

Maxim Integrated Page 1 of 13

MAX17055
Software Implementation Guide
UG6365; Rev 2; 4/19

Abstract
The MAX17055 Software Implementation Guide describes the startup sequence to configure and utilize
the fuel gauge functions of MAX17055 for EZ Config and custom models.

Maxim Integrated Page 2 of 13

Description
This document describes the startup sequence to configure and utilize the fuel gauge functions of
MAX17055. The MAX17055 should be initialized and loaded with a customized model and parameters
at power up and then the reported state of charge and other useful information can be easily read by the
host system over the 2-wire bus system and displayed to the user. Figure 1 is a flowchart of the power-
up sequence that a host controller should implement with the MAX17055.

POWER-UP

CHECK FOR FUELGAUGE RESET

FUELGAUGE POLLING

MAIN LOOP

LOAD INITIAL CONFIGURATION

Figure 1. MAX17055 fuel gauge model loading sequence.

Register LSBs for MAX17055
Similar register types in the ModelGauge m5 devices share similar formats: e.g., all of the SOC registers
share the same format, all of the Capacity registers share the same format.

Table 1. Register LSbs

REGISTER
TYPE

LSb SIZE NOTES

Capacity 5.0µVH/RSENSE or 0.5mAh with 10mΩ

SOC 1/256% or 1% at bit D8

Voltage 0.078125mV or 1.25mV at bit D4

Current 01.5625 µV/RSENSE or 156.25µA with 10mΩ, signed 2's complement number

Temperature 1/256°C or 1°C at bit D8, signed 2's complement number

Maxim Integrated Page 3 of 13

2-Wire/I2C Functions
The following I2C functions are needed in the load model process. They are described in pseudo code
below.

WriteRegister

int WriteRegister (u8 reg, u16 value)

 {

 int ret = i2c_smbus_write_word_data(client, reg, value);

 if (ret < 0)

 dev_err(&client->dev, "%s: err %d\n", __func__, ret);

 return ret;

 }

ReadRegister

int ReadRegister (u8 reg)

 {

 int ret = i2c_smbus_read_word_data(client, reg);

 if (ret < 0)

 dev_err(&client->dev, "%s: err %d\n", __func__, ret);

 return ret;

 }

WriteAndVerifyRegister

void WriteAndVerifyRegister (char RegisterAddress, int RegisterValueToWrite){

 int Attempt=0;

 do {

 WriteRegister (RegisterAddress, RegisterValueToWrite);

 Wait(1); //1ms

 RegisterValueRead = ReadRegister (RegisterAddress) ;

 }

while (RegisterValueToWrite != RegisterValueRead && attempt++<3);

}

Maxim Integrated Page 4 of 13

Initialize Registers to Recommended Configuration
The MAX17055 should be initialized prior to being used. The following registers should be written to
these values in order for the MAX17055 to perform optimally. These values are written to RAM, so they
must be written to the device any time that power is applied or restored to the device. Some registers
are updated internally, so it is necessary to verify that the register was written correctly to prevent data
collisions.

1. Check for POR
The POR bit is bit 1 of the Status register.

StatusPOR = ReadRegister(0x00) & 0x0002;

if (StatusPOR==0){goto Step 4.3;} //then go to Step 4.3.

else { //then do Steps 2–3.}

2. Delay until FSTAT.DNR bit == 0
After power-up, wait for the MAX17055 to complete its startup operations.

While(ReadRegister(0x3D)&1) Wait(10); //do not continue until FSTAT.DNR == 0

3. Initialize configuration

HibCFG=ReadRegister(0xBA) ; //Store original HibCFG value

WriteRegister (0x60 , 0x90) ; // Exit Hibernate Mode step 1

WriteRegister (0xBA , 0x0) ; // Exit Hibernate Mode step 2

WriteRegister (0x60 , 0x0) ; // Exit Hibernate Mode step 3

3.1 OPTION 1 EZ Config (no INI file is needed):

WriteRegister (0x18 , DesignCap) ; // Write DesignCap

WriteRegister (0x45 , DesignCap/32) ; //Write dQAcc

WriteRegister (0x1E , IchgTerm) ; // Write IchgTerm

WriteRegister (0x3A , VEmpty) ; // Write VEmpty

//Only use integer portion of dQAcc=int(DesignCap/32) in the calculation of dPAcc to avoid quantization of FullCapNom

if (ChargeVoltage>4.275)

 WriteRegister (0x46,dQAcc*51200/DesignCap); // Write dPAcc

 WriteRegister (0xDB , 0x8400) ; // Write ModelCFG

Else

 WriteRegister (0x46 , dQAcc*44138/DesignCap); //Write dPAcc

 WriteRegister (0xDB , 0x8000) ; // Write ModelCFG

//Poll ModelCFG.Refresh(highest bit), proceed to Step 4 when ModelCFG.Refresh = 0.
While (ReadRegister(0xDB)&0x8000) Wait(10)；//10ms wait loop. Do not continue until ModelCFG.Refresh == 0.

Maxim Integrated Page 5 of 13

WriteRegister (0xBA , HibCFG) ; // Restore Original HibCFG value

Proceed to Step 4.

3.2 OPTION 2 Custom Short INI without OCV table:

WriteRegister (0x18 , DesignCap) ; // Write DesignCap

WriteRegister (0x45 , DesignCap/16) ; //Write dQAcc

WriteRegister (0x1E , IchgTerm) ; // Write IchgTerm

WriteRegister (0x3A , VEmpty) ; // Write VEmpty

WriteRegister (0x28 , LearnCFG) ;// (Optional in the INI) Write LearnCFG

if (ChargeVoltage>4.275)

 WriteRegister (0x46, 0x0C80) ; // Write dPAcc

 WriteRegister (0xDB , 0x8400) ; // Write ModelCFG

Else

 WriteRegister (0x46 , 0x0AC7) ; //Write dPAcc

 WriteRegister (0xDB , 0x8000) ; // Write ModelCFG

//Poll ModelCFG.Refresh(highest bit) until it becomes 0 to confirm IC completes model loading
While (ReadRegister(0xDB)&0x8000) Wait(10)；//do not continue until ModelCFG.Refresh == 0

WriteRegister (0x38 , RCOMP0) ; // Write RCOMP0

WriteRegister (0x39 , TempCo) ; // Write TempCo

WriteRegister (0x12 , QRTable00) ; // Write QRTable00

WriteRegister (0x22 , QRTable10) ; // Write QRTable10

WriteRegister (0x32 , QRTable20) ; //(Optional in the INI) Write QRTable20

WriteRegister (0x42 , QRTable30) ; //(Optional in the INI) Write QRTable30

WriteRegister (0xBA , HibCFG) ; // Restore Original HibCFG value

Proceed to Step 4.

3.3 OPTION 3 Custom Full INI with OCV Table:

3.3.1a Write LearnCFG

 WriteAndVerifyRegister (0x28, LearnCFG | 0x0070); //Set LearnStage to 7

3.3.1 Unlock Model Access

 WriteRegister (0x62, 0x0059) ; //Unlock Model Access step 1

 WriteRegister (0x63, 0x00C4) ; //Unlock Model Access step 2

3.3.2 Write/read/verify the custom model

Once the model is unlocked, the host software must write the 48-word model to the MAX17055. The model is located between memory

locations 0x80h and 0xAFh.

//Actual bytes to transmit are provided by Maxim after cell characterization.

//See INI file at the end of this document for an example of the data to be written.

Write16Registers (0x80) ;

Write16Registers (0x90) ;

Maxim Integrated Page 6 of 13

Write16Registers (0xA0) ;

The model can be read directly back from the MAX17055. So simply read the 48 words of the model back from the device to verify if it was

written correctly. If any of the values do not match, return to step 3.3.1.

Read16Registers (0x80) ;

Read16Registers (0x90) ;

Read16Registers (0xA0) ;

3.3.3 Lock model access.

WriteRegister (0x62, 0x0000) ; //Lock model access

WriteRegister (0x63, 0x0000) ;

3.3.4 Verify that model access is locked.

If the model remains unlocked, the MAX17055 cannot monitor the capacity of the battery. Therefore, it is very critical that the model access

is locked. To verify it is locked, simply read back the model. However, this time, all values should be read as 0x00h. If any values are non-

zero, repeat Step 3.3.3 to make sure the model access is locked.

3.3.5 Write custom parameters

WriteRegister (0x18 , DesignCap) ; // Write DesignCap

 WriteRegister (0x45 , DesignCap/16) ; //Write dQAcc

 WriteRegister (0x46, 0x0C80) ; // Write dPAcc

WriteRegister (0x1E , IchgTerm) ; // Write IchgTerm

WriteRegister (0x3A , VEmpty) ; // Write VEmpty

WriteRegister (0x38 , RCOMP0) ; // Write RCOMP0

WriteRegister (0x39 , TempCo) ; // Write TempCo

WriteRegister (0x12 , QRTable00) ; // Write QRTable00

WriteRegister (0x22 , QRTable10) ; // Write QRTable10

Updating required registers.

VFSOC = ReadRegister (0xFF) ; //Read Value of VFSOC

WriteAndVerifyRegister (0x48, VFSOC) ; //WriteAndVerify VFSOC0

WriteAndVerifyRegister (0x10, DesignCap); //WriteAndVerify FullCapRep

WriteAndVerifyRegister (0x23, DesignCap); //WriteAndVerify FullCapNom

Updating optional registers. Some or all of the below registers may be optional and may not be included
in the INI.

WriteAndVerifyRegister (0x32 , QRTable20) ; // Write QRTable20

WriteAndVerifyRegister (0x42 , QRTable30) ; // Write QRTable30

WriteRegister (0x2A, RelaxCFG) ; //Write RelaxCFG

WriteRegister (0x1D, Config) ; //Write Config

WriteRegister (0xBB, Config2) ; //Write Config2

WriteRegister (0x13, FullSOCthr) ; //Write FullSOCthr

WriteRegister (0x2C, TGAIN) ; //Write TGAIN for the selected Thermistor

WriteRegister (0x2D, TOFF) ; //Write TOFF for the selected Thermistor

WriteRegister (0xB9, Curve) ; //Write Curve for the selected Thermistor

Maxim Integrated Page 7 of 13

3.3.5b Prepare to Load Model

 WriteRegister (0x05, 0x0); //Write 0 to RepCap

 WriteRegister (0x0F, DesignCap); //Write DesignCap to MixCap

3.3.6 Initiate Model Loading

Config2value=ReadRegister(0xBB) ; //read the Config2 register (0xBB)

WriteRegister(0xBB,((Config2value) | (0x0020))) ; // Setting the LdMdl bit in the Config2 register

3.3.7

Poll the LdMdl bit in the Config2 register, proceed to step 3.3.7b when LdMdl bit becomes 0.

3.3.7b Write and Verify LearnCFG and other optional registers

 WriteAndVerifyRegister (0x28, LearnCFG & 0xFF8F) ; //Set LearnStage to 0

 WriteAndVerifyRegister (0x32 , QRTable20) ; // Write Optional QRTable20

 WriteAndVerifyRegister (0x42 , QRTable30) ; // Write Optional QRTable30

3.3.8 Restore HibCFG

WriteRegister (0xBA ,HibCFG) ; // Restore Original HibCFG value

Proceed to Step 4.

4. Initialization complete

Clear the POR bit to indicate that the custom model and parameters were successfully loaded.

Status = ReadRegister(0x00); //Read Status

WriteAndVerifyRegister (0x00, Status AND 0xFFFD) ; //Write and Verify Status with POR bit cleared

4.1 Identify the battery
If the host recognizes the battery pack as one with a saved history, go to Step 4.5 to restore all of the
saved parameters, otherwise, continue to Step 4.1.
Monitor the battery.
Once the MAX17055 is initialized and customized, the host can simply read the desired information
from the MAX17055 and display that information to the user.

Maxim Integrated Page 8 of 13

4.2 Check for MAX17055 reset

StatusPOR = ReadRegister(0x00) & 0x0002; //Read POR bit in Status register

If StatusPOR = 0, then go to Step 4.3.

If StatusPOR = 1, then go to Step 1.

Read the fuel gauge results.

4.3 Read the reported capacity and state of charge (SOC)
The MAX17055 automatically calculates and reports the state of charge of the cell in terms of a
percentage and the mAhrs remaining. The reported state of charge (RepSOC), as a percent, is read from
memory location 0x06 and the reported capacity (RepCap), in mAHrs, is read from memory location
0x05.

RepCap = ReadRegister(0x05) ; //Read RepCap

RepSOC = ReadRegister(0x06) ; //Read RepSOC

The RepSOC_HiByte has a unit of 1%, so the RepSOC_HiByte can be directly displayed to the user for
1% resolution. It is recommended to save the RepSOC value so that it can be used to restore the capacity
information in the event of a power loss.

4.4 Read the remaining time to empty (TTE)
The MAX17055 also calculates the time to empty (TTE). TTE is in memory location 0x11h. The LSB of
the TTE register is 5.625s.

TTE = ReadRegister(0x11) ; //Read TTE

4.5 Save learned parameters
It is recommended to save the learned capacity parameters every time bit 6 of the Cycles register toggles
(so that it is saved every 64% change in the battery) so that if power is lost the values can easily be
restored.

Saved_RCOMP0 = ReadRegister(0x38) ; //Read RCOMP0

Saved_TempCo = ReadRegister(0x39) ; //Read TempCo

Saved_FullCapRep = ReadRegister(0x10) ; //Read FullCapRep

Saved_Cycles = ReadRegister(0x17) ; //Read Cycles

Saved_FullCapNom = ReadRegister(0x23) ; //Read FullCapNom

4.6 Restoring capacity parameters

If power is lost, then the capacity information can be easily restored with the following procedure.

WriteAndVerifyRegister(0x38, Saved_RCOMP0) ; //WriteAndVerify RCOMP0

WriteAndVerifyRegister(0x39, Saved_TempCo) ; //WriteAndVerify TempCo

WriteAndVerifyRegister(0x23, Saved_FullCapNom) ; //WriteAndVerify FullCapNom

Maxim Integrated Page 9 of 13

4.7 Wait 350ms

4.8 Restore FullCap

FullCapNom= ReadRegister(0x23) ; //Read FullCapNom

MixCap=(ReadRegister(0x0D)*FullCapNom)/25600 ;

WriteAndVerifyRegister(0x0F, MixCap) ; //WriteAndVerify MixCap

WriteAndVerifyRegister(0x10, Saved_FullCapRep) ; //WriteAndVerify FullCapRep

//Write dQacc to 200% of Capacity and dPacc to 200%

dQacc = (Saved_FullCapNom/ 16) ;

WriteAndVerifyRegister (0x46, 0x0C80) ; //Write and Verify dPacc

WriteAndVerifyRegister (0x45, dQacc) ; //Write and Verify dQacc

4.10 Wait 350ms

4.11 Restore Cycles register

WriteAndVerifyRegister(0x17, Saved_Cycles) ; //WriteAndVerify Cycles

Maxim Integrated Page 10 of 13

Quickstart and Production Test Verification
If the IC is being production tested, the following procedure updates the fuel gauge outputs to a known
state to verify proper operation of the IC. The sequence for configuring the MAX17055, as outlined in
the MAX17055 Software Implementation Guide, should be followed prior to sending the Quickstart
command to verify that the device was set up correctly. Set the power supply to the desired voltage and
issue the Quickstart command as described below.

Step T1. Set the Quickstart and Verify bits
A second bit must also be set to 1 to test for possible memory leak since the IC also updates this register
internally.

Data= ReadRegister(0x2B ; //Read MiscCFG

Data |= 0x1400 ; //Set bits 10 and 12

WriteRegister (0x2B, Data) ; //Write MiscCFG

Step T2. Verify there are no memory leaks during Quickstart writing
If the IC was writing the MiscCFG register internally at the same time as host software, bit 12 does not
remain set. Check bit 12 to confirm Quickstart was correctly received by the IC.

Data= ReadRegister(0x2B) ; //Read MiscCFG

Data &= 0x1000 ;

if (Data==0x1000) go to step T3 ; //Quickstart Success

else go to step T1 ;

Step T3. Clear the Verify bit
After a successful Quickstart, the verify bit must now be cleared.

Data= ReadRegister(0x2B) ; //Read MiscCFG

Data &= 0xEFFF ; //Clear bit 12

WriteRegister (0x2B, Data) ; //Write MiscCFG

Step T4. Verify there are no memory leaks during Verify bit clearing
If the IC was writing the MiscCFG register internally at the same time as host software, bit 12 does not
clear. Check bit 12 to confirm.

Data= ReadRegister(0x2B) ; //Read MiscCFG

Data &= 0x1000 ;

If (Data==0x0000) go to step T5 ; //Verify clear success

Else go to step T3 ;

Maxim Integrated Page 11 of 13

Step T5. Delay 500ms
After Quickstart, the MAX17055 requires 500ms to perform signal debouncing and initial calculations.

Step T6. Write and verify FullCAP Register value.
The FullCAP register value must be rewritten after a Quickstart event.

WriteAndVerifyRegister(0x10, Capacity) ; //WriteAndVerify FullCapRep

Step T7. Delay 500ms
After updating FullCAP value, the MAX17055 requires 500ms to calculate output register results.

Step T8. Read and Verify Outputs
The RepCap and RepSOC register locations should now contain accurate fuel gauge results based on a
battery voltage of 3.900V. The reported state of charge (RepSOC), as a percent, is read from memory
location 0x06h and the reported capacity (RepCap), in mAHrs, is read from memory location 0x05h.

RepCap = ReadRegister(0x05) ; //Read RepCap

RepSOC = ReadRegister(0x06) ; //Read RepSOC

Fail the unit if RepCap and RepSOC do not report expected results to within ±1% not including power
supply tolerance. Note that any error in the voltage forced on VBATT for testing creates a much larger
error in the output results from the fuel gauge.

Maxim Integrated Page 12 of 13

MAX17055 INI File Format

Option 1: Short Format without OCV Table

Device = MAX17055

RSENSE = 20mΩ

Title = C:/xxxx/1234_1_111111.csv

ModelVersion = 8745 //This keeps track of the version of the INI generator

designCap = 0x1450

ichgterm = 0x333

modelcfg = 0x8000

QRTable00 = 0x1050

QRTable10 = 0x2012

VEmpty = 0xa561

RCOMP0 = 0x004d

TempCo = 0x223e

Option 2: Long Format with OCV Table

Device = MAX17055

RSENSE = 20mΩ

Title = C:/xxxx/1234_1_111111.csv

ModelVersion = 8745

designCap = 0x06ae

fullsocthr = 0x5f05

ichgterm = 0x100

QRTable00 = 0x1050

QRTable10 = 0x0014

QRTable20 = 0x1300

QRTable30 = 0x0c00

VEmpty = 0x965a

RCOMP0 = 0x0070

TempCo = 0x223e

;;; Begin binary data

;;; This is formatted as 16-bit words, each on a new line.

;;; Numbers are formatted in hex, for example: 0x0000

; Ignore the first 16 words. These are used by EV kit software only.

; 16 words. Data starts here for Address 0x80 for use in Step 3.3.

; 16 words. Data starts here for Address 0x90 for use in Step 3.3.

; 16 words. Data starts here for Address 0xA0 for use in Step 3.3.

; Ignore the remaining 32 words.

Maxim Integrated Page 13 of 13

REVISION
NUMBER

REVISION
DATE

DESCRIPTION PAGES CHANGED

0 12/16 Initial release —

1 5/18 Updated Initialize Configuration 4–5 , 7

2 4/19
Updated 3.3 Option 3 Updating required registers, 4.5 Save learned
parameters, 4.8 Restore FullCap, Step T6; removed Option 1 and renumbered
and updated Option 2 and Option 3 in MAX17055 INI File Format

6, 8–9,
11–13

©2016 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices, applications, or
technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED PRODUCTS, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR
OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and
mechanical engineering or registered trademarks of Maxim Integrated Products, Inc. All other product or service names are the
property of their respective owners.

