><td></td><td>125</td><td></td><td>ns</td></td<>	t _R , t _F	Rise and Fall Time	V _{OUT} = 2V step; (10% to 90%)		125		ns
SR Slew Rate 4V step 12 V/μs	t _S	Settling Time to 0.1%	V _{OUT} = 2V step		80		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OS	Overshoot	V _{OUT} = 2V step		0.3		%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SR	Slew Rate	4V step		12		V/µs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Distortion/N	loise Response	,	,	, ,		•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LIDO		$2V_{pp}$, 10kHz, $R_L = 1$ kΩ		-125		dBc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HD2	2nd Harmonic Distortion			-90		dBc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-127		dBc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HD3	3rd Harmonic Distortion			-85		dBc
Post	THD	Total Harmonic Distortion			0.00005		%
Non-inverting, G = 1 Sign Sign Non-inverting, G = 1 Sign Sign Sign Non-inverting, G = 1 Sign			>10kHz		5.3		nV/√Hz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e _n	Input Voltage Noise	>100kHz		3.5		nV/√Hz
	DC Perform	nance	,	'			,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{IO}	Input Offset Voltage		-1	0.050	1	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d _{VIO}	Average Drift			1.3		μV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _B	Input Bias Current		-2.6	-0.30	2.6	μA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Average Drift			0.85		nA/°C
PSRR Power Supply Rejection Ratio DC 82 100 dB A _{OL} Open Loop Gain $V_{OUT} = V_S / 2$ 95 115 dB Is Supply Current per channel 2.2 2.75 mA Input Characteristics RIN Input Resistance Non-inverting, G = 1 30 MΩ CiN Input Capacitance 1 pF CMIR Common Mode Input Range ±5.5 V CMRR Common Mode Rejection Ratio DC, V _{CM} = -3V to 3V 70 95 dB Output Characteristics VOUT R _L = 150Ω -4.826 to 4.534 V F _L = 1kΩ -4.7 -4.93 to 4.7 V Iout Output Current +80, -55 mA	I _{OS}	Input Offset Current			0.2	0.7	μA
$\begin{tabular}{ c c c c c c c c c c } \hline I_{S} & Supply Current & per channel & 2.2 & 2.75 & mA \\ \hline I_{IDUT} & Characteristics & & & & & & & & & \\ \hline I_{IN} & Input Resistance & Non-inverting, $G=1$ & 30 & MΩ \\ \hline C_{IN} & Input Capacitance & & 1 & pF$ \\ \hline $CMIR$ & Common Mode Input Range & & ± 5.5 & V$ \\ \hline $CMRR$ & Common Mode Rejection Ratio & DC, $V_{CM}=-3V$ to $3V$ & 70 & 95 & dB$ \\ \hline $Output Characteristics & & & & & & & \\ \hline V_{OUT} & Output Swing & & & & & & & & & \\ \hline $I_{L}=150\Omega$ & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & & & & & \\ \hline $I_{L}=1k\Omega$ & & & & & & & & & & & & & & & & & & &$		Power Supply Rejection Ratio	DC	82	100		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A _{OL}	Open Loop Gain	$V_{OUT} = V_S/2$	95	115		dB
$ \begin{array}{ c c c c } \hline \mbox{Input Characteristics} \\ \hline R_{IN} & \mbox{Input Resistance} & \mbox{Non-inverting, G = 1} & 30 & M\Omega \\ \hline C_{IN} & \mbox{Input Capacitance} & 1 & pF \\ \hline CMIR & \mbox{Common Mode Input Range} & \pm 5.5 & V \\ \hline CMRR & \mbox{Common Mode Rejection Ratio} & DC, V_{CM} = -3V to 3V & 70 & 95 & dB \\ \hline Output Characteristics & & & & & & & & & & & & & & & & & & &$	I _S	Supply Current	per channel		2.2	2.75	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Chara	acteristics	,	,	, ,		'
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _{IN}	Input Resistance	Non-inverting, G = 1		30		ΜΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Input Capacitance			1		pF
		Common Mode Input Range			±5.5		V
$ V_{OUT} = \begin{cases} P_L = 150\Omega & -4.826 \text{ to} \\ 4.534 & V \\ \hline P_L = 1k\Omega & -4.7 & -4.93 \text{ to} \\ 4.85 & 4.7 & V \\ \hline P_{OUT} = 0 \end{cases} $ Output Current $ P_L = 1k\Omega + 100\Omega + $	CMRR	Common Mode Rejection Ratio	DC, V _{CM} = -3V to 3V	70	95		dB
V_{OUT} Output Swing $R_L = 150\Omega$ 4.534 V $R_L = 1 k\Omega$ -4.7 -4.93 to 4.85 4.7 V -4.93 to 4.85 4.7 M_{OUT} Output Current $+80, -55$ M_{OUT}	Output Cha	, Civi					
$R_L = 1kΩ$	V	Output Swing	R _L = 150Ω				V
	VOUT	Output Swilly	$R_L = 1k\Omega$	-4.7		4.7	V
I_{SC} Short Circuit Current $V_{OUT} = V_S/2$ +115, -90 mA	I _{OUT}	Output Current			+80, -55		mA
	I _{SC}	Short Circuit Current	$V_{OUT} = V_S / 2$		+115, -90		mA

CLC1003 Pin ConfigurationsTSOT-5

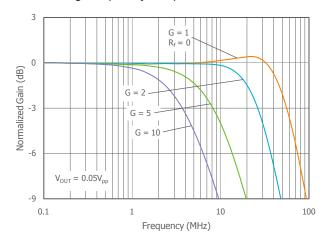


CLC1003 Pin Assignments

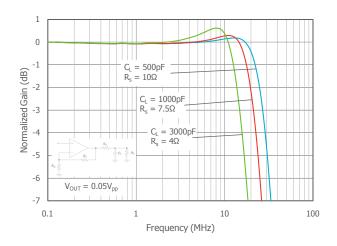
TSOT-5

Pin No.	Pin Name	Description
1	OUT	Output
2	-V _S	Negative supply
3	+IN	Positive input
4	-IN	Negative input
5	+V _S	Positive supply

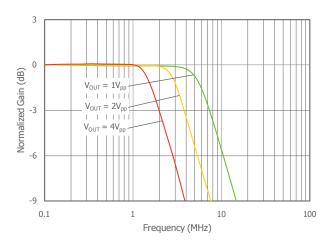
SOIC-8

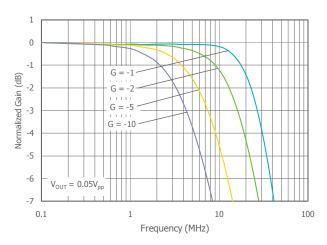


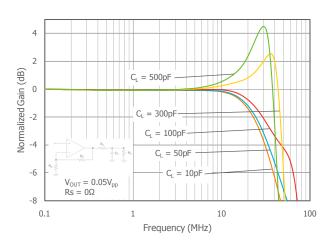
SOIC-8

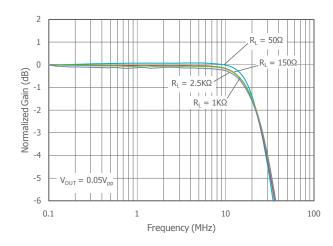

Pin No.	Pin Name	Description
1	NC	No Connect
2	-IN	Negative input
3	+IN	Positive input
4	-V _S	Negative supply
5	NC	No Connect
6	OUT	Output
7	+V _S	Positive supply
8	NC	No Connect

 T_A = 25°C, V_S = ±5V, R_f = 1k $\Omega,~R_L$ = 1k $\Omega,~G$ = 2; unless otherwise noted.

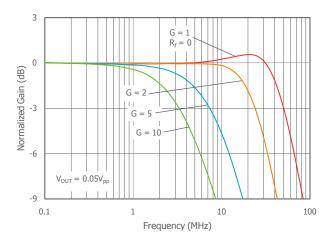

Non-Inverting Frequency Response


Frequency Response vs. C₁

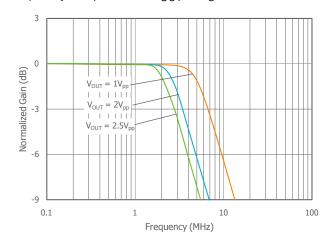

Frequency Response vs. VOUT


Inverting Frequency Response

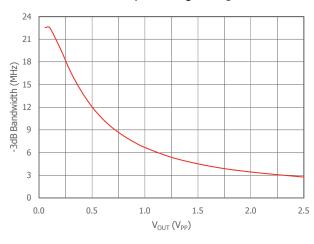
Frequency Response vs. C_L without R_S

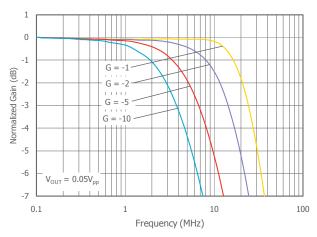


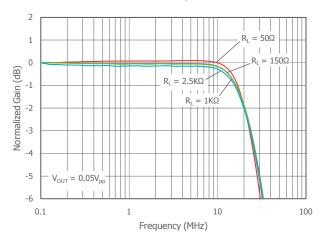
Frequency Response vs. RL

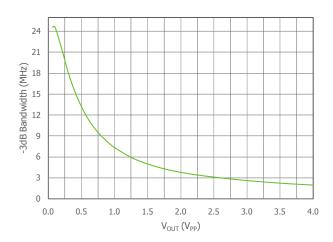


 T_A = 25°C, V_S = ±5V, R_f = 1k $\Omega,~R_L$ = 1k $\Omega,~G$ = 2; unless otherwise noted.

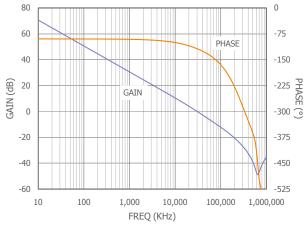

Non-Inverting Frequency Response at $V_S = 3V$


Frequency Response vs. V_{OUT} at $V_S = 3V$

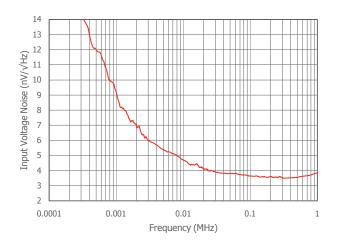

-3dB Bandwidth vs. Output Voltage at $V_S = 3V$


Inverting Frequency Response at $V_S = 3V$

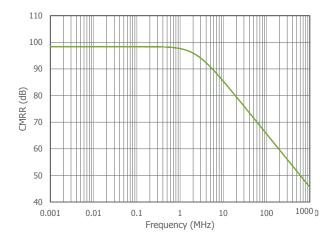
Frequency Response vs. R_L at $V_S = 3V$

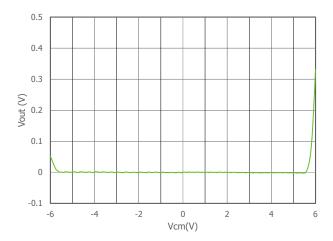


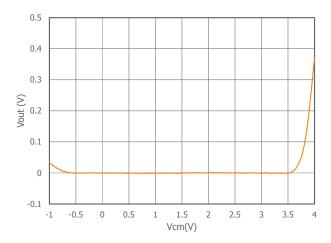
-3dB Bandwidth vs. Output Voltage

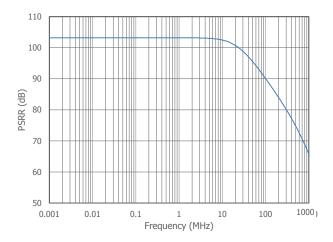


 $T_A = 25$ °C, $V_S = \pm 5$ V, $R_f = 1$ k Ω , $R_L = 1$ k Ω , G = 2; unless otherwise noted.

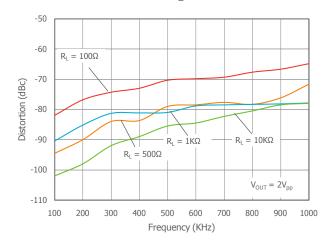

Open Loop Gain and Phase vs.


Input Voltage Noise

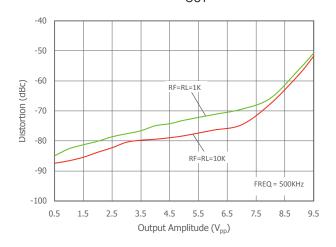

CMRR vs. Frequency


CMIR

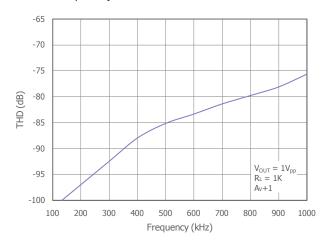
CMIR at $V_S = 3V$

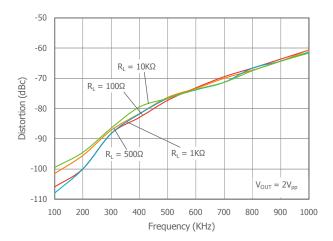


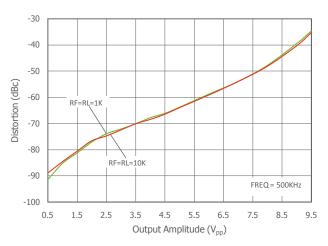
PSRR vs. Frequency



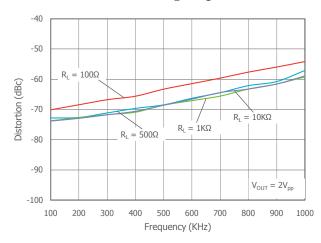
 T_A = 25°C, V_S = ±5V, R_f = 1k $\Omega,~R_L$ = 1k $\Omega,~G$ = 2; unless otherwise noted.


2nd Harmonic Distortion vs. R_L

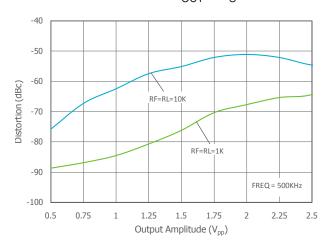

2nd Harmonic Distortion vs. V_{OUT}


THD vs. Frequency

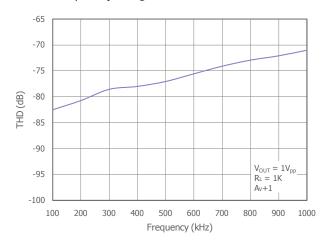
3rd Harmonic Distortion vs. R_L

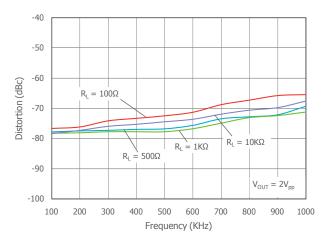


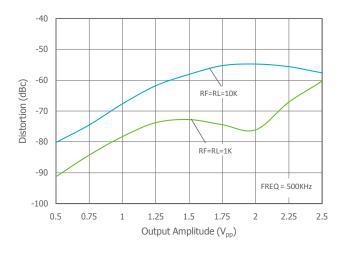
3rd Harmonic Distortion vs. V_{OUT}



 $T_A = 25$ °C, $V_S = \pm 5$ V, $R_f = 1$ k Ω , $R_L = 1$ k Ω , G = 2; unless otherwise noted.

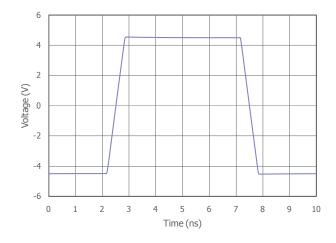

2nd Harmonic Distortion vs. R_L at $V_S = 3V$


2nd Harmonic Distortion vs. V_{OUT} at $V_S = 3V$

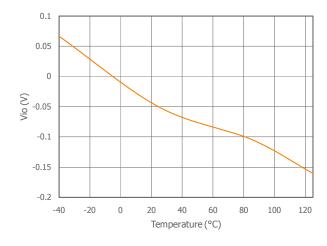

THD vs. Frequency at $V_S = 3V$

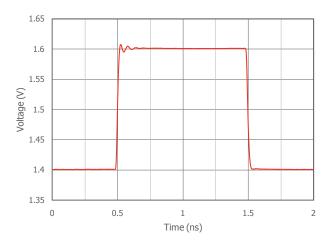
3rd Harmonic Distortion vs. R_L at $V_S = 3V$

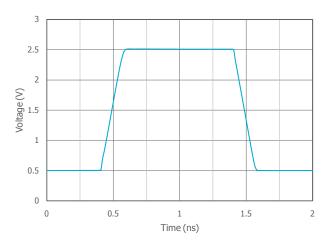
3rd Harmonic Distortion vs. V_{OUT} at $V_S = 3V$

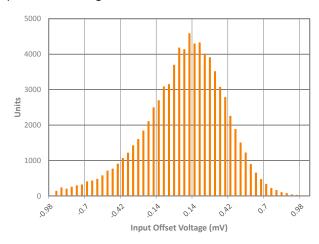


 $T_A=25^{\circ}C,\,V_S=\pm5V,\,R_f=1k\Omega,\,R_L=1k\Omega,\,G=2;$ unless otherwise noted.


Small Signal Pulse Response


Large Signal Pulse Response


Input Offset Voltage vs. Temperature


Small Signal Pulse Response at $V_S = 3V$

Large Signal Pulse Response at $V_S = 3V$

Input Offset Voltage Distribution

Application Information

Basic Information

Figures 1 and 2 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations.

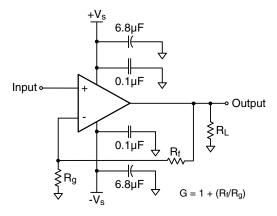


Figure 1: Typical Non-Inverting Gain Circuit

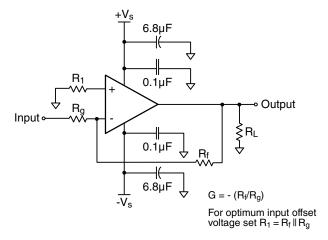


Figure 2: Typical Inverting Gain Circuit

Power Dissipation

Power dissipation should not be a factor when operating under the stated 500Ω load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.

Maximum power levels are set by the absolute maximum junction rating of 150°C. To calculate the junction temperature, the package thermal resistance value Theta_JA (θ_{JA}) is used along with the total die power dissipation.

$$T_{\text{Junction}} = T_{\text{Ambient}} + (\theta_{\text{JA}} \times P_{\text{D}})$$

Where T_{Ambient} is the temperature of the working environment.

In order to determine P_D, the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$P_D = P_{supply} - P_{load}$$

Supply power is calculated by the standard power equation.

$$P_{supply} = V_{supply} \times I_{RMSsupply}$$
$$V_{supply} = V_{S+} - V_{S-}$$

Power delivered to a purely resistive load is:

$$P_{load} = ((V_{load})_{RMS^2})/Rload_{eff}$$

The effective load resistor (Rload_{eff}) will need to include the effect of the feedback network. For instance,

Rload_{eff} in Figure 2 would be calculated as:

$$R_L \parallel (R_f + R_g)$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here, $P_{\rm D}$ can be found from

$$P_D = P_{Quiescent} + P_{Dynamic} - P_{load}$$

Quiescent power can be derived from the specified I_S values along with known supply voltage, V_{supply} . Load power can be calculated as above with the desired signal amplitudes using:

$$(V_{load})_{RMS} = V_{peak} / \sqrt{2}$$

 $(I_{load})_{RMS} = (V_{load})_{RMS} / Rload_{eff}$

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

$$P_{Dynamic} = (V_{S+} - V_{load})_{RMS} \times (I_{load})_{RMS}$$

Assuming the load is referenced in the middle of the power rails or $V_{\text{supply}}/2$.

Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

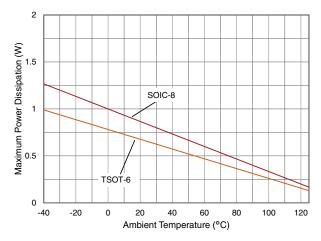


Figure 3. Maximum Power Derating

Driving Capacitive Loads

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, R_S, between the amplifier and the load to help improve stability and settling performance. Refer to Figure 4.

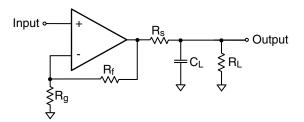


Figure 4. Addition of R_S for Driving Capacitive Loads

The CLC1003 is capable of driving up to 300pF directly, with no series resistance. Directly driving 500pF causes over 4dB of frequency peaking, as shown in the plot on page 6. Table 1 provides the recommended R_S for various capacitive loads. The recommended R_S values result in ≤ 1dB peaking in the frequency response. The Frequency Response vs. C_I plots, on page 6, illustrate the response of the CLC1003.

C _L (pF)	R _S (Ω)	-3dB BW (MHz)
500	10	27
1000	7.5	20
3000	4	15

Table 1: Recommended R_S vs. C_L

For a given load capacitance, adjust R_S to optimize the tradeoff between settling time and bandwidth. In general, reducing R_S will increase bandwidth at the expense of additional overshoot and ringing.

Overdrive Recovery

An overdrive condition is defined as the point when either one of the inputs or the output exceed their specified voltage range. Overdrive recovery is the time needed for the amplifier to return to its normal or linear operating point. The recovery time varies based on whether the input or output is overdriven and by how much the ranges are exceeded. The CLC1003 will typically recover in less than 20ns from an overdrive condition. Figure 5 shows the CLC1003 in an overdriven condition.

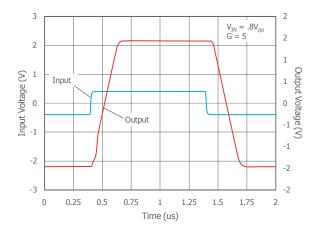


Figure 5: Overdrive Recovery

Considerations for Offset and Noise Performance Offset Analysis

There are three sources of offset contribution to consider; input bias current, input bias current mismatch, and input offset voltage. The input bias currents are assumed to be equal with and additional offset current in one of the inputs to account for mismatch. The bias currents will not affect the offset as long as the parallel combination of $R_{\mbox{\scriptsize f}}$ and $R_{\mbox{\scriptsize q}}$ matches Rt. Refer to Figure 6.

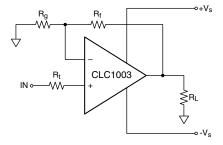


Figure 6: Circuit for Evaluating Offset

The first place to start is to determine the source resistance. If it is very small an additional resistance may need to be added to keep the values of $R_{\mbox{\scriptsize f}}$ and $R_{\mbox{\scriptsize q}}$ to practical levels. For this analysis we assume that Rt is the total resistance present on the non-inverting input. This gives us one equation that we must solve:

$$R_t = R_0 II R_f$$

This equation can be rearranged to solve for R_a:

$$R_{q} = (R_{t} * R_{f}) / (R_{f} - R_{t})$$

The other consideration is desired gain (G) which is:

$$G = (1 + R_f/R_q)$$

By plugging in the value for R_q we get

$$R_f = G * R_t$$

And R_{α} can be written in terms of R_{t} and G as follows:

$$R_0 = (G * R_t) / (G - 1)$$

The complete input offset equation is now only dependent on the voltage offset and input offset terms given by:

$$VI_{OS} = \sqrt{\left(V_{IO}\right)^2 + \left(I_{OS} * RT\right)^2}$$

And the output offset is:

$$VO_{OS} = G * \sqrt{(V_{IO})^2 + (I_{OS} * RT)^2}$$

Noise analysis

The complete equivalent noise circuit is shown in Figure 7.

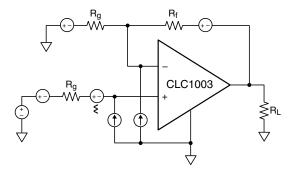


Figure 7: Complete Equivalent Noise Circuit

The complete noise equation is given by:

$$v_o^2 = v_{orext}^2 + \left(e_n \left(1 + \frac{RF}{RG}\right)\right)^2 + \left(i_{bp} * RT \left(1 + \frac{RF}{RG}\right)\right)^2 + \left(i_{bn} * RF\right)^2$$

Where V_{orext} is the noise due to the external resistors and is given by:

$$v_o^2 = \left(e_n \left(1 + \frac{RF}{RG}\right)\right)^2 + \left(e_G * \frac{RF}{RG}\right)^2 + e_F^2$$

The complete equation can be simplified to:

$$v_0^2 = 3 * (4kT * G * RT) + (e_nG)^2 + 2 * (i_n * RT)^2$$

It's easy to see that the effect of amplifier voltage noise is proportionate to gain and will tend to dominate at large gains. The other terms will have their greatest impact at large R_t values at lower gains.

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. Exar has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include 6.8µF and 0.1µF ceramic capacitors for power supply decoupling
- Place the 6.8µF capacitor within 0.75 inches of the power pin
- Place the 0.1µF capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board #	Products
CEB002	CLC1003 in TSOT
CEB003	CLC1003 in SOIC

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 8-12 These evaluation boards are built for dual-supply operation. Follow these steps to use the board in a single-supply application:

- 1. Short -V_S to ground.
- 2. Use C3 and C4, if the -V_S pin of the amplifier is not directly connected to the ground plane.

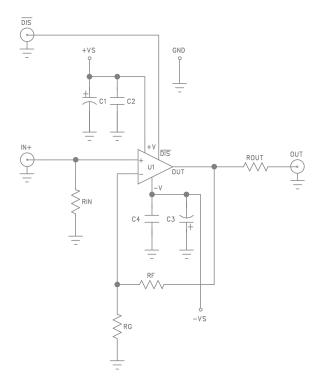


Figure 8. CEB002 & CEB003 Schematic

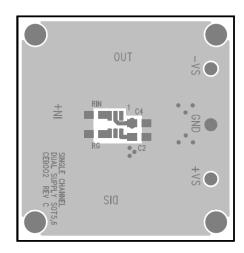


Figure 9. CEB002 Top View

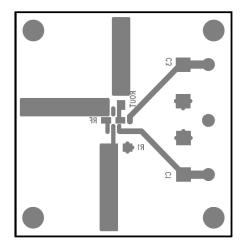


Figure 10. CEB002 Bottom View

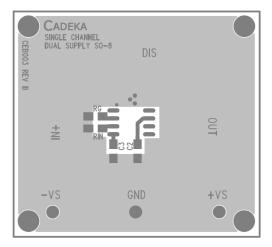


Figure 11. CEB003 Top View

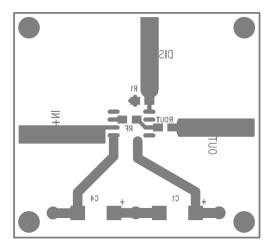
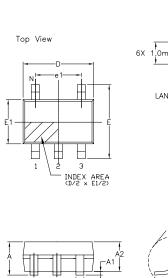
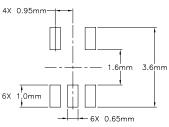
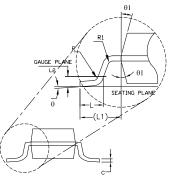
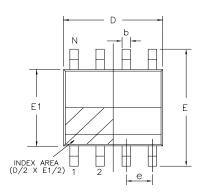




Figure 12. CEB003 Bottom View


Mechanical Dimensions

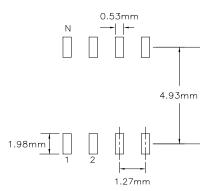
TSOT-5 Package

LAND PATTERN RECOMMENDATION

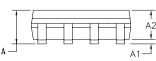


SYMBOLS	(Control Unit)				SION IN erence	
	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.75	_	0.80	0.030	_	0.031
A1	0.00	_	0.05	0.000	_	0.002
A2	0.70	0.75	0.78	0.028	0.030	0.031
b	0.35	_	0.50	0.012	_	0.020
С	0.10	_	0.20	0.003	_	0.008
D	2	.90 BS	iC	С	.114 B	SC
E	2	.80 BS	iC	С	.110 B	SC
E1	1	.60 BS	C	C	.063 B	SC
е		.95 BS	iC	C	.038 B	SC
e1	1	.90 BS	iC	0.075 BSC		SC
L	0.37	0.45	0.60	0.012	0.018	0.024
L1	().60 RE	F	0	.024 RE	F
L2	().25 BS	C	0.	.010 BS	iC
R	0.10	—	_	0.004	_	
R1	0.10	_	0.25	0.004	_	0.010
θ	0,	4*	8*	0,	4*	8*
θ1	4.	10°	12	4.	10°	12*
N	5				5	

5 Pin TSOT (OPTION 2) DIMENSION IN MM DIMENSI


SOIC-8 Package

Side View



Front View

RECOMMENDED PCB LAND PATTERN

Top View

GAUGE PLANE -L2 Front View

Side View

8 Pin SOICN JEDEC MS-012 Variation AA

SYMBOLS DIMENSIONS IN MM Control Unit) DIMENSIONS IN INCH
(Reference Unit) (Reference Unit)

© 2007-2014 Exar Corporation

Ordering Information

Part Number	Package Green Operating Temperature Range		Operating Temperature Range	Packaging Quantity
CLC1003 Ordering Information	n			
CLC1003IST5X	TSOT-5	Yes	-40°C to +125°C	2.5k Tape & Reel
CLC1003IST5MTR	TSOT-5	Yes	-40°C to +125°C	250 Tape & Reel
CLC1003IST5EVB	Evaluation Board	N/A	N/A	N/A
CLC1003ISO8X	SOIC-8	Yes	-40°C to +125°C	2.5k Tape & Reel
CLC1003ISO8MTR	SOIC-8	Yes	-40°C to +125°C	250 Tape & Reel
CLC1003ISO8EVB	Evaluation Board	N/A	N/A	N/A

Moisture sensitivity level for all parts is MSL-1.

Revision History

Revision	Date	Description
1D (ECN 1441-07)	September 2014	Reformat into Exar data sheet template. Updated ordering information table to include MTR and EVB part numbers. Increased "I" temperature range from +85 to +125°C. Removed "A" temp grade parts, since "I" is now equivalent. Updated thermal resistance numbers and package outline drawings.

For Further Assistance:

 $\textbf{Email:} \ \underline{CustomerSupport@exar.com} \ or \ \underline{HPATechSupport@exar.com}$

Exar Technical Documentation: http://www.exar.com/techdoc/

 Exar Corporation Headquarters and Sales Offices

 48760 Kato Road
 Tel.: +1 (510) 668-7000

 Fremont, CA 94538 - USA
 Fax: +1 (510) 668-7001

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.