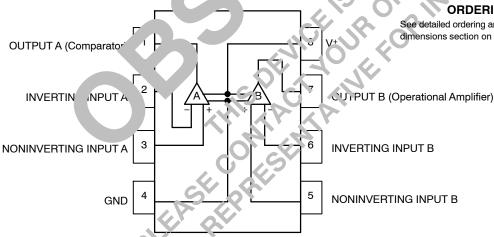
Low Power Operational Amplifier and Comparator


The LM392 contains two functions: an op amp and a comparator. Both devices can operate on single-supply power and both have a common-mode range down to ground. Operation from split power supplies is also possible. Low power-supply current is independent of the supply voltage level. The output of the comparator interfaces directly with either TTL or CMOS logic. Low quiescent current makes the LM392 ideal for portable equipment.

Features

- Wide Power-Supply Range: 3 V to 32 V
- Low Input Offset Voltage: 2 mV
- Low Quiescent Current: 600 μA
- Input CMV Range includes GND
- Op Amp is Unity Gain Stable
- These Devices are Pb-Free and are RoHS Comp'nt

Typical Applications

- Level Detectors
- Voltage Controlled Oscillators
- Transducer Amplifiers

ON Semiconductor®

http://onsemi.com

SOIC-8 NB CASE 751

XXXXX = Specific Device Code

A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V _S	32 or ±16	V
Differential Input Voltage	V _{IDR}	32	V
Input Voltage	VI	0.3 to 32	V
Output Short - Circuit to Ground	t _{SO}	Continuous	
Thermal Impedance	θ_{JA}	160	°C/W
Storage Temperature Range	T _{stg}	-65 to 150	°C
Lead Temperature (Soldering, 10 Seconds)		260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS (Both Amplifiers) ($V^+ = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$ unless otherwise stated)

				LM392			
Parameter	Conditions		TA	Min	Тур	Max	Unit
Input Offset Voltage	At output switch point, $V_O = 1.4 \text{ V}$, $R_S = 0 \Omega$, $V^+ = 5 \text{ V}$ to 30 V, $V_{CM} = 0$ to		25°C		±2	±5	mV
		- 1.5 V)	0°C to 70°C			±7	
Input Bias Current	IN(+) or IN	(-), V _{CM} = 0 V	25°C		50	205	nA
	IN(+)	or IN(-)	0°C to 70°C			400	
Input Offset Current	IN(+) or IN(-)		25°C		±5	±50	nA
			0°C to 70°C			± 150	
Input Common–Mode Voltage	V ⁺ = 30 V		25°↑	0		V+-1.5	V
Range	(Note 1)		0°€ √70°€	0		V+-2	
Supply Current	No Load	V+ = 30 V			1	2	mA
		V+ = 5 V		1	0.5	1	
Amplifier-to-Amplifier Coupling	f = 1 kHz to 20 kHz, Input Referre		25°C		-78	2	dB
Differential Input Voltage	All $V_{IN} \ge V$ (or V^- , If U^- .)		0 ა 70°C			32	V

ELECTRICAL CHARACTERISTICS (V⁺ = 5 V, T_A= 25°C unic ot wise stated)

			LM302			
Parameter	Con. nns	T,	rii.vi	J),'U	Max	Unit
OP AMP ONLY		0	5 .1			
Large Signal Voltage Gain	$V^{+} = V, V_{0} S v \qquad 1 = 1 \sqrt{\text{to 11 V}},$ $R_{L} = \Omega$	25°C	Pills	100		V/mV
Output Voltage Swing, High (V _{OH})	kΩ	25 C	√ ⁺ –1.7			V
Output Voltage Swing, Low (V _{OL})	$R_L = 2 k\Omega$	25°()			20	mV
Common–Mode Rejection Re'	_M = 0 to V ⁺ − 1.5 V	22.C	65	70		dB
Power Supply Rejection Fo	11000	25°C	65	100		dB
Output Current Source	$V_{IN(+)} = 1 $	25°C	20	40		mA
Output Current nk	$V_{1 X'-Y} = 1 \text{ V, V }_{X',Y} = 0 \text{ V,}$ $V = 15 \text{ V. }_{O} = 2 \text{ V.}$	25°C	10	20		mA
	$V_{IN(-)} = 1 \text{ V, } V_{I1} \dots = 0 \text{ V,}$ $V^{+} = 15 \text{ V, } V_{3} = 200 \text{ mV}$	25°C	12	50		μΑ
Input Offset Voltage Drift	$R_3 = 0 \Omega $ (1° 2 to 70°C)	0°C to 70°C		7		μV/°C
Input Offset Current Drift	R _S 1/2 (0°C to 70°C)	0°C to 70°C		10		pA/°C
COMPARATOR ONLY	D3 CX					
Voltage Gain	$R_L \ge 15 \text{ k}\Omega, V^+ = 15 \text{ V}$	25°C	50	200		V/mV
Large Signal Response Time	V_{IN} = TTL Logic Swing, V_{REF} = 1.4 V, V_{RL} = 5 V, R_L = 5.1 k Ω	25°C		200		ns
Response Time	V_{RL} = 5 V, R_L = 5.1 k Ω	25°C		600		ns
Output Sink Current	$V_{IN(-)} = 1 \text{ V}, V_{IN(+)} = 0 \text{ V}, V_{O} \ge 1.5 \text{ V}$	25°C	6	16		mA
Saturation Voltage	$V_{IN(-)} \ge 1 \text{ V, } V_{IN(+)} = 0, I_{SINK} \le 4 \text{ mA}$	25°C		250	400	mV
	$V_{IN(-)} \ge 1 \text{ V, } V_{IN(+)} = 0, I_{SINK} \le 4 \text{ mA}$	0°C to 70°C			700	mV
Output Leakage Current	$V_{IN(-)} = 0, V_{IN(+)} \ge 1 \text{ V}, V_O = 5 \text{ V}$	25°C		0.1		nA

The input common–mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common–mode voltage range is V⁺ – 1.5 V, but either or both inputs can go to 32 V without damage.

25°C

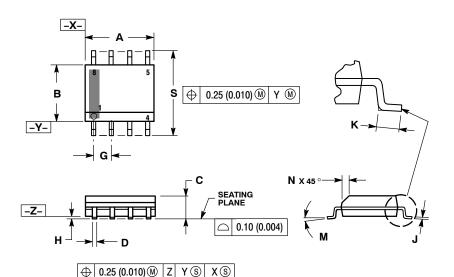
1.0

 $V_{IN(-)} = 0, \, V_{IN(+)} \, \geq \, 1 \, \, V, \, V_O = 30 \, \, V$

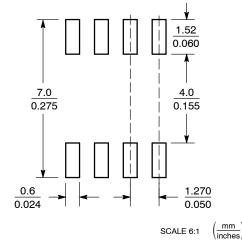
ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping [†]
LM392DR2G	0°C to +70°C	SOIC-8 (Pb-Free)	2500 / Tape & Reel

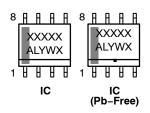
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



SOIC-8 NB CASE 751-07 **ISSUE AK**


DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W

= Pb-Free Package

XXXXXX XXXXXX AYWW AYWW Ŧ \mathbb{H} Discrete **Discrete** (Pb-Free) XXXXXX = Specific Device Code

= Assembly Location Α = Year ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	PIN 1. COLLECTOR, DIE #1 2. BASE, #1
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 9. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN
3. V10UT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22:	7. DRAIN 1 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

DOCUMENT NUMBER:	98ASB42564B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales