

D00000652 Rev 5.1

ANT Message Protocol
and Usage

Page 2 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Copyright Information and Usage Notice

This information disclosed herein is the exclusive property of Dynastream Innovations Inc. No part of this publication may

be reproduced or transmitted in any form or by any means including electronic storage, reproduction, execution or

transmission without the prior written consent of Dynastream Innovations Inc. The recipient of this document by its

retention and use agrees to respect the copyright of the information contained herein.

The information contained in this document is subject to change without notice and should not be construed as a

commitment by Dynastream Innovations Inc. unless such commitment is expressly given in a covering document.

The Dynastream Innovations Inc. ANT Products described by the information in this document are not designed, intended,

or authorized for use as components in systems intended for surgical implant into the body, or other applications intended

to support or sustain life, or for any other application in which the failure of the Dynastream product could create a situation

where personal injury or death may occur. If you use the Products for such unintended and unauthorized applications, you

do so at your own risk and you shall indemnify and hold Dynastream and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly

or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim

alleges that Dynastream was negligent regarding the design or manufacture of the Product.

©2014 Dynastream Innovations Inc. All Rights Reserved.

ANT Message Protocol and Usage, Rev 5.1 Page 3 of 134

 thisisant.com

Revision History

Revision Effective Date Description

4.3 June 2011 Updated formatting, Added section 8.2.1, Added extended messaging

4.4 October 2011 Added Channel Search Priority, Added section 9.4.3

4.5 November 2011 Changes to channel status byte

5.0 January 2013

Revisions to add new nRF51 and ANTUSB-m feature information:

- Advanced Burst Transfer

- Single Channel Encryption

- Event Buffering

- Event Filtering

- Fast Channel Initiation

- Asynchronous Transmission

- High Duty Search

- Selective Data Updates

Condensed section 2 The ANT Product Family, and updated the document

template.

5.1 April 2014 Added encryption capability bit to Capabilities message (0x54)

Added Search Waveform

Added Channel Search Sharing

Page 4 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Table of Contents

1 Introduction ... 8

2 The ANT Product Family .. 9

3 Network Topologies .. 10

4 ANT Nodes ... 12

5 ANT Channels .. 13

5.1 Channel Communication ... 13

5.2 Channel Configuration .. 14

5.2.1 Channel Type ... 15

5.2.2 RF Frequency ... 17

5.2.3 Channel ID .. 17

5.2.4 Channel Period ... 18

5.2.5 Network ... 19

5.2.6 Example Channel Configuration .. 20

5.3 Establishing a channel .. 21

5.4 ANT Data Types ... 22

5.4.1 Broadcast Data .. 22

5.4.2 Acknowledged Data .. 23

5.4.3 Burst Data ... 23

5.4.4 Advanced Burst Data .. 24

5.4.5 Summary of Data Types ... 24

5.5 Independent Channels .. 25

5.5.1 ANT Single Channel Encryption ... 25

5.6 Shared Channels .. 26

5.7 Continuous Scanning Mode ... 27

6 Device Pairing .. 29

6.1 Pairing Example .. 30

6.2 Inclusion/Exclusion Lists ... 31

6.3 White/Blacklists used with Single Channel Encryption ... 31

6.4 Proximity Search .. 31

7 ANT Interface .. 34

7.1 Message Structure .. 34

7.1.1 Extended Messages Format .. 34

7.2 Host MCU Serial Interface – Physical Layer .. 37

7.3 Host PC Serial Interface .. 37

7.4 Interface to SoC ... 38

7.5 Mobile Devices Interface to ANT.. 38

8 Example ANT Network Implementation ... 39

8.1 Implementation using Independent Channels .. 40

ANT Message Protocol and Usage, Rev 5.1 Page 5 of 134

 thisisant.com

8.1.1 Channel between Node B and Node A ... 42

8.1.2 Channel between Node C and Node A ... 43

8.1.3 Channel between Node D and Node A ... 43

8.2 Implementation using Shared Channels ... 44

8.2.1 Shared Channel Transmission Type ... 48

9 Appendix A – ANT Message Details ... 49

9.1 ANT Messages .. 49

9.1.1 Configuration Messages .. 49

9.1.2 Notifications ... 49

9.1.3 Control Messages ... 49

9.1.4 Data Messages ... 49

9.1.5 Channel Event/Response Messages ... 49

9.1.6 Requested Response Messages ... 49

9.1.7 Test Mode.. 49

9.2 ANT Message Structure - Notes ... 49

9.3 ANT Message Summary .. 50

9.4 ANT Product Capabilities ... 57

9.4.1 Interface .. 57

9.4.2 Events ... 60

9.4.3 Output Power Level Settings ... 62

9.5 ANT Message Details .. 63

9.5.1 ANT Constants ... 63

9.5.2 Configuration Messages .. 64

9.5.3 Notifications ... 93

9.5.4 Control Messages ... 94

9.5.5 Data Messages ... 97

9.5.6 Channel Response / Event Messages .. 115

9.5.7 Requested Response Messages .. 120

9.5.8 Test Mode... 127

9.5.9 Extended Data Messages ... 128

9.5.10 PC Functional Interface Configuration .. 133

Page 6 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

List of Figures

Figure 1-1. ANT Layers in Standard ANT/HOST and System On Chip Devices .. 8

Figure 3-1. Example ANT networks ... 10

Figure 3-2. A simple ANT network ... 11

Figure 4-1. Contents of an ANT node .. 12

Figure 5-1. Channel communication between two ANT nodes ... 13

Figure 5-2. Channel communication showing forward and reverse directions. Not to scale. 14

Figure 5-3. Process to establish a channel between master and slave nodes. .. 21

Figure 5-4. Independent and 1 or 2-byte shared channel data payloads. .. 26

Figure 5-5. Example Shared Channel. .. 27

Figure 6-1. Example ANT network for use in device pairing .. 30

Figure 6-2. (a) Standard search (b) proximity search, showing bins 1-5 (of maximum 10). 32

Figure 6-3. Varying proximity thresholds. .. 32

Figure 7-1. ANT serial message structure .. 34

Figure 7-2. Extended Data Messages, Flagged and Legacy Formats. ... 35

Figure 7-3. RSSI extended messaging ... 36

Figure 7-4. Timestamp extended messaging .. 37

Figure 7-5. All fields enabled ... 37

Figure 7-6. Channel ID and Rx timestamp enabled .. 37

Figure 7-7. RSSI and Rx timestamp enabled .. 37

Figure 8-1. Example ANT network for implementation.. 39

Figure 8-2. Node A & B Channel Establishment .. 42

Figure 8-3. Node C & A Channel Establishment .. 43

Figure 8-4. Shared channel implementation of sample network .. 44

Figure 8-5. Shared Channel Example ... 46

Figure 8-6. Slave Node C and D shared channel configuration .. 47

Figure 9-1. Broadcast data sequence diagram .. 100

Figure 9-2. Acknowledged data sequence diagram.. 104

Figure 9-3. Burst transfer sequence diagram .. 108

Figure 9-4. Advanced Burst Transfer Sequence Diagram ... 114

ANT Message Protocol and Usage, Rev 5.1 Page 7 of 134

 thisisant.com

List of Tables

Table 3-1. Master/slave status of Figure 3-2 channels .. 11

Table 5-1. ANT channel types ... 15

Table 5-2. Transmission Type Bit Field .. 18

Table 5-3. Example channel configuration ... 20

Table 5-4. ANT data types .. 24

Table 7-1. ANT serial message components .. 34

Table 8-1. Channel between Node B and Node A where Node B will be the master 40

Table 8-2. Channel between Node C and Node A where Node C will be the master 40

Table 8-3. Channel between Node D and Node A where Node D will be the master 41

Table 8-4. Example shared channel node configuration. ... 45

List of Equations

Equation 5-1. Channel RF frequency ... 17

Equation 5-2. Channel period .. 19

Page 8 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

1 Introduction

ANT™ is a practical wireless sensor network protocol running in the 2.4 GHz ISM band. Designed for ultra-low power, ease

of use, efficiency and scalability, ANT easily handles peer-to-peer, star, connected star, tree and fixed mesh topologies. ANT

provides reliable data communications, flexible and adaptive network operation and cross-talk immunity. ANT protocol stack

is extremely compact, requiring minimal microcontroller resources and considerably reduces system costs.

ANT provides carefree handling of the Physical, Network and Transport OSI layers. In addition, it incorporates key low-level

security features that form the foundation for user-defined sophisticated network security implementations. ANT ensures

adequate user control while considerably lightening computational burden in providing a simple yet effective wireless

networking solution.

Figure 1-1. ANT Layers in Standard ANT/HOST and System on Chip Devices

The interface between ANT and the Host application has been designed with the utmost simplicity in mind such that ANT

can be easily and quickly implemented into new devices and applications. The encapsulation of the wireless protocol

complexity within the ANT chipset vastly reduces the burden on the application host controller, allowing a low-cost 4-bit or

8-bit Microcontroller (MCU) to establish and maintain complex wireless networks. Data transfers can be scheduled in a

deterministic or ad-hoc fashion. A burst mode allows for the efficient transfer of large amounts of stored data to and from a

PC or other computing device.

A typical ANT-enabled device consists of an application host MCU interfaced with an ANT module, chipset or chip. The host

MCU establishes and maintains a communication session to other remote ANT-enabled devices by means of a simple,

bidirectional, serial message protocol. This document details the protocol and provides examples of how to use ANT for

wireless networking.

ANT Message Protocol and Usage, Rev 5.1 Page 9 of 134

 thisisant.com

2 The ANT Product Family

ANT technology has been incorporated into a family of products that allows a particular implementation to be scaled to suit

the needs of the application and the vision of the product designer. Details of the available ANT chips, chipsets, modules,

USB sticks etc. are available online at www.thisisant.com/developer/components. In addition, a range of software tools and

comprehensive documentation have been provided for developers (www.thisisant.com/developer). Technical support is

available via the ANT forum.

http://www.thisisant.com/developer/components
http://www.thisisant.com/developer

Page 10 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

3 Network Topologies

The ANT protocol has been designed from the ground up to support a large range of scalable network topologies. It can be

as simple as a 2-node unidirectional connection between a transmitting peripheral device and a receiver, or as complex as a

multi-transceiver system with full point-to-multipoint communication capabilities.

Figure 3-1. Example ANT networks

1 12

2 11

3 10

4 9

5 8

6 7

M

PEER

TO

PEER

STAR

PRACTICAL MESH

SHARED

BI-DIRECTIONAL

8 7 6

9

10

11

12

13

14 15 16

5

4

3

2

1

SCANNING MODE

ANT-FS

(Secure Authenticated)

1 12

2 11

3 10

4 9

? 8

6 7

M

AD-HOC

AUTO

SHARED

1 12

2 11

3 10

4 9

5 8

6 7

M

SHARED

UNI-DIRECTIONAL

n

Bidirectional

Acknowledged

BROADCAST

SHARED CLUSTER
Sensor

Hub

Relay

ANT Message Protocol and Usage, Rev 5.1 Page 11 of 134

 thisisant.com

For the purpose of illustration, a simple example follows to demonstrate the basic concept of ANT channels (Figure 3-2).

Figure 3-2. A simple ANT network

ANT usage and configuration is channel-based. Each ANT node (represented by a circle) can connect to other ANT nodes

via dedicated channels. Each channel generally connects two nodes together; however a single channel can connect

multiple nodes.

Each channel has, as a minimum, a single master and single slave participant. The master acts as the primary transmitter,

and the slave acts as the primary receiver. The large arrows in Figure 3-2 indicate the primary data flow from master to

slave; small arrows indicate reverse message flow (e.g. Channel B, C). A channel with a single arrow (e.g. Channel A) is

used to represent a one-way link, which supports the use of lower-power transmit-only nodes. Note that an ANT node can

act as both a slave (e.g. Hub1 channel A, B) and a master (e.g. Hub1 channel C) simultaneously.

Table 3-1 describes the master / slave status of each of the channels shown in Figure 3-2.

Table 3-1. Master/slave status of Figure 3-2 channels

Channel Master Slave

Channel A Sensor1 (TX-Only) Hub1 (RX)

Channel B Sensor2 (TX) Hub1 (RX)

Channel C Hub1 (TX) Hub2 (RX)

Sensor 1

Sensor 2

Hub 1 Hub 2

Channel A

Channel B

Channel C

Page 12 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

4 ANT Nodes

Each node in an ANT network consists of an ANT protocol engine and a host controller (MCU). The ANT engine encapsulates

the complexity of establishing and maintaining ANT connections and channel operation within its firmware. The host

controller is thus free to handle the particulars of an application with only a limited burden in initiating ANT communications

to other nodes, which it does via a simple serial interface between host and ANT engine, as shown in Figure 4-1.

Figure 4-1. Contents of an ANT node

Host

MCU

ANT

Engine

 Node

 Node

Serial

Interface

ANT Message Protocol and Usage, Rev 5.1 Page 13 of 134

 thisisant.com

5 ANT Channels

In this section, further details are presented about the ANT protocol’s most fundamental building block: the channel. As

previously discussed, a channel must be established to connect two nodes together.

Figure 5-1. Channel communication between two ANT nodes

A channel consists of:

1. A master (e.g. Node1)

2. A slave (e.g. Node2)

5.1 Channel Communication

Communication between ANT nodes takes place in different ways depending on several factors including: what channel type

is used; how that channel is configured; what data type is being sent; and which direction the data is sent in.

The majority of ANT implementations use synchronous, independent, bidirectional channels. When a master node opens a

synchronous channel, the master node will first open a search window to check that its transmission is not likely to interfere

with the transmission of another device, and will then transmit messages at the designated channel period (Tch). In other

words, once the channel is opened, a master device will always transmit a message on each channel timeslot as shown in

Figure 5-2. When using bidirectional channels, the master device keeps its radio receiver on for a short time after it has

transmitted each message. This allows the slave to optionally send data back to the master immediately after it has

received a message.

Host2

ANT2

Host1

ANT1

Node1 Node2

Node1 Node

2

Channel A

Channel A

Master Slave

Page 14 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Figure 5-2. Channel communication showing forward and reverse directions. Not to scale.

The available channel types are listed and described in section 5.2.1. Each channel type must also be configured with the

desired channel parameters (e.g. RF frequency, channel period and channel ID) and any additional features such as single

channel encryption.

The ANT data types determine the way that the data will be sent between the two nodes of an ANT channel and are

described in section 5.4. There are four data types: broadcast, acknowledged, burst and advanced burst message transfers.

Each time the host application sends a data message to ANT for transmission, it specifies the data type along with the

message data. Details on the host to ANT interface and messaging will be described in later sections.

Data messages are transferred between nodes in one of two directions:

1. Forward Direction (Master -> Slave)

2. Reverse Direction (Slave -> Master)

All data types can be transmitted in both directions, except across transmit/receive only channels.

5.2 Channel Configuration

In order for two ANT devices to communicate, they require a common channel configuration that includes information

related to the operating parameters of a channel. The following information is required to define a channel configuration.

 Channel Type (section 5.2.1)

o Optional Extended Assignment (section 5.2.1.4)

 RF Frequency (section 5.2.2)

 Channel ID (section 5.2.3)

o Transmission Type (section 5.2.3.1)

o Device Type (section 5.2.3.2)

o Device Number (section 5.2.3.3)

 Channel Period (section 5.2.4)

 Network (section 5.2.5)

Although the configuration of a specific channel can remain constant throughout its connection, most parameters may be

changed while the channel is open. Also, it should be noted that a master can maintain multiple channels that differ in

terms of channel configuration parameters. Further information on which channel parameters must be set prior to opening a

channel, may or may not be changed during an open channel, and resulting implications, can be found in section 5.3.

MASTER

SLAVE

Tch TchTch

time

time

Forward
Direction

Reverse
DirectionChannel Timeslot

(Always) (Optional)

ANT Message Protocol and Usage, Rev 5.1 Page 15 of 134

 thisisant.com

5.2.1 Channel Type

Channel type specifies the type of communication that will occur on the channel. It is an 8-bit field with certain acceptable

values in the range of 0 to 255. The channel type must be specified prior to opening and establishing a channel. Some

common channel types are given in Table 5-1.

Table 5-1. ANT channel types

Value Description

0x00 Bidirectional Slave Channel

0x10 Bidirectional Master Channel

0x20 Shared Bidirectional Slave Channel

0x30 Shared Bidirectional Master Channel

0x40 Slave Receive Only Channel (diagnostic)

0x50 Master Transmit Only Channel (legacy)

5.2.1.1 Bidirectional Channel

For a bidirectional channel type, data can flow in both the forward and reverse directions. The primary direction data flow is

determined by the node specified. For example, if a node establishes a bidirectional slave channel type, it will primarily

receive but can still transmit in the reverse direction. Similarly, the master node will primarily transmit data in the forward

direction but can also receive in the reverse direction. Please refer to section 5.1 for more information on the concept of

forward and reverse data flow.

5.2.1.2 Shared Bidirectional Channel

Shared channels expand on the basic bidirectional channel types. Shared channels can be used where a single ANT node

must receive, and possibly process, data from many nodes. In this scenario, multiple nodes will share a single independent

channel to communicate with the central node. An example of a shared channel network is provided in Figure 5-5. Refer to

sections 5.5 and 5.6 for more information regarding independent and shared channels respectively.

5.2.1.3 Transmit/Receive Only Channel

Transmit/receive only channels can only send data in the forward direction. In other words, the master cannot receive data

from any slave. Similarly, the slave can only receive data, the slave cannot send data. As such, this channel type can only

use the broadcast data type (described in section 5.3) and should not be used if the application requires any form of

confirmation or acknowledgement of the successful receipt of data. The transmit/receive only channel type exists for legacy

support and is not recommended for general use as it also disables the ANT channel management mechanisms. Receive

only channels are recommended for diagnostic applications using continuous scan mode.

5.2.1.4 Channel Extended Assignment

The optional extended assignment byte allows various ANT features to be enabled. Currently, these features are frequency

agility, background scanning, fast channel initiation, and asynchronous transmission. The extended assignment byte is not

available on all ANT devices; please refer to datasheets for more details.

5.2.1.4.1 Frequency Agility

Similar to frequency hopping schemes, ANT frequency agility allows a channel to change its operating frequency to improve

coexistence with other wireless devices such as Wi-Fi. However, unlike frequency hopping, this functionality will monitor the

channel’s performance and only change operating frequencies when significant degradation is observed. Both the master

and the slave must be configured with frequency agility enabled, and have the same three operating frequencies set.

For more information refer to the “ANT Frequency Agility” application note. This application note also explains how to

implement frequency agility at the application level for those ANT devices that do not have frequency agility as a built in

feature.

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 16 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

5.2.1.4.2 Background Scanning

A receive channel configured for background scanning performs a continuous search operation. As with standard ANT

search, it can be performed in either high or low priority modes. Only one channel configured for background scanning

should be open at a time on a single device. For more information refer to the “ANT Channel Search and Background

Scanning” application note.

If other channels are open, it is recommended that the background scanning search timeouts are configured for low priority

search mode. This will ensure that the background scanning search mechanism does not interfere with any other channels

operating on the device.

Background scanning can also be used in conjunction with proximity search. See section 6.2 for more details.

5.2.1.4.3 Fast Channel Initiation

Opening a channel that is configured for fast channel initiation will start a synchronous channel as soon as possible and will

skip the search window check that is otherwise performed prior to starting a synchronous channel. This allows for channels

to reduce the latency between the open command and transmission. This function is useful in scenarios where the device

opens a channel for brief periods of time and requires a low latency at start up e.g. control applications.

Configuring a channel for fast channel initiation is achieved in a similar way to configuring other channel features. The fast

channel initiation attribute is assigned using bit 4 of the extended assignment field of the assign channel message.

Data sent from this channel should not block currently active synchronous channels. If another active channel is currently

transmitting a message (broadcast, acknowledge or burst), then the fast channel will attempt to send data as soon as the

other channel has released the radio. This will result in some start up latency.

Fast channel initiation is not recommended for use in group environments. This is because skipping the search window

check, increases the risk that the new channel will transmit at the same time as an existing device and cause interference

between the two devices.

5.2.1.4.4 Asynchronous Transmission

The purpose of asynchronous transmission is to transmit data over-the-air only when required by the application. This is in

contrast to normal master devices that transmit data at regular channel periods. This type of channel is useful for remote

control type of applications where it is beneficial to send data immediately after a user generated event, such as a button

push. It is recommended that a channel configured for asynchronous transmission should be paired with a channel opened

in continuous scanning mode on the receiving end (section 5.7). As such asynchronous transmission is appropriate for use

cases where the receiving end has system power available to support the power requirement for continuous scanning. As

asynchronous transmissions only occur when there is new data to send, transmitting devices can sleep for extended periods

of time, drastically reducing power consumption. This channel configuration is not appropriate for applications that require

streaming data or low power on both sides of the link.

To configure a channel for asynchronous transmission, the asynchronous attribute is assigned using bit 5 of the extended

assignment field of the assign channel message. In contrast to other channel configurations, a channel using asynchronous

transmission does not need to be opened and no channel period needs to be set. Once the channel is assigned any data

messages pushed to the channel will be sent over the air as soon as a free transmission interval is available using the

assigned RF frequency and network key. All three data types (broadcast, acknowledged and burst) are supported.

Asynchronous data will not block currently active synchronous channels unless the transmission on the asynchronous

channel is a burst. This may result in latency sending data out after a data message is received. Sending data to a channel

set up for asynchronous transmission should not disrupt a burst already in progress on another channel.

http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab

ANT Message Protocol and Usage, Rev 5.1 Page 17 of 134

 thisisant.com

5.2.2 RF Frequency

ANT technology supports the use of any of the available 125 unique RF operating frequencies. When assigning frequencies,

it is important to check for compliance with international standard frequencies. A channel will operate on a single frequency

throughout its existence, unless manually changed by the controlling application. The channel frequency must be known

and adhered to by both master and slave prior to the establishment of a channel. After the channel has been established,

the RF frequency can be changed “on the fly” (i.e. while the channel is open); however, the new frequency must be set at

both the master and the slave nodes. Note that this can result in the slave node returning to search mode until it finds, and

synchronizes with, the master.

The RF frequency is an 8-bit field with acceptable values ranging from 0 to 124. This value represents the offset in 1MHz

increments from 2400MHz, with the maximum frequency being 2524MHz. Equation 5-1 can be used to determine the value

for the RF frequency field.

Equation 5-1. Channel RF frequency

For example, if a network operating frequency of 2450MHz was desired, the RF frequency field will be set as 50.

The default RF frequency field value is 66 and represents the network operating frequency of 2466MHz.

It is important to note that it is not necessary to use different RF frequencies to support multiple coexisting channels. The

TDMA nature of the ANT system means that a large number of channels can coexist on a single common RF frequency. It is

the product developer’s responsibility to ensure that RF frequencies used will comply with the regulations of all regions of

the world in which this equipment is to be used.

Note that some RF channels are assigned and regulated by the ANT+ Alliance to maintain network integrity and

interoperability. A large number of ANT+ devices can be found on RF channels 2450 MHz and 2457 MHz and should be

avoided by non-ANT+ devices.

5.2.3 Channel ID

The most basic descriptor of a channel, and one that is crucial in device pairing, is the channel ID. In order to establish an

ANT channel, the host must specify its channel ID (if master), or the channel ID it wishes to search for (if slave). It’s a 4-

byte value that contains 3 fields – Transmission Type, Device Type (including pairing bit) and Device Number. For a private

or a public network, these three fields can be user defined. Typically, the device type is a number that represents the class

(or type) of the master device. The device number is a unique number representing a specific master device. The

transmission type is a number that represents the different transmission characteristics of a device, which can be

determined by manufacturer or pre-defined in an ANT+ (or any) managed network.

Only devices with matching channel IDs can communicate with each other. The channel ID represents the device

type/number and transmission type of the master device and must be specified on the master device. On a slave device,

these fields are set to determine which master device to communicate with. They can be set to match a specific master, or

any/all of these fields can be set to zero, representing a wildcard value, such that the slave will find the first master

matching other channel parameters (network key, frequency).

The channel ID may be changed at any time. However caution must be taken to ensure that wildcards are not used when

changing a channel ID while a channel is open.

The three types are described in more detail in the following sections.

5.2.3.1 Transmission Type

The transmission type is an 8-bit field used to define certain transmission characteristics of a device. Specifically, the two

least significant bits of the transmission type are used to indicate the presence, and size, of a shared address field at the

MHz

MHzMHzFrequencyRFDesired
valFrequencyRF

1

2400)(__
__




Page 18 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

beginning of the data payload, and the third least significant bit (LSB) is used to indicate the presence of a Global Data

Identification Byte (such as ANT+ page numbers). For details on shared channels refer to section 8.2

The most significant nibble may optionally be used to extend the device number from 16 bits to 20 bits. In this case, the

transmission type most significant nibble becomes the most significant nibble of the 20 bit device number.

This parameter must be specified on a master device; however, it can be set to zero (wildcard) on a slave device.

On private and public networks, the transmission type can be defined as desired; however the lower 2 bits still represent

the shared address. On ANT+ managed networks (i.e. the ANT+ and ANT-FS networks) the following definitions apply:

Table 5-2. Transmission Type Bit Field

Bits Description

0-1

00: Reserved

01: Independent Channel

10: Shared Channel using 1 byte address (if supported)

11: Shared Channel using 2 byte address

2

Optional for non-ANT+ managed networks:

0: Global data pages not used

1: Global data pages used (e.g. ANT+ Common Data

pages)

3 Undefined – set to zero.

4-7 Optional extension of the device number (MSN)

5.2.3.2 Device Type (including Pairing Bit)

The device type is an 8-bit field used to denote the type (or class) of each participating network device. This field is used to

differentiate between multiple nodes of network devices such that participants are aware of the various classes of

connected nodes and can decode the received data accordingly. For example, one device type value could be assigned to

heart rate monitors, which will be different to the value assigned to bike speed sensors, and their respective data payloads

will be interpreted accordingly.

Please note that the most significant bit of the Device Type is a device pairing bit. Refer to section 6, and the “Device

Pairing” application note for more information on device pairing.

This parameter must be specified on a master device; however, it can be set to zero (wildcard) on a slave device. For

private networks, the device type can be defined as desired. Specific implementation-level information about channel ID

usage is provided in the channel ID functional description in section 9.5.2.3.

5.2.3.3 Device Number

The device number is a 16-bit field that is meant to be unique for a given device type. Typically, this may be correlated to

the serial number of the device, or it could be a random number generated by the device if the process of setting serial

numbers for a particular product is unavailable. This parameter must be specified on a master device, i.e. it cannot be set to

zero. In a slave device, this field may also be used as a wild card during device pairing as described in the previous section.

The channel ID functional description is located in section 9.5.2.3. Please note that the device number should not be set to

0x0000 or 0xFFFF as these are reserved values, particularly if the device number is derived from the serial number.

5.2.4 Channel Period

The channel period represents the basic message rate of data packets sent by the master. By default, a broadcast data

packet will be sent (master) and received (slave), on every timeslot at this rate. The channel message rate can range from

0.5Hz to above 200Hz, with the upper limit dependant on the specific implementation.

http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab

ANT Message Protocol and Usage, Rev 5.1 Page 19 of 134

 thisisant.com

)(

32768
__

HzeMessageRat
valPeriodChannel 

The channel period is a 16-bit field with its value determined by Equation 5-2.

Equation 5-2. Channel period

For example, to have a message rate of 4Hz on a channel, the channel period value must be set to 32768 / 4 = 8192.

The default message rate is 4Hz, which is chosen to provide robust performance as described below. It is recommended

that the message rate be left at the default to provide more readily discoverable networks with good power and latency

characteristics.

The maximum message rate (or the minimum channel period) depends on the computational capacity of the system. High

data rates in combination with multiple active channels will substantially limit the maximum message rate.

Bursting, which is described in the following section, can achieve a data rate of 20kbps. This is independent of the message

rate. In other words, the message rate will affect the time between whole burst transfers, but does not affect the actual

rate of bursting.

Proper assignment of channel period is critical and it is imperative to be mindful of the following issues:

 The message rate is directly proportional to the power consumption. Please see respective ANT product datasheet

for details.

 A small channel period allows for higher data-transfer rates.

 A small channel period results in faster successful device-search operations.

5.2.5 Network

ANT supports the establishment of numerous unique public, managed and private networks. A particular network may

specify a set of operating rules for all participating nodes. In order for two ANT devices to communicate, they must be

members of the same network. This provides the ability to establish a network that can be publicly available, or purposely

shared among multiple vendors with the goal of establishing an ‘open’ system of interoperable devices.

A managed network defines rules and specific behaviours governing its use. An example of a managed network is the ANT+

network. Those companies who have adopted the ANT+ promise of interoperability are members of the ANT+ Alliance, a

special interest group which fosters optimized brand value and partnerships with other top tier products. The key advantage

of this unique managed network is device specific interoperability which enables wireless communication with other ANT+

products. Target applications include any wireless sensor monitoring of sport, wellness or home health.

ANT+ has device profiles that specify data formats, channel parameters and the network key. Examples of ANT+ Device

Profiles include:

 Heart rate monitor

 Speed and distance monitors

 Bike speed and cadence sensors

 Bike power sensor

 Weight scale (for example, tracking BMI and percent body fat)

Page 20 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

 Fitness equipment data sensors

 Temperature sensor

Conversely, a private network could be defined to ensure network privacy and restrict access to intended participating

devices only. Channels can be independently assigned to different networks so that it is possible for a single ANT device to

be a member of multiple networks.

The ANT Network has two components which are described below.

5.2.5.1 Network Number

A network number is an 8-bit field that identifies the available networks on an ANT device, with acceptable values ranging

from 0 to the maximum number defined by the ANT implementation. The host can obtain this maximum number by

querying the ANT system using the appropriate request message (refer to section 9 for more details). The default network

number is 0. Network number 0 is assigned to the “Public Network” by default. For AP1 devices, the remaining network

numbers are left un-initialized; however, for non-AP1 devices all network numbers typically default to the public network

key.

The network number will be assigned a network key using the Set Network Key (0x46) message (refer to section 9.5.2.7),

and any individual channel assigned to a network number will use the associated 8-byte network key. Multiple channels can

be assigned to the same network number, so a network key can be used in multiple channels without having to enter the

key multiple times.

5.2.5.2 Network Key

The network key is an 8-byte number that uniquely identifies a network and can provide a measure of security and access

control. The network key is configurable by the host application and a particular network number will have a corresponding

network key. Only channels with identical valid network keys may communicate with each other. Also, only valid network

keys will be accepted by ANT. If a Set Network Key (0x46) command is sent with an invalid key, the network key will not be

changed; it will retain the value it held prior to the command.

The network number and the network key together provide the ability to deploy a network with varied levels of access

control and security options. By default, ANT firmware assigns the network number 0 with the default public network key.

This network is open to all participating devices and has no set rules governing its use.

For more information on established public/managed networks or initiating your own network, please contact Dynastream at

www.thisisant.com.

5.2.6 Example Channel Configuration

An example channel configuration for a simple application is given in Table 5-3.

Table 5-3. Example channel configuration

Parameter Value Description

Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 1 Sample Serial Number

Transmission Type 1 Transmission Type (no shared address)

Device Type 1 Sample Device Type

Channel Type 0x10 Bidirectional Transmit Channel

Channel Period 16384 2Hz Message Rate

Data Type 0x4E Broadcast

Note the network number is set to ‘0’; this is the default network number for the public network key.

http://www.thisisant.com/

ANT Message Protocol and Usage, Rev 5.1 Page 21 of 134

 thisisant.com

5.3 Establishing a channel

The prerequisite for establishing a channel is that the master and slave must have common knowledge of the channel

configuration as outlined in section 5.2. Figure 5-3 illustrates the process required to properly establish communication

between two ANT nodes. Certain channel parameters (within solid lines) have no default value and must be set by the

application, while other parameters (within dashed lines) do have defaults and only require setting if a different value is

desired.

Figure 5-3. Process to establish a channel between master and slave nodes.

The default network configuration is the public network key, assigned to network number 0. If a private or managed

network is desired, the appropriate network key must be assigned to a network number, which can then be assigned to a

channel. Refer to section 9.5.2.7 Set Network Key (0x46) for details.

After (optionally) setting the network key, the channel type must be assigned to the channel you wish to open. For

example, the master node will need to be assigned one of the transmit channel types, and the slave node assigned a

corresponding receive channel type. Once the assign channel command has been sent, most other channel

Assign Channel
Type: 0x10,0x30 or 0x50

Set Channel ID
Device #

Device type
Trans’ type

Set Channel Period
“8192” (4Hz)

Set RF Frequency
“66” (2466MHz)

Set Network Key
Network #: 0
Key: public

Open Channel

Set Tx Power
“3” (0bDm)

Assign Channel
Type: 0x00,0x20 or 0x40

Set Channel ID
Device # or “0”

Device type or “0”
Trans’ type or “0”

Set Channel Period
“8192” (4Hz)

Set RF Frequency
“66” (2466MHz)

Set Network Key
Network #: 0
Key: public

Open Channel

Set Tx Power
“3” (0bDm)

Set Search timeouts
HP: “10” (25s)

LP: “2” (5s)

MASTER SLAVE

Assign Channel
Type: 0x10,0x30 or 0x50

Set Channel ID
Device #

Device type
Trans’ type

Set Channel Period
“8192” (4Hz)

Set RF Frequency
“66” (2466MHz)

Set Network Key
Network #: 0
Key: public

Open Channel

Set Tx Power
“3” (0bDm)

Assign Channel
Type: 0x00,0x20 or 0x40

Set Channel ID
Device # or “0”

Device type or “0”
Trans’ type or “0”

Set Channel Period
“8192” (4Hz)

Set RF Frequency
“66” (2466MHz)

Set Network Key
Network #: 0
Key: public

Open Channel

Set Tx Power
“3” (0bDm)

Set Search timeouts
HP: “10” (25s)

LP: “2” (5s)

MASTER SLAVE

Page 22 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

parameters will return to their default values (RF Frequency, Channel Period, Set Tx Power, Set Search

Timeouts). Refer to section 9.5.2.2 Assign Channel (0x42).

Next, the Channel ID must also be set. The device number/type and transmission type must be specified on the master

node. The slave can set all, some or none of these fields to match those of the master depending on the application. Any

field that does not match that of the master should be set to a wildcard value of zero. Refer to section 9.5.2.3 Set Channel

ID (0x51).

If desired, other channel parameters such as RF frequency (section 9.5.2.6), Channel period (section 9.5.2.4), the yet to be

discussed Tx power (section 9.5.2.8), and search timeouts (sections 9.5.2.5 & 9.5.2.15) can also be set, but are not

required.

The final step is to open the channel (section 9.5.4.2). Once opened, the master establishes the channel by transmitting 8-

byte data packets in the designated timeslot at the established message rate. The master ANT channel will be maintained

indefinitely at this message rate. The channel master’s host controller will optionally provide new data to the ANT engine for

continuing transmissions.

The slave on the other hand, will immediately start searching for a master that matches the channel ID criteria. Once the

master has been located, and a connection established, the slave receives data indefinitely at the given message rate. If no

master is found within the given timeout periods, then the slave channel will close. As the master never searches, no

timeout values need to be set. The master will transmit until the channel is specifically closed by the application.

5.4 ANT Data Types

There are four data types supported by ANT: broadcast, acknowledged, burst and advanced burst data. Each data type is

sent in 8 byte packets over the RF channel. The data type is not a channel configuration parameter and a bi-directional ANT

channel is not restricted to a single data type. In other words, any of the four data types can be sent in either the forward

or reverse direction, at the channel’s designated timeslot, at the discretion of the host. The only restriction is for

unidirectional channels, which can only send broadcast data in the forward direction.

5.4.1 Broadcast Data

Broadcast data is the most basic data type and is the system default. Broadcast data is sent from the channel master to the

slave on every channel timeslot. Broadcast data is only sent from the slave to the master in the reverse direction if

expressly requested by the slave’s Host MCU (by default, no data is sent without a request).

A master device is always transmitting in the forward direction, at every timeslot. As stated earlier, the broadcast data type

is the system default. If no new data has been provided by the host, the previous message packet, whether it was sent

broadcast or otherwise, will be re-transmitted as a broadcast message. Messages in the reverse direction, on the other

hand, are not required on each channel period. As such, broadcast messages are only sent in the reverse direction once.

Broadcast data is never acknowledged, so the originating node will not be aware of any lost data packets. In the case of a

one-way transmission link (i.e. transmit-only master communicating to a slave), broadcast data is the only available data

type due to the inability of the master to receive an acknowledgement.

Broadcast data consumes the least amount of RF bandwidth and system power. It is the preferred choice of communication

where occasional data loss is tolerated (although it should be noted that any data loss will be very limited in most non-

hostile RF environments). An example system where occasional data loss is not critical is that of a temperature logging

system, where changes in temperature are relatively slow compared to the communications message rate.

ANT Message Protocol and Usage, Rev 5.1 Page 23 of 134

 thisisant.com

5.4.2 Acknowledged Data

At any time during an established bidirectional connection, in either the forward or reverse direction, a device can choose to

send an acknowledged data packet at the next timeslot. The node that receives the acknowledged data packet will respond

with an acknowledgment message back to the originating device. The host controller of the originating device will be

notified of that packet’s success or failure, therefore knowing that the packet transmitted successfully. There is no

automatic re-transmission of unacknowledged data packets.

The master host application may send every data packet as acknowledged data, or may mix broadcast and acknowledged

data as appropriate to the particular application. To decide which is more appropriate, the following should be taken into

consideration:

 Acknowledged data packets use more RF bandwidth and consume more power, which should be taken into

consideration when designing power-sensitive applications.

 Acknowledged data is ideally suited for the transmission of control data, ensuring that both nodes are aware of

each other’s state.

For a master device, if the data type isn’t specified as acknowledged or, if an acknowledged message was sent and no new

data provided before the next transmit time slot; the message is sent as Broadcast data type on the next channel time slot.

5.4.3 Burst Data

Burst data transmission provides a mechanism for large amounts of data to be sent between devices. Burst transfers consist

of a rapid series of continuous acknowledged data messages. The rate at which packets are burst across the channel is

independent of, and significantly faster than, the channel period; resulting in a maximum 20kbps data throughput. It should

be noted that this also means the burst packets are synchronized relative to each other, instead of to the regular channel

period.

Similar to acknowledged messages, the originating host’s MCU will be informed of the burst transfer’s success or failure.

However, the success/failure notification is for the entire burst transfer rather than for each packet and, unlike

acknowledged messages, any lost data packets in the transfer will be automatically retried. Should any packet fail to

transmit successfully after five retries, ANT will abort the burst transfer and notify the host MCU with a failure message.

When a single packet burst is sent, it behaves identically to an acknowledged message, and there are no retries associated

with a single packet burst.

There is no limit on the duration of a burst transaction. However, burst transactions take precedence over all other open

channels on both participating nodes. If there are other channels in the system, care should be taken to service them with

reasonable frequency. Although the ANT protocol is robust and can handle outages caused by burst transfers or other

external interference, excessive channel starvation may lead to loss of synchronization or data. An example of this is:

During a prolonged burst, as the packets are synchronized off each other, clock errors may cause the regular channel

periods to drift, potentially losing synchronization. Once the burst completes, the channels are no longer synchronized and

the slave drops into search.

Another extreme example of this would be if the master node of one channel was servicing a prolonged burst on another

channel; if the burst duration was too long, the slave node of the former channel could lose synchronization, drop back into

a search and timeout (closing the channel).

Bursting can create interference for other devices that are operating at the same RF frequency.

For more information on burst transfers please refer to the “Burst Transfers” application note.

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 24 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

5.4.4 Advanced Burst Data

Some ANT devices also support advanced burst transfer (as listed in section 9.4), which increases the maximum data

throughput to 60kbps. Advanced burst effectively increases data throughput on burst transfers of 24 bytes or greater. For

smaller bursts it is recommended to use standard burst data messages. Advanced burst transfer is described in section

9.5.5.4.

5.4.5 Summary of Data Types

Further details and sequence diagrams related to all data types are provided in section 9.5.5. The host application software

on both the master and slave sides should be implemented to expect common data types (i.e. broadcast vs. acknowledged

vs. burst) to be utilized as appropriate for a particular application. The specific format of the contents of the data payload

must be previously established by both host controllers such that data can be properly decoded and interpreted.

Table 5-4. ANT data types

Data Type
Channel

Direction
Description

Broadcast

Forward

Default Data Type.

Broadcast messages sent every timeslot (unless otherwise requested)

and will be retransmitted if ANT has not received any new data from

the master’s host MCU

Reverse

Broadcast messages optionally sent each channel timeslot.

Only sent if specifically requested by the slave’s host MCU. The

message will be sent immediately after a message is received from the

master i.e. it cannot be sent if no message is received.

Sent only once, there is no retransmission

Acknowledged

Forward

If requested, sent on the next channel timeslot

If the data type isn’t specified as Acknowledged or if no new data is

provided before the next transmit time slot, the message is resent as

Broadcast data type on the next channel time slot

Reverse

Acknowledged data types only sent when specifically requested by the

slave’s host MCU. The message will be sent immediately after a

message is received from the master i.e. it cannot be sent if no

message is received.

Sent only once, there is no retransmission

Burst

Forward

A burst transfer will commence at start of the next timeslot.

Bursts packets synchronize off each other. The last packet of the burst

will be retransmitted on the next channel period if ANT has not

received any new data from the master’s host MCU

Reverse

Burst data types only sent when specifically requested by the slave’s

host MCU. The message will be sent immediately after a message is

received from the master i.e. it cannot be sent if no message is

received. Not re-transmitted

Advanced Burst

Forward

An advanced burst transfer will commence at start of the next timeslot.

Bursts packets synchronize off each other.

The first packet of the burst will be retransmitted on the next channel

period if ANT has not received any new data from the master’s host

MCU

Reverse

Burst data types only sent when specifically requested by the slave’s

host MCU. The message will be sent immediately after a message is

received from the master i.e. it cannot be sent if no message is

received. Not re-transmitted

ANT Message Protocol and Usage, Rev 5.1 Page 25 of 134

 thisisant.com

All data types can also be ‘extended’ such that the receiving node’s ANT will pass additional information, along with the

data, to the host. For more information see section 7.1.1.

5.5 Independent Channels

An independent channel has only one master and one slave. It is possible for the master or slave to be a master or slave to

another, or a number of other, nodes. However, from the point of view of an independent channel, there is only one of

each. For example, consider the four-node network in Figure 3-2. Each channel has only one master and one slave.

A broadcast network, shown in Figure 3-1, is also formed using independent channels even though the data from one

master is received by many slaves. Such a network has a unique master who doesn’t purposely initiate communication with

multiple slaves on the same channel. Note that the data in a broadcast network is predominantly sent in the forward

direction. This reduces the chance of multiple slaves simultaneously sending data to a single master. This is different from a

shared channel, which has a single master and multiple slaves; however, there is an addressing scheme that allows for data

flow in both directions (refer to section 5.6).

Although independent channels offer simplicity in implementation, a node can support a limited number of simultaneous

independent channels within the confines of the system’s computational ability. For example, the nRF24AP1 supports 4

independent channels.

For an implementation example using independent channels, refer to section 8.1.

5.5.1 ANT Single Channel Encryption

Single Channel Encryption can be enabled on one independent channel on supported devices; it cannot be applied to shared

channels. Encrypted channels help to both enable and simplify use cases which require secure over the air communication

e.g. medical devices, text communication, etc. Some ANT devices include single channel encryption as a feature that may

be assigned to a channel. In these devices, encryption is handled at the protocol level, reducing the burden on the

application layer.

Any number of ANT slaves may pair to an encrypted master channel. Once paired, devices that support ANT single channel

encryption can negotiate with the master. Successful negotiation will enable the slave to decrypt the messages it receives

from the master, and any future messages that the slave sends to the master will be sent as encrypted messages. Any

listening device that does not support encryption, or that fails negotiation, will not be able to decrypt the data.

Further information about how to use ANT single channel encryption is available in section 9.5.2.32.

Page 26 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

5.6 Shared Channels

Shared channels can be used where a single ANT node must receive, and possibly process, data from many nodes. In this

scenario, multiple nodes will share a single independent channel to communicate with the central node. An example of a

shared channel network is provided in Figure 5-5.

Shared channels are made possible by the use of a one- or two-byte Shared Channel Address field and a specific value for

the Channel Type; both controlled by the host application. As will be detailed in a later section, ANT has an 8 byte data

payload. The Shared Channel Address field replaces the first one or two bytes of the data payload as shown in Figure 5-4.

Figure 5-4. Independent and 1 or 2-byte shared channel data payloads.

If a channel is defined as shared, the host application provides ANT with the shared address and data. For example, with 2-

byte addressing, more than 65k slave devices can share a single ANT channel, while a 1 byte shared address allows for 255

slave devices.

In a shared channel, the node that is intended to communicate with many other nodes must initiate the channel as the

master. All other nodes that access this shared channel must be configured as slaves. All nodes, both master and slaves,

must be configured as shared channels, have matching channel IDs (wildcards can be set on slaves when opening a

channel, but will match upon a successful search), RF frequencies and channel periods. The master’s host application must

be aware of each slave node’s address, and similarly, each slave’s host application must also know its own shared address.

The master controls the communication by transmitting data at the channel message period. The master’s host application

will provide the data payload, including the shared address field as shown in Figure 5-4. All slaves on the channel will

synchronize off this transmitted message; however, ANT will only release the data to the slave’s host if the shared

address field matches the shared address for that node or if the shared address holds a value ‘0’. The master

can send data to all slaves at the same time using the Shared Channel Address of 0. A slave will respond in the reverse

direction only if its Shared Channel Address matches the one it receives from the master. An example 2 byte shared address

shared channel is shown in Figure 5-5, with master node M, and four slave nodes addressed 1:4.

Data
0

Data
1

Data
2

Data
3

Data
4

Data
5

Data
6

Data
7

Independent Channel Data Payload

Shared Channel 6 Byte Data Payload

Data
0

Data
1

Data
2

Data
3

Data
4

Data
5

Shared
Address

LSB

Shared
Address

MSB

Shared Channel 7 Byte Data Payload

Data
1

Data
2

Data
3

Data
4

Data
5

Data
6

Shared
Address

Data
0

ANT Message Protocol and Usage, Rev 5.1 Page 27 of 134

 thisisant.com

Figure 5-5. Example Shared Channel.

Grey nodes in Figure 5-5 indicate the node’s host received data from ANT. The arrows indicate the direction of data flow.

Figure 5-5 a: The master’s (M) host provided [01][00] in the shared address field (LSB MSB). ANT will transmit the data

with this shared address on the next channel period. All slave nodes receive and use this message to maintain

synchronization, but only slave node 1’s host will actually receive the data. The ANT protocol will prevent the data from

progressing to an incorrectly addressed node’s host. Slave node 1 has the option of sending data back to the master (i.e. in

the reverse direction) at this time. No other slave node can transmit data to the master.

Figure 5-5 b: The master’s host provided [04][00] shared address field. Similarly, the data is transmitted on the next

channel period; all slaves use this transmission for synchronization; only node 4’s host receives the data and has the option

of transmitting in the reverse direction.

Figure 5-5 c: Master’s host provides [00][00] in the shared address field. This indicates a broadcast to ALL nodes. As such,

each slave host receives the data. There is no reverse direction when broadcasting to all slaves, therefore no slaves can

transmit.

The shared channel concept is extensible to acknowledged data and burst data transactions. For example, if a master

channel sends acknowledged or burst data with a non-zero shared address, only slaves which share the same shared

address as sent by the master will send an acknowledgement back to the master. Slaves with different addresses will not

send an acknowledgment. In burst data transactions, the 1st data and last data packets require the Shared Channel Address

in the data payload; the remaining data packets contain only the application data.

If a master channel sends acknowledged or burst data with a zero shared address, each slave may receive the data but will

not send an acknowledgement back to the master. Therefore the master will automatically see a transfer failure.

If a burst sent from the master to the slave fails, the master may simply retry the burst on the next channel period.

However, if a burst sent from the slave to the master fails, the slave’s host must immediately send a message containing its

shared channel address.

Please refer to section 8.2 for a sample network implementation and to see the sequence of commands required to create a

shared channel.

The shared channel functionality can also be extended for ‘ad hoc’ joining/leaving of channel by implementing an auto

shared channel. For more information see application note “Auto-Shared Channel”.

5.7 Continuous Scanning Mode

Continuous scanning mode is another method that can be used when a single ANT node must receive, and possibly process,

data from multiple nodes. Rather than a single master controlling multiple slaves (as for shared channels) a node in

continuous scanning mode receives full-time, allowing it to receive from multiple transmitting masters at any time. Similar to

a shared channel, all devices operate on the same RF frequency.

1 3

2 4

M

1 3

2 4

M

1 3

2 4

M

Shared Address Field:
[01][00]

Shared Address Field:
[04][00]

Shared Address Field:
[00][00]

(a) (b) (c)

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 28 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

The ANT radio on the central node is always occupied with the continuous scanning mode; hence, no other channels can be

open on that node. Also, as the RF is continually active, this node draws significant power (peak Rx current) and therefore

continuous scanning mode should not be used for devices that have tight power constraints.

Each of the transmit nodes should have unique device numbers, such that its channel ID is also unique. With a unique

channel ID, the central node can correctly attribute each received message to its corresponding master device.

The receiving node is configured as a bidirectional receive channel that is opened with the Open Rx Scan Mode (0x5B)

command (refer to section 9.5.4.5). As the node is receiving full time, the channel period does not need to be set. Although

the central node is receiving full time, it can transmit messages back to the master nodes. For this to happen, a master

must first transmit to the receiving node, which can then optionally send data back to that specific master in the reverse

direction.

A receive only channel type can be used in conjunction with the continuous scanning mode for diagnostic applications.

See the “Continuous Scanning Mode” application note for more details on implementing the continuous scanning mode.

In comparison to using a node in continuous scanning mode, shared channels have the advantage of maintaining low power

at all nodes. However there is some latency due to the synchronous nature of the shared channel, and the time involved to

service each individual node. As the central node in continuous scanning mode is always receiving, there is very little latency

and, should the central device have sufficient power capabilities, this mode is advantageous when intermittent,

asynchronous, or instantaneous transmissions are desired. Alternatively a channel can be configured for background

scanning, which operates as described in section 5.2.1.4.2

Please note, not all modules can support continuous scanning mode; refer to section 9.4 for their respective capabilities.

http://www.thisisant.com/developer/resources/downloads/#documents_tab

ANT Message Protocol and Usage, Rev 5.1 Page 29 of 134

 thisisant.com

6 Device Pairing

The act of pairing two devices (master with slave) involves establishing a relationship between two nodes that wish to

communicate with one another. This relationship can be permanent, semi-permanent or transitory.

A pairing operation consists of a slave device acquiring the unique channel ID of the master device. If permanent pairing is

desired, the slave node should store the master’s ID in permanent or non-volatile memory. This ID will then be used to open a

channel with this ID in all subsequent communication sessions. In semi-permanent relationship, the pairing lasts as long as

the channel is maintained. Once it times out, the pairing is lost. In transitory, the pairing is temporary – for as long as is

needed to get some data.

Please note that if a master uses only broadcast messaging, or if it uses the shared channel feature, multiple slaves may pair

and communicate with the same master.

As previously mentioned, when the master device’s channel is opened, it will start broadcasting messages. Its unique channel

ID is broadcast with every message. When a slave device’s channel is opened, it will immediately start searching for a master

that matches the channel ID provided by the slave host MCU. In the case where a slave does not have knowledge of a specific

master’s channel ID, a pairing mechanism is available. The slave can search for a master using a wild card ID (value ‘0’) in

any, or all, of the channel ID fields. The slave will then search according to the criteria that it does know. For example, the

slave may know what device type it wishes to connect to, but not the actual device number or transmission type. The slave’s

host application would then set the channel ID with the known device type, and place a wildcard (i.e. 0) in the remaining

fields. On opening the channel, the slave would then search for any masters of that specific device type, and of any device

type or transmission type; upon a successful search result, the specific ID of the master can be stored and used in the same

manner as previously described for all future communications.

The pairing bit, which is the most significant bit (MSB) of the device type field, is an advanced pairing feature. On the slave

side, the pairing bit is only checked by ANT if at least one of the fields of the Channel ID is a wild card. On the master side,

the pairing bit must be set to indicate it is available for pairing.

Note that the pairing bit does not have to be set for pairing to occur; however, the status of the pairing bit must match for

pairing to occur. This feature allows for more control. For example, a slave may have a fully wild-carded channel ID and the

pairing bit not set. This would result in the slave searching for any broadcasting master. Alternatively, if the slave were to

have the pairing bit set with a fully wild-carded channel ID then it would search only for a master that also had its pairing bit

set. This is a somewhat simple example but illustrates how pairing can be aided via the pairing bit.

For more information see the “Device Pairing” application note and the examples that follow.

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 30 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

6.1 Pairing Example

An example pairing operation on a network of three remote temperature sensors (masters) and one base unit (slave) is shown

below.

Figure 6-1. Example ANT network for use in device pairing

The base unit wishes to establish a permanent relationship with all temperature sensors. To initiate the pairing operation,

each temperature sensor should be placed into a pairing mode. From a user perspective, it is left to the application to define

the method of entry into pairing mode. For example this could be done upon initial insertion of a battery, or by means of a

button push by the user, etc. As far as the ANT serial message interface is concerned, the host controller invokes a pairing

mode by sending the following messages to the ANT engine (See section 9.3 for details):

1. Configure Channel

2. Set Channel ID (discoverable – i.e. device type=temperature sensor with pairing bit set)

3. Open TX Channel

4. Begin transmitting data on channel timeslot

At this time, the base unit (slave) must be prepared to search for the ID of the appropriate device type (temperature sensor).

It performs the following:

1. Configure Channel

2. Set Channel ID (Transmission Type = Specific or Wild card, Device Type = Temperature sensor with Pairing Bit Set,

Device Number = Wild Card)

3. Open RX Channel

4. Begin searching

The base unit finds a temperature sensor device type with pairing bit set. The channel is established, the slave ANT engine

will pass the specific channel ID for that device to the host controller, which will store the ID for future channel establishment.

This procedure is repeated for all three temperature sensors.

Temp
Sensor 1

Temp
Sensor 2

Base Unit
Temp

Sensor 3

Channel 0

Channel 1

Channel 2

ANT Message Protocol and Usage, Rev 5.1 Page 31 of 134

 thisisant.com

Each temperature sensor can choose to disable its discoverability after a time-out period (or after connection

acknowledgement from the base unit if bidirectional transmission is supported) in order to be ‘invisible’ to future discovery by

other slave devices.

This pairing process is required only once for the lifetime of an ANT system if a permanent relationship between two specific

devices is desired. In such cases, device pairing may be performed during product manufacturing (factory environment) to

remove burden from the customer.

6.2 Inclusion/Exclusion Lists

Another pairing feature available on some devices is the inclusion/exclusion list; refer to section 9.4 or request the device

capabilities, section 9.5.7.4. For each available channel on a device, up to four channel IDs can be sent to the module and

stored in that channel’s inclusion/exclusion list.

When enabled and configured as an inclusion list, the channel IDs stored will be the only channel IDs accepted in a wild card

search. This means that the slave will only connect to one of the specific master channel IDs listed (or in the case of a wild

card, the first matching ID found). Similarly, if this feature is configured as an exclusion list, the slave will not acquire any

master with a listed channel ID.

Note that any inclusion/exclusion lists should be cleared when the channel using the list is unassigned.

Not all ANT devices support inclusion or exclusion lists, and those that do may support the lists differently. In particular, some

ANT devices require all fields to be defined with non-zero values (i.e. no wildcards), while other ANT devices do support wild

card values (i.e. “0”) in one or more of the channel ID fields.

Refer to sections 9.5.2.100, 9.5.2.12 and “Device Pairing” application note for more details.

6.3 White/Blacklists used with Single Channel Encryption

Whitelists and blacklists are very similar to inclusion and exclusion lists except:

 White/blacklists are used to exclusively allow or disallow encryption negotiation requests.

 White/blacklists are defined on the master node, whereas inclusion/exclusion lists are defined on the slave.

 Devices are screened based on their encryption ID rather than the channel ID

This feature is supported by all ANT devices that support single channel encryption. Refer to sections 5.5.1, 9.5.2.11, and

9.5.2.13 for further information.

Note that any white/blacklists should be cleared when the channel using the list is unassigned.

6.4 Proximity Search

Another feature to aid in device pairing is proximity search, which allows channels to be acquired according to the relative

distance between two devices. In a standard ANT search, as described in the earlier section, the channel is opened and the

slave device starts searching for a master with a matching channel ID. If any part of the channel ID is assigned a wildcard;

then the slave could potentially match to one of a number of masters in range. For example, if a slave sets its device type to

search for a specific kind of device (e.g. heart rate monitor), but placed a wildcard in all other fields of the channel ID, and

there were four heart rate monitors in range (Figure 6-2 a, grey shading indicating slave’s range), on opening its channel it

could pair to any one of the four heart rate monitors depending on which transmitting master it found first.

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 32 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Figure 6-2. (a) Standard search (b) proximity search, showing bins 1-5 (of maximum 10).

Proximity search designates ‘bins’ of proximity ranging from 1 (closest) to 10 (furthest) as illustrated in Figure 6-2 b. The bins

do not correlate to specific distances as this is very design-dependent (antenna design/orientation, etc.) and will need to be

determined by the designer. Incremental distances are also design dependent.

The recommended use is to initially set the proximity search threshold value to bin 1 (Figure 6-3 a), as the smaller the search

area, the better the results as far as limiting the possibility of finding the wrong device. Setting the threshold value too high

could result in connection to one of multiple devices (Figure 6-3 b). Choosing an appropriate proximity threshold is critical in

limiting the search accordingly and acquiring the desired device (Figure 6-3 c).

Figure 6-3. Varying proximity thresholds.

Proximity search can be used in conjunction with ANT searches and background scanning, but not with continuous scanning

mode.

1
2

3
4

5

(a) (b)

1

2

3

4

5

4

5

4

5

(a) (b) (c)

ANT Message Protocol and Usage, Rev 5.1 Page 33 of 134

 thisisant.com

Proximity search is disabled by default. Once enabled, it is a one time requirement and the threshold value will be cleared

upon a successful acquisition. If the search times out, or if using a background scanning channel, the threshold value is

maintained

For more information please see the “Proximity Search” application note.

This feature is only available on certain ANT devices; please refer to section 9.4 or request the device capabilities (section

9.5.7.4).

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 34 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

7 ANT Interface

The host application and ANT typically communicate through a simple serial interface. The host can take the form of an

embedded microcontroller or a PC, but the basic functionality remains unchanged. For more details, see the Interfacing with

ANT General Purpose Chipsets and Modules document.

In the case of SoCs and mobile devices the interface to ANT is handled via libraries and the message framing described in

section 7.1 below is not needed.

7.1 Message Structure

A typical serial message between the host and ANT engine has the following basic format.

Figure 7-1. ANT serial message structure

As shown above, each message begins with a SYNC byte and ends with a CHECKSUM. The bytes are sent LSB first. Table 7-1

describes each component of the serial message shown above.

Table 7-1. ANT serial message components

Byte # Name Length Description

0 SYNC 1 Byte Fixed value of 10100100 or 10100101 (MSB:LSB)

(Refer to the “Interfacing with ANT General Purpose Chipsets and Modules”

document for details.)

1 MSG LENGTH 1 Byte Number of data bytes in the message. (Refer to section 9.3)

2 MSG ID 1 Byte Data Type Identifier

0: Invalid

1..255: Valid Data Type (See section 9 for details)

3..N+2 MESSAGE CONTENT N Bytes Content of the message as described in section 9.

N+3 CHECKSUM 1 Byte XOR of all previous bytes including the SYNC byte

A complete summary of supported messages between a host and the ANT engine is presented in section 9. The table is valid

for all types of ANT interface: Host MCU  ANT and Host PC Interface  ANT. Message formatting is first presented in

summary form, which includes message length, ID and the message content of each respective message type. The message

types are defined in section 9.1, and include Configuration, Notification, Control, Data, Channel Event/Response, Requested

Response, Test Mode and legacy Extended Data messages.

Please note that the multi-byte fields have been implemented in little endian format. Using the example of a channel ID

message, the least significant byte of ‘Device Number’ is assigned to byte 0, and the most significant byte to byte 1.

7.1.1 Extended Messages Format

Data type messages (detailed in section9.5.5) can be extended to allow ANT to pass additional information to the host, along

with the received data message. There are two extended formats supported by ANT: flagged and legacy. Which format is

used depends on the ANT device in use (refer to section 9.4). Later generation devices support the flagged extended

messages format, AP1 does not support extended messages, and AT3 supports the legacy format as shown in Figure 7-2.

The extended data will be added to the data message as shown in Figure 7-2. Note the basic frame format of Sync, Message

Length (ML), Message ID (ID) and checksum (CS) remains the same as described in Figure 7-1. However, instead of just the

normal message content (channel number and 8-byte data payload), the host will now receive the message content followed

by a flag byte (0x80) indicating the presence of extended data bytes. The message length value will be altered to account for

Message Content
(Bytes 0 – (N-1))

Msg ID
Msg

Length
Sync

Check
sum

ANT Message Protocol and Usage, Rev 5.1 Page 35 of 134

 thisisant.com

these additions. If extended messaging has been enabled, the message length and flag bytes must be checked to see if

extended data bytes are present.

Figure 7-2. Extended Data Messages, Flagged and Legacy Formats.

Please note, the extended messaging format and Message ID are different for flagged and legacy extended messaging

formats (refer to section 9.3 for message format).

There are two ways to configure extended messaging; Lib Config (0x6E) and Enable Extended Messages (0x66) (sections

9.5.2.20 and 9.5.2.17). Configuring extended messaging through Lib Config (0x6E) allows ANT to pass channel ID, RSSI, and

timestamp information in the extended data bytes. Enable Extended Messages (0x66) allows for only the channel ID to be

passed along with the received data message. Note that not all ANT devices support reception of extended messages. Refer to

section 9.4 or request device capabilities (section 9.5.7.4).

If a burst sequence is received, only the first message in the sequence will contain extended data bytes.

7.1.1.1 Channel ID Output

ANT extended messaging allows for the transmitting device’s channel ID (transmission type, device type and device number)

to be passed to the host through the extended data bytes. If channel ID extended messaging is enabled, the flag byte will

include 0x80 to indicate that channel ID information is present in the extended data bytes. An extended message that includes

channel ID information will look like that in Figure 7-2. Channel ID Output is the only extended information available via the

legacy extended format.

7.1.1.2 RSSI Output

Lib Config (0x6E) provides a way to receive the RSSI, or received signal strength indication, in addition to the 8-byte data

payload. If RSSI extended messaging is enabled, the flag byte will include 0x40 to indicate that RSSI information is present in

the extended data bytes. The received message including RSSI output is shown in Figure 7-3. For more information on RSSI

extended messaging, refer to the “RSSI Extended Messaging” application note.

Payload (8 bytes)

Standard Data Message Format

Flagged Extended Data Message Format

Flag
Byte

(0x80)
Device Number

Device
Type

Trans
Type

Check
sum

Channel
Number

Msg ID
Msg

Length
Sync

Channel
Number

Msg ID
Msg

Length
Sync Device Number

Device
Type

Trans
Type

Payload (8 bytes)
Check
sum

Legacy Extended Data Message Format

Sync ML ID C# Payload (8 bytes) CS

Extended Info

Page 36 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Figure 7-3. RSSI extended messaging

7.1.1.2.1 Measurement Type

The measurement value represents the measurement type of the received data message, and indicates how to interpret the

RSSI Value field. The measurement type will be 0x20, which refers to DBM type. DBM type indicates that the RSSI value is

taken in units of dBm. If the measurement type is any other value, do not decode any other bytes in the extended RSSI data.

For more information refer to the “RSSI Extended Messaging” application note.

7.1.1.2.2 RSSI Value

The RSSI value is a signed integer that corresponds to the measured RSSI value in dBm.

7.1.1.2.3 Threshold Configuration Value

The threshold configuration value is used to indicate the dBm value of the bin configured using the Proximity Search

command. The default value is -128 dB, which corresponds to an effective “Off” setting.

7.1.1.3 Timestamp Output

A device that supports the Lib Config command can also be configured to receive timestamp data along with the 8-byte data

payload. A flag byte of 0x20 indicates that a device can expect timestamp information in the extended data bytes. The

received extended message for timestamp output is show in Figure 7-4.

Payload (8 bytes)

Standard Data Message Format

Flagged Extended Data Message Format

Flag
Byte

(0x20)
Rx Timestamp

Check
sum

Channel
Number

Msg ID
Msg

Length
Sync

Sync ML ID C# Payload (8 bytes) CS

Extended Info

Payload (8 bytes)

Standard Data Message Format

Flagged Extended Data Message Format

Flag
Byte

(0x40)

Measurement
Type

RSSI
Value

Threshold
Configuration

Value

Check
sum

Channel
Number

Msg ID
Msg

Length
Sync

Sync ML ID C# Payload (8 bytes) CS

Extended Info

ANT Message Protocol and Usage, Rev 5.1 Page 37 of 134

 thisisant.com

Figure 7-4. Timestamp extended messaging

7.1.1.3.1 Rx Timestamp

The Rx Timestamp is a 2 byte field (16-bit value) that rolls over every 2 seconds. This value is in little endian format. The

timestamp is based on a 32.768 kHz clock and is subject to variance due to clock drift.

The Rx timestamp is generated exactly when the message was received by ANT over the air.

7.1.1.4 Relative Order of Combined Extended Message Formats

One or more of the extended messaging flags may be implemented at one time (as long as Lib Config (0x6E) was used to

configure extended messaging). If all three extended fields (channel ID, RSSI, and timestamp) are implemented the relative

order of the extended data bytes will be channel ID, RSSI, and Rx timestamp, as shown in Figure 7-5.

Figure 7-5. All fields enabled

If one or more of these elements are removed, the rightmost element moves left. For example, if channel ID and Rx

timestamp are enabled, but RSSI is not, timestamp would shift to the left and is directly beside Channel ID, as shown in

Figure 7-6

Figure 7-6. Channel ID and Rx timestamp enabled

Similarly, if RSSI and Rx timestamp are enabled, but channel ID is not, the received message will look like that in Figure 7-7.

Figure 7-7. RSSI and Rx timestamp enabled

It is important to note that the message size will vary depending on the content of the extended data bytes.

7.2 Host MCU Serial Interface – Physical Layer

The ANT serial interface between host controller and ANT engine can be implemented over either a synchronous (SPI) or

asynchronous (UART) connection. Unlike traditional SPI, the ANT serial connection uses four GPIO lines for control instead of

a slave select; however, a standard SPI block is compatible with the ANT synchronous serial interface.

The connection type is selected by the product designer as preferred for the given implementation. The precise details of the

physical and electrical interface of each ANT product can be found in each respective ANT product datasheet. Also refer to the

Interfacing with ANT General Purpose Chipsets and Modules document for more details.

7.3 Host PC Serial Interface

The primary method of communication between ANT and a PC is through the ANT PC Interface Library. The components of

this library are listed in section 9. Also refer to the “Dynamic Linking with ANT DLL” application note.

Flag
Byte

(0xE0)
Device Number

Device
Type

Trans.
Type

Meas.
Type

RSSI
Value

Thresh.
Config
Value

Rx Timestamp... ...

Flag
Byte

(0xA0)
Device Number

Device
Type

Trans.
Type

Rx Timestamp... ...

Flag
Byte

(0x60)

Meas.
Type

RSSI
Value

Thresh.
Config
Value

Rx Timestamp... ...

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 38 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

7.4 Interface to SoC

The details of the interface to each ANT product can be found in the product datasheet and SDK for the appropriate ANT

product.

7.5 Mobile Devices Interface to ANT

Mobile apps for Android devices communicate with ANT hardware via the ANT Radio Service, an application available from the

Google Play store. The ANT hardware in this case may be built natively into the mobile device and/or a dongle such as an ANT

USB device. Refer to the “Creating ANT+ Android Applications” (within the Android ANT SDK package) document for more

information.

http://www.thisisant.com/developer/resources/downloads/#software_tab

ANT Message Protocol and Usage, Rev 5.1 Page 39 of 134

 thisisant.com

8 Example ANT Network Implementation

A sample network implementation, presenting the features of the ANT protocol is shown in Figure 8-1 below.

Figure 8-1. Example ANT network for implementation

The simple four-node network describes an application where information from multiple nodes (B, C and D) is to be received,

and possibly analyzed, by a single central node (A). The arrows indicate the primary flow of information between the

corresponding nodes. Note that nodes B, C and D only establish one channel, thus can be implemented using a single channel

ANT device. Node A would require a 4 (or more) channel ANT device, as there are no 3 channel devices available on the

market.

The following can be assumed:

 Node B uses the broadcast data type

 Node D uses the broadcast data type

 Node C requires the acknowledged data type

 All of the network prerequisites, such as network type, channel ID, RF frequency, etc. use default or known values

between all nodes

 Device pairing has already been performed between the masters and their corresponding slaves

Sections 8.1 and 8.2 describe two methods of utilizing ANT to deploy the above example network.

Node D

Node A

Node B

Node C

Page 40 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

8.1 Implementation using Independent Channels

Using independent channels is the simplest method of implementing the aforementioned network. Given the above

assumptions, three independent channels are required. The configurations for the three independent channels are shown in

the following tables.

Table 8-1. Channel between Node B and Node A where Node B will be the master

Node Parameter Value Description

B Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 1 Serial Number of Node B

Transmission Type 1 Transmission Type (no shared

address)

Device Type 1 Device Type of Node B

Channel Type 0x10 Bidirectional Transmit Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4E Broadcast

A Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 1 Serial Number of Node B

Transmission Type 1 Transmission Type (no shared

address)

Device Type 1 Device Type of Node B

Channel Type 0x00 Bidirectional Receive Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4E Broadcast

Table 8-2. Channel between Node C and Node A where Node C will be the master

Node Parameter Value Description

C Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 10 Serial Number of Node C

Transmission Type 1 Transmission Type (no shared

address)

Device Type 2 Device Type of Node C

Channel Type 0x10 Bidirectional Transmit Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4F Acknowledged

A Network Number 0 Default Public Network

RF Frequency 66 Frequency 2466MHz

Device Number 10 Serial Number of Node C

Transmission Type 1 Transmission Type (no shared

address)

Device Type 2 Device Type of Node C

ANT Message Protocol and Usage, Rev 5.1 Page 41 of 134

 thisisant.com

A Channel Type 0x00 Bidirectional Receive Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4F Acknowledged

Table 8-3. Channel between Node D and Node A where Node D will be the master

Node Parameter Value Description

D Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 2 Serial Number of Node D

Transmission Type 1 Transmission Type (no shared

address)

Device Type 1 Device Type of Node D

Channel Type 0x10 Bidirectional Transmit Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4E Broadcast

A Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 2 Serial Number of Node D

Transmission Type 1 Transmission Type (no shared

address)

Device Type 1 Device Type of Node D

Channel Type 0x00 Bidirectional Receive Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4E Broadcast

Section 8.1.1 details the sequence of events and message transactions between the host and ANT for each participating node

as the above channels are established and network formed. Refer to section 5.3 for more information on the procedure for

establishing a channel, and section 9 for more information regarding the various ANT commands.

Page 42 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

8.1.1 Channel between Node B and Node A

The channel between Node B and Node A is established as shown in Figure 8-2.

Figure 8-2. Node A & B Channel Establishment

As the network in this example uses the system defaults, only the minimum commands from host to ANT are required to

establish the channel. The host issues the ANT_AssignChannel() and ANT_SetChannelId() messages with the configuration

fields set as shown above. The channel number is assigned at the discretion of the host. In this case, it is channel zero for

both; however, it should be noted that the channel numbers do not need to match on either side of the channel.

The host opens the channel using the ANT_OpenChannel() message. It is good practice to ensure the master channel is

opened prior to the slave.

Once opened, the master’s host provides ANT with data as it sees fit using the ANT_SendBroadcastData() message. Please

note that the frequency at which the host provides ANT with new data may not be the same as the channel period. ANT will

broadcast the data in its buffers at the desired message rate, if no new data is made available by the host, the previous data

will be broadcast. However, appropriate safeguards to account for such repeated messages should be in place on the slave.

Once the slave’s channel is opened, ANT will inform the host with a ChannelEventFunc() type message whenever a message

from Node B is received. Based on the channel configuration settings, this will happen at 4Hz. If no message is received within

the timeout period of the search, ANT will send the host a timeout message and close the channel.

Assign Channel
Channel #: 0

Type: 0x10

Network #: 0

Set Channel ID
Channel #:0
Device #: 1

Device type: 1
Trans’ type: 1

Open Channel

Assign Channel
Channel #: 0

Type: 0x00

Network #:0

Set Channel ID
Channel #: 0
Device #: 1

Device type: 1
Trans’ type: 1

Open Channel

NODE B
(Master)

NODE A
(Slave)

Transmit Messages

Send Broadcast Data (0x4E)
Search

Assign Channel
Channel #: 0

Type: 0x10

Network #: 0

Set Channel ID
Channel #:0
Device #: 1

Device type: 1
Trans’ type: 1

Open Channel

Assign Channel
Channel #: 0

Type: 0x00

Network #:0

Set Channel ID
Channel #: 0
Device #: 1

Device type: 1
Trans’ type: 1

Open Channel

NODE B
(Master)

NODE A
(Slave)

Transmit Messages

Send Broadcast Data (0x4E)
Search

ANT Message Protocol and Usage, Rev 5.1 Page 43 of 134

 thisisant.com

8.1.2 Channel between Node C and Node A

The channel between Node B and Node A is established as shown in Figure 8-3.

Figure 8-3. Node C & A Channel Establishment

The channel between nodes A and C are established as for nodes A and B above. Again, only the minimum commands from

host to ANT are required to establish the channel with the given parameters. Note, in this case the channel numbers do

not match. As Nodes B, C and D are single channel devices, their channel numbers will always be zero. Node A, on the other

hand, is a 4 (or more) channel device and as such, will utilize channels 0, 1 and 2 in this example. As such, node A’s channel 0

will be associated with Node B, channel 1 with Node C (as seen above) and channel 2 will be associated with node D as

described in section 8.1.3.

Another difference in this channel, is that once the channel is opened, the master’s host provides ANT with data as it sees f it

using the ANT_SendAcknowledgedData() message. Also note, if no new data is made available by the host, the previous data

will be sent as a broadcast message, not acknowledged message. This is the default message type as explained in section

5.4.1. Again, appropriate safeguards to account for such repeated messages should be in place on the slave. In this case, the

slave could ignore any broadcast data types that are received from Node C, as all new data will be sent as acknowledged type

and only repeated data will be of broadcast type.

Once the slave’s channel is opened, ANT will inform the host with a ChannelEventFunc() type message whenever a message

from Node C is received. Again, based on channel configuration settings, this will happen at 4Hz. If no message is received

within the timeout period of the search, ANT will send the host a timeout message and close the channel.

8.1.3 Channel between Node D and Node A

The procedure for establishing the channel at Node D is exactly the same as that of Node B. The host of Node A will open a

third channel to communicate with Node D in the same way as for Node B.

The independent channel network example that was implemented above will continue to function as it was deployed unless an

application layer event dictates otherwise.

Assign Channel
Channel #: 0

Type: 0x10

Network #: 0

Set Channel ID
Channel #:0
Device #: 10
Device type: 2
Trans’ type: 1

Open Channel

Assign Channel
Channel #: 1

Type: 0x00

Network #:0

Set Channel ID
Channel #: 1
Device #: 10
Device type: 2
Trans’ type: 1

Open Channel

NODE C
(Master)

NODE A
(Slave)

Transmit Messages

Send Acknowledged Data (0x4F)
Search

Assign Channel
Channel #: 0

Type: 0x10

Network #: 0

Set Channel ID
Channel #:0
Device #: 10
Device type: 2
Trans’ type: 1

Open Channel

Assign Channel
Channel #: 1

Type: 0x00

Network #:0

Set Channel ID
Channel #: 1
Device #: 10
Device type: 2
Trans’ type: 1

Open Channel

NODE C
(Master)

NODE A
(Slave)

Transmit Messages

Send Acknowledged Data (0x4F)
Search

Page 44 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

8.2 Implementation using Shared Channels

The network shown in Figure 8-1 can also be implemented as a single shared channel instead of using three independent

channels. This would allow all nodes to be implemented using single channel ANT devices. The trade-off is increased power

consumption (for the same latency) and reduced data bytes per packet. In a shared channel there are 6 or 7 data bytes

available instead of 8.

As mentioned in section 5.6, the central receiving node will be configured as master of the shared channel with the remaining

nodes configured as its slaves. Each slave will have a unique one or two-byte shared channel address which shall be known

only to it and the master. Unlike the independent channel example, node A must request a response from each slave in turn in

order to receive new information from them. The updated network diagram for this setup is shown below.

Figure 8-4. Shared channel implementation of sample network

Node D
Slave

Node B
Slave

Node A
Master

Node C
Slave

Shared Channel

Shared Channel
Address = 1

Shared Channel
Address = 2

Shared Channel
Address = 3

ANT Message Protocol and Usage, Rev 5.1 Page 45 of 134

 thisisant.com

Each node’s channel configuration is shown in Table 8-4.

Table 8-4. Example shared channel node configuration.

Slave

Node

Parameter Value Description

B Network Type 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 3 Serial Number of Node A

Transmission Type 3 Transmission Type (2 byte shared address)

Device Type 3 Device Type of Node A

Channel Type 0x20 Shared Receive Channel

Channel Period 2370 ~12Hz Message Rate

Data Type 0x4E Broadcast

C Network Type 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 3 Serial Number of Node A

Transmission Type 3 Transmission Type (2 byte shared address)

Device Type 3 Device Type of Node A

Channel Type 0x20 Shared Receive Channel

Channel Period 2370 ~12Hz Message Rate

Data Type 0x4F Acknowledged

D Network Type 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 3 Serial Number of Node A

Transmission Type 3 Transmission Type (2 byte shared address)

Device Type 3 Device Type of Node A

Channel Type 0x20 Shared Receive Channel

Channel Period 2370 ~12Hz Message Rate

Data Type 0x4E Broadcast

A Network Type 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 3 Serial Number of Node A

Transmission Type 3 Transmission Type (2 byte shared address)

Device Type 3 Device Type of Node A

Channel Type 0x30 Shared Transmit Channel

Channel Period 2370 ~12Hz Message Rate

Data Type 0x4E Broadcast

Please note:

The network type, RF frequency, device number, transmission type, device type and channel period are controlled by the

master (Node A). All slaves that want to use this shared channel must adhere to these parameters.

The channel period for all nodes in the independent channel example was 4Hz. In order to maintain this application-level

channel period, each node in the shared channel actually needs to be set to a 12Hz channel period. This is the sum of the

desired message rates of each slave node and will allow the master to service each node at a rate of 4Hz. For example, Node

A may choose to cycle through the slaves, addressing Node B on the first channel period, Node C on the next channel period,

Page 46 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Node D on the next period, then back to Node B and so on. This will result in each node being addressed once every 4Hz.

Similarly, the slaves will only be able to communicate back to the master at the time that they are serviced (i.e. also at 4Hz).

The channel between Node B and Node A is established as shown in Figure 8-5.

Figure 8-5. Shared Channel Example

Apart from the channel period, the network in this example uses the system defaults and only minimal commands from host

to ANT are required to establish the channel. The host issues the ANT_AssignChannel(), ANT_SetChannelId() and the

ANT_SetChannelPeriod() messages with the configuration fields set as shown above. The channel number is assigned at the

discretion of the host. As all devices in this example are single channel, the channel number is zero for both; however, again,

it should be noted that the hosts’ channel numbers do not need to match on either side of the channel.

The host opens the channel using the ANT_OpenChannel() message. It is good practice to ensure the master channel is

opened prior to any of the slaves. Once opened, the master’s host should provide ANT with data on every channel period,

using the ANT_SendBroadcastData() message. The host application should also pay special attention to the shared address

field, ensuring that the shared address field changes for each message sent. The shared address field should cycle through

the shared addresses for Nodes B, C and D respectively, servicing each node at the desired 4Hz.

Assign Channel
Channel #: 0

Type: 0x30

Network #: 0

Set Channel ID
Channel #:0
Device #: 3

Device type: 3
Trans’ type: 3

Open Channel

Assign Channel
Channel #: 0

Type: 0x20

Network #:0

Set Channel ID
Channel #: 0
Device #: 3

Device type: 3
Trans’ type: 3

Open Channel

NODE A
(Master)

NODE B
(Slave)

Transmit Messages

Send Broadcast Data
[01][00][xx]…[xx]

Send Broadcast Data
[02][00][xx]…[xx]

Send Broadcast Data
[03][00][xx]…[xx]

Send Broadcast Data
[01][00][D0]…[D5]

Configures ANT that node has
Shared Address: [01][00]

Set Channel Period
Channel #:0

Message Period: 2371 (~12Hz)

Set Channel Period
Channel #:0

Message Period: 2371 (~12Hz)

Receive messages with Shared
Address: [01][00] or [00][00]

Send Broadcast Data
[01][00][D1]…[D5]

ANT Message Protocol and Usage, Rev 5.1 Page 47 of 134

 thisisant.com

On the slave side, once the channel is opened, the host should send a single broadcast message to ANT with the first one or

two bytes indicating Node B’s shared channel address. This configures ANT to listen to messages that are addressed to Slave

Node B. The host will now be informed each time ANT receives a message from the master that has Node B’s shared channel

address.

For this application, the slave’s host would use the ANT_SendBroadcastData() message to provide data to ANT. ANT will send

the data in the reverse direction whenever it receives the appropriately addressed message from the master (i.e. at 4Hz

message rate).

Back on the master side, ANT will inform the host each time a message is received in the reverse direction from the slave with

the corresponding shared channel address. For this particular network, each slave would send a message back to master Node

A each time its own shared channel address appears. Slave nodes C and D are configured similarly to Node B as shown in

Figure 8-6.

Figure 8-6. Slave Node C and D shared channel configuration

One difference being that the hosts send single ANT_SendBroadcastData() messages with the first one or two bytes changed

to indicate the shared addresses of nodes C & D respectively. Each host will now be informed each time ANT receives a

message from the master that has that node’s shared channel address.

Page 48 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

The only other difference, is that node C will use the ANT_SendAcknowledgedData() to provide data to ANT; which will then

send to the master in the reverse direction whenever it receives the properly addressed message from the master (i.e. at 4Hz

message rate).

The Independent and Shared Channel network implementations are to be used as a means for gaining familiarity with network

design and deployment using ANT. The sample network could be implemented in other, more efficient ways, using various

advanced features of ANT. In general, an application will govern the method of implementation that is best suited for its

needs.

8.2.1 Shared Channel Transmission Type

The 2 least significant bits of the transmission type are used to determine the presence, and size, of a shared address field.

Refer to section 5.2.3.1 for more information about transmission type.

For some ANT modules1, the shared channel address will be a 2 byte field regardless of the number used for transmission

type. However, newer ANT modules support the use of a 1 byte shared address and a 7 byte data payload.

In newer devices, a transmission type with the 2 least significant bits equal to 2 indicates a 1 byte shared address, as detailed

in Table 5-2.

1 AP1 and AT3 support 2 byte shared addressing only.

ANT Message Protocol and Usage, Rev 5.1 Page 49 of 134

 thisisant.com

9 Appendix A – ANT Message Details

9.1 ANT Messages

A summary of the various messages that comprise the serial interface between ANT and a host is provided in section 9.3.

Note that all multi-byte fields are little endian in ANT messages. Additionally, all reserved bytes are set to zero unless

otherwise stated.

9.1.1 Configuration Messages

The ANT configuration messages allow the Host to set or change various parameters of a channel, such as the network,

device type, transmission type, message rate, RF frequency etc. These messages are the first step in enabling a system for

ANT communication.

9.1.2 Notifications

Notifications allow ANT to inform the host of start-up conditions.

9.1.3 Control Messages

After desirable configuration of an ANT channel or channels, the control messages provide a method for supervising the RF as

well as the activity of the ANT system.

9.1.4 Data Messages

The final step in establishing ANT communication; the data messages form the basic input and output of data from an ANT

node. In a typical application, the Host will spend most of its ANT specific time on handling data messages.

9.1.5 Channel Event/Response Messages

The channel event/response messages are comprised of notifications and data that are sent from ANT to the Host. These

include RF events that occur on a channel as well as messages that provide information about the state of the ANT system.

9.1.6 Requested Response Messages

The Host is able to obtain information from ANT using request messages. ANT replies to the requests using response

messages. These include a summary of the capabilities, version information and status of channels.

9.1.7 Test Mode

ANT also accepts special test mode messages which allow the product developer or tester to verify the operation of the RF

hardware by placing ANT in a RF continuous wave (CW) mode.

9.2 ANT Message Structure - Notes

The ‘From’ column in section 9.3 denotes the direction of data flow. An entry of ‘ANT’ indicates dataflow from ANTHost. An

entry of ‘Host’ indicates dataflow from HostANT.

The ‘Reply’ column in section 9.3 indicates whether ANT will send a response message to the respective command.

Page 50 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.3 ANT Message Summary

Class Type Reply From Length Msg ID Message Content

Config.

Messages

Unassign Channel

9.5.2.1 page 64
Yes Host 1 0x41

Channel

Number

Assign Channel

9.5.2.2 page 64
Yes Host 3 0x42

Channel

Number

Channel

Type

Network

Number

Extended

Assign’t

(optional)

Channel ID

9.5.2.3 page 66
Yes Host 5 0x51

Channel

Number

Device

number

(2 bytes)

Device

Type ID

Trans.

Type

Channel Period

9.5.2.4 page 67
Yes Host 3 0x43

Channel

Number

Channel

Period

(2 bytes)

Search Timeout

9.5.2.5 page 68
Yes Host 2 0x44

Channel

Number

Search

Timeout

Channel RF

Frequency

9.5.2.6 page 68

Yes Host 2 0x45
Channel

Number

RF

Frequency

Set Network Key

9.5.2.7 page 69
Yes Host 9 0x46

Network

Number

Network

Key

(8 bytes)

Transmit

Power

9.5.2.8 page 69

Yes Host 2 0x47 0 TX Power

Search Waveform

9.5.2.9 page 70
Yes Host 3 0x49

Channel

Number

Waveform

(2 bytes)

Add Channel ID to

List

9.5.2.10 page 70

Yes Host 6 0x59
Channel

Number

Device

number

Device

Type ID

Trans.

Type
List Index

Add Encryption ID to

List

9.5.2.11 page 71

Yes Host 6 0x59
Channel

Number

Encryption

ID

(4 bytes)

List Index

Config ID List

9.5.2.12 page 72
Yes Host 3 0x5A

Channel

Number
List Size Exclude

ANT Message Protocol and Usage, Rev 5.1 Page 51 of 134

 thisisant.com

Class Type Reply From Length Msg ID Message Content

Config Encryption ID

List

9.5.2.13 page 73

Yes Host 3 0X5A
Channel

Number
List Size List Type

Set Channel Transmit

Power

9.5.2.14 page 73

Yes Host 2 0x60
Channel

Number

Transmit

Power

Low Priority Search

Timeout

9.5.2.15 page 74

Yes Host 2 0x63
Channel

Number

Search

Timeout

Config.

Messages

Serial Number Set

Channel ID

9.5.2.16 page 75

Yes Host 3 0x65
Channel

Number

Device

Type ID

Trans.

Type

Enable Ext RX

Messages

9.5.2.17 page 75

Yes Host 2 0x66 0 Enable

Enable LED

9.5.2.18 page 76
Yes Host 2 0x68 0 Enable

Crystal Enable

9.5.2.19 page 76
Yes Host 1 0x6D 0

Lib Config

9.5.2.20 page 77
Yes Host 2 0x6E 0 Lib Config

Frequency Agility

9.5.2.21 page 77
Yes Host 4 0x70

Channel

Number
Freq’ 1 Freq’ 2 Freq’ 3

Proximity Search

9.5.2.22 page 78
Yes Host 2 0x71

Channel

Number

Search

Threshold

Configure Event

Buffer

9.5.2.23 page 78

Yes Host 6 0x74 0 Config
Size

(2 bytes)

Time

(2 bytes)

Channel Search

Priority

9.5.2.24 page 79

Yes Host 2 0x75
Channel

Number

Search

Priority

Set 128-bit Network

Key

9.5.2.25 page 79

Yes Host 17 0x76
Network

Number

Network

Key

(16 bytes)

Page 52 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Class Type Reply From Length Msg ID Message Content

High Duty Search

9.5.2.26 page 79
Yes Host 2 or 3 0x77 0 Enable

Suppression Cycle

(optional)

Config

Messages

Configure Advanced

Burst

9.5.2.27 page 82

Yes Host 12 0x78 0 Enable

Max

Packet

Length

Required

Features

(3 bytes)

Optional

Features

(3 bytes)

Optional

Stall Count

/ Retry

Count

Extension

Configure Event Filter

9.5.2.28 page 83
Yes Host 3 0x79 0

Event

Filter

(2 bytes)

Configure Selective

Data Updates

9.5.2.29 page 84

Yes Host 2 0x7A
Channel

Number

Selected

Data

Set Selective Data

Update (SDU) Mask

9.5.2.30 page 85

Yes Host 9 0x7B
SDU Mask

Number

SDU Mask

(8 bytes)

Configure User NVM

9.5.2.31 page 85
Yes Host Varies 0x7C 0

Address

(2 bytes)

Data

(variable

length)

Enable Single

Channel Encryption

9.5.2.32 page 86

Yes Host 4 0x7D
Channel

Number

Encryption

Mode

Volatile

Key Index

Decimatio

n Rate

Set Encryption Key

9.5.2.33 page 88
Yes Host 17 0x7E

Volatile

Key Index

Encryption

Key

(16 bytes)

Set Encryption Info

9.5.2.34 page 88
Yes Host

5, 20 or

17
0x7F

Set

Parameter

Data

String (4,

19, or 16

bytes)

Channel Search

Sharing

9.5.2.35 page 89

Yes Host 2 0x81
Channel

Number

Sharing

Cycles

ANT Message Protocol and Usage, Rev 5.1 Page 53 of 134

 thisisant.com

Class Type Reply From Length Msg ID Message Content

Load/Store

Encryption Key

9.5.2.36 page 91

Yes Host 3 or 18 0x83 Operation
NVM Key

Index

Volatile

Key Index

or

Encryption

Key

Set USB Descriptor

String

9.5.2.37 page 92

Yes Host Varies 0xC7 0

Descriptor

String

Number

Descriptor

String -

null

terminated

String

Length

Notifications

Start-up Message

9.5.3.1 page 93
N/A ANT 1 0x6F

Start-up

Message

Serial Error Message

9.5.3.2 page 93
N/A ANT 1 0xAE

Error

Number

Control

Messages

Reset System

9.5.4.1 page 94
No Host 1 0x4A 0

Open Channel

9.5.4.2 page 94
Yes Host 1 0x4B

Channel

Number

Close Channel

9.5.4.3 page 94
Yes Host 1 0x4C

Channel

Number

Request Message

9.5.4.4 page 95
Yes Host Varies 0x4D

Channel

Number/

Sub

Message

ID

Requested

Message

ID

Additional

fields used

with some

requests

Open Rx Scan Mode

9.5.4.5 page 95
Yes Host Varies 0x5B 0

Synchronous Channel

Packets Only

(optional)

Sleep Message

9.5.4.6 page 96
No Host 1 0xC5 0

Data

Messages

Broadcast Data

9.5.5.1 page 97
No

Host/

ANT
Varies 0x4E

Channel

Number

Payload

(8 bytes)

Extended Data

(optional)

Refer to section 7.1.1

Page 54 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Class Type Reply From Length Msg ID Message Content

Acknowledged Data

9.5.5.2 page 101
No

Host/

ANT
Varies 0x4F

Channel

Number

Payload

(8 bytes)

Extended Data

(optional)

Refer to section 7.1.1

Burst Transfer Data

9.5.5.3 page 105
No

Host/

ANT
Varies 0x50

Sequence/

Channel

Number

Payload

(8 bytes)

Extended Data

(optional)

Refer to section 7.1.1

Advanced Burst Data

9.5.5.4 page 110
No

Host/

ANT
Varies 0x72

Sequence/

Channel

Number

Payload

(N bytes)

Channel

Messages

Channel Event

9.5.6.1 page 115
N/A

ANT 3 0x40

Channel

Number
1

Event

Code

Optional

Extended

Event

Parameter

s

Channel Response

9.5.6.1 page 115
N/A

Channel

Number

Initiating

Message

ID

Response

Code

Requested

Response

Messages

Channel Status

9.5.7.1 page 120
N/A ANT 2 0x52

Channel

Number

Channel

Status

Channel ID

9.5.7.2 page 121
N/A ANT 5 0x51

Channel

Number

Device

number

(2 bytes)

Device

Type ID

Trans.

Type

ANT Version

9.5.7.3 page 121
N/A ANT Varies 0x3E

Version (N

bytes)

Capabilities

9.5.7.4 page 122
N/A ANT Varies 0x54

Max

Channels

Max

Networks

Standard

Options

Advanced

Options

Advanced

Options 2

SensRcore

Channels

Advanced

Options 3

Advanced

Options 4

Serial Number

9.5.7.5 page 123
N/A ANT 4 0x61

Serial

Number

(4 bytes)

Event Buffer

Configuration

9.5.7.6 page 123

N/A ANT 6 0x74 0
Buffer

Config

Buffer Size

(2 bytes)

Buffer

Time

(2 bytes)

ANT Message Protocol and Usage, Rev 5.1 Page 55 of 134

 thisisant.com

Class Type Reply From Length Msg ID Message Content

Advanced Burst

Capabilities

9.5.7.7 page 123

N/A ANT

5

0x78

0

Supported

Max

Packet

Length

Supported

Features

(3 bytes)

Advanced Burst

Current Configuration

9.5.7.8 page 124

12 1 Enable

Max

Packet

Length

Required

Features

(3 bytes)

Optional

Features

(3 bytes)

Optional

Stall Count

/ Retry

Count

Extension

Event Filter

9.5.7.9 page 125
N/A ANT 3 0x79 0

Event

Filter

(2 bytes)

Selective Data Update

Mask Setting

9.5.7.10 page 125

N/A ANT 9 0x7B
SDU Mask

Number

SDU Mask

(8 bytes)

User NVM

9.5.7.11 page 125
N/A ANT Varies 0x7C 0 Data

Encryption Mode

Parameters

9.5.7.12 page 126

N/A ANT
2, 5, or

20
0x7D

Requested

Encryption

Parameter

Max

Supported

Mode,

Encryption

ID, or

User Info

String

Test Mode

CW Init

9.5.8.1 page 127
Yes Host 1 0x53 0

CW Test

9.5.8.2 page 127
Yes Host 3 0x48 0 TX Power RF Freq

Extended Data

Messages

(Legacy)

Extended Broadcast

Data¥

9.5.9.1 page 128

No
Host/

ANT¥
13 0x5D

Channel

Number

Device

number

(2 bytes)

Device

Type ID

Trans.

Type

Payload

(8 bytes)

Page 56 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Class Type Reply From Length Msg ID Message Content

Extended

Acknowledged

Data¥

9.5.9.2 page 129

No
Host/

ANT¥
13 0x5E

Channel

Number

Device

number

(2 bytes)

Device

Type ID

Trans.

Type

Payload

(8 bytes)

Extended Burst Data¥

9.5.9.3 page 131
No

Host/

ANT¥
13 0x5F

Sequence/

Channel

Number

Device

number

(2 bytes)

Device

Type ID

Trans.

Type

Payload

(8 bytes)

¥ These are legacy formats to be used only with AT3 devices. Functions not supported by nRF24AP1 devices. nRF24AP2’s devices only support these messages from Host

-> ANT. For ANT->Host the additional bytes are appended to standard broadcast, acknowledged and burst data.

ANT Message Protocol and Usage, Rev 5.1 Page 57 of 134

 thisisant.com

9.4 ANT Product Capabilities

9.4.1 Interface

Class Type

n
R

F
2

4
A

P
1

a
n

d
 A

P
1

M
o

d
u

le
s

A
N

T
1

1
T

R
x

1
 C

h
ip

s
e

ts

&
 M

o
d

u
le

s

A
T

3

C
h

ip
s
e

ts
 &

M
o

d
u

le
s

n
R

F
2

4
A

P
2

&
 A

P
2

M
o

d
u

le
s

2

n
R

F
2

4
A

P
2

-
U

S
B

C
C

2
5

7
x

a
n

d
 C

7

M
o

d
u

le
s

1

U
S

B
 S

ti
c

k

A
N

T
U

S
B

-
m

n
R

F
5

1

S
O

C

Config.

Messages

Unassign Channel Yes Yes Yes Yes Yes Yes Yes Yes

Assign Channel
Yes

(3 bytes)

Yes

(3 bytes)

Yes

(3 or 4

bytes)

Yes

(3 or 4

bytes)

Yes

(3 or 4

bytes)

Yes

(3 or 4

bytes)

Yes

(3 or 4

bytes)

Yes

(3 or 4

bytes)

Channel ID Yes Yes Yes Yes Yes Yes Yes Yes

Channel Period Yes Yes Yes Yes Yes Yes Yes Yes

Search Timeout Yes Yes Yes Yes Yes Yes Yes Yes

Channel RF Frequency Yes Yes Yes Yes Yes Yes Yes Yes

Set Network Key Yes Yes Yes Yes Yes Yes Yes Yes

Transmit Power Yes Yes Yes Yes Yes Yes Yes Yes

Add Channel ID to List No No Yes Yes Yes Yes Yes Yes

Add Encryption ID to List No No No No No No Yes Yes

Config ID List No No Yes Yes Yes Yes Yes Yes

Config Encryption ID List No No No No No No Yes Yes

Set Channel Transmit Power No No Yes Yes Yes Yes Yes Yes

Low Priority Search Timeout No No Yes Yes Yes Yes Yes Yes

Serial Number Set Channel ID No No Yes No No Yes Yes No

Enable Ext Rx Messages No No Yes Yes Yes Yes Yes Yes

Enable LED No No Yes No No No No No

Crystal Enable No No No Yes No No No No

Lib Config No No No Yes Yes Yes Yes Yes

2 Note that this table reflects the current AP2 module’s capabilities. Please refer to D00001363 Revision History – AP2 RF Transceiver Module for older
modules.

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 58 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Class Type

n
R

F
2

4
A

P
1

a
n

d
 A

P
1

M
o

d
u

le
s

A
N

T
1

1
T

R
x

1
 C

h
ip

s
e

ts

&
 M

o
d

u
le

s

A
T

3

C
h

ip
s
e

ts
 &

M
o

d
u

le
s

n
R

F
2

4
A

P
2

&
 A

P
2

M
o

d
u

le
s

2

n
R

F
2

4
A

P
2

-
U

S
B

C
C

2
5

7
x

a
n

d
 C

7

M
o

d
u

le
s

1

U
S

B
 S

ti
c

k

A
N

T
U

S
B

-
m

n
R

F
5

1

S
O

C

Frequency Agility No No No Yes Yes Yes Yes Yes

Proximity Search No No No Yes Yes Yes Yes Yes

Configure Event Buffer No No No No No No Yes No

Channel Search Priority No No No Yes Yes Yes Yes Yes

High Duty Search No No No No No No Yes No

Configure Advanced Burst No No No No No No Yes Yes

Configure Event Filter No No No No No No Yes Yes

Configure Selective Data Updates No No No No No No Yes Yes

Set SDU Mask No No No No No No Yes Yes

Configure User NVM No No No No No No Yes No

Enable Single Channel Encryption No No No No No No Yes Yes

Set Encryption Key No No No No No No Yes Yes

Set Encryption Info No No No No No No Yes Yes

Load/Store Encryption Key No No No No No No Yes No

Set USB Descriptor String No No No No Yes3 No No No

Set 128-Bit Network Key No No No No No No No No

Notifications

Start up Message No No No Yes Yes Yes Yes Yes

Serial Error

Message
No No No No Yes No Yes No

Control Messages

System Reset Yes Yes Yes Yes Yes Yes Yes Yes

Open Channel Yes Yes Yes Yes Yes Yes Yes Yes

Close Channel Yes Yes Yes Yes Yes Yes Yes Yes

Open Rx Scan Mode No No Yes Yes Yes Yes Yes Yes

3 ANT USB2 does not support this command. It is only supported by nRF24AP2-USB.

ANT Message Protocol and Usage, Rev 5.1 Page 59 of 134

 thisisant.com

Class Type

n
R

F
2

4
A

P
1

a
n

d
 A

P
1

M
o

d
u

le
s

A
N

T
1

1
T

R
x

1
 C

h
ip

s
e

ts

&
 M

o
d

u
le

s

A
T

3

C
h

ip
s
e

ts
 &

M
o

d
u

le
s

n
R

F
2

4
A

P
2

&
 A

P
2

M
o

d
u

le
s

2

n
R

F
2

4
A

P
2

-
U

S
B

C
C

2
5

7
x

a
n

d
 C

7

M
o

d
u

le
s

1

U
S

B
 S

ti
c

k

A
N

T
U

S
B

-
m

n
R

F
5

1

S
O

C

Open Rx Scan Mode – Synchronous

Channel Packets Only
No No No No No No Yes Yes

Request

Message
Yes Yes Yes Yes Yes Yes

Yes Yes

Sleep Message No No No Yes Yes No No No

Data

Messages

Data Messages

Broadcast Data Yes Yes Yes Yes Yes Yes Yes Yes

Acknowledge Data Yes Yes Yes Yes Yes Yes Yes Yes

Burst Transfer Data Yes Yes Yes Yes Yes Yes Yes Yes

Advanced Burst Data No No No No No No Yes Yes

Channel Event Messages Channel Response / Event Yes Yes Yes Yes Yes Yes Yes Yes

Requested Response

Messages

Channel Status Yes Yes Yes Yes Yes Yes Yes Yes

Channel ID Yes Yes Yes Yes Yes Yes Yes Yes

ANT Version No Yes Yes Yes Yes Yes Yes Yes

Capabilities
Yes

(4 bytes)

Yes

(4 bytes)

Yes

(6 bytes)

Yes

(6 bytes)

Yes

(6 bytes)

Yes

(6 bytes)

Yes

(7 bytes)

Yes

(7 bytes)

Serial Number No No Yes No No Yes Yes No

Event Buffer Configuration No No No No No No Yes No

Advanced Burst Capabilities No No No No No No Yes Yes

Advanced Burst Current

Configuration
No No No No No No Yes Yes

Event Filter No No No No No No Yes Yes

SDU Mask Setting No No No No No No Yes Yes

User NVM No No No No No No Yes No

Encryption Mode Parameters No No No No No No Yes Yes

Test Mode
CW Init Yes Yes Yes Yes Yes Yes Yes Yes

CW Test Yes Yes Yes Yes Yes Yes Yes Yes

 The CC257x and related modules also include extended serial messages to enable the Integrated ANT-FS feature. These are documented in the “D00001417 –

Integrated FS/ANT-FS Interface Control Document”.

http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 60 of 134 ANT Message Protocol and Usage

 thisisant.com

9.4.2 Events

See section 9.5.6 for Event details.

Name

nRF24AP1

and AP1
Modules

ANT11TRx1
Chipsets and

Modules

AT3

Chipsets and
Modules

nRF24AP2 and
AP2 Modules

CC257x and C7

Modules4

nRF24AP2-USB

USB Stick
ANTUSB-m

nRF51 SOC

RESPONSE_NO_ERROR Yes Yes Yes Yes Yes Yes Yes

EVENT_RX_SEARCH_TIMEOUT Yes Yes Yes Yes Yes Yes Yes

EVENT_RX_FAIL Yes Yes Yes Yes Yes Yes Yes

EVENT_TX Yes Yes Yes Yes Yes Yes Yes

EVENT_TRANSFER_RX_FAILED Yes Yes Yes Yes Yes Yes Yes

EVENT_TRANSFER_TX_COMPLETED Yes Yes Yes Yes Yes Yes Yes

EVENT_TRANSFER_TX_FAILED Yes Yes Yes Yes Yes Yes Yes

EVENT_CHANNEL_CLOSED Yes Yes Yes Yes Yes Yes Yes

EVENT_RX_FAIL_GO_TO_SEARCH No Yes Yes Yes Yes Yes Yes

EVENT_CHANNEL_COLLISION No Yes Yes Yes Yes Yes Yes

EVENT_TRANSFER_TX_START No No Yes Yes Yes Yes Yes

EVENT_TRANSFER_NEXT_DATA_BLOCK No No No No No No Yes

CHANNEL_IN_WRONG_STATE Yes Yes Yes Yes Yes Yes Yes

CHANNEL_NOT_OPENED Yes Yes Yes Yes Yes Yes Yes

CHANNEL_ID_NOT_SET Yes Yes Yes Yes Yes Yes Yes

CLOSE_ALL_CHANNELS No No Yes Yes Yes Yes Yes

TRANSFER_IN_PROGRESS Yes Yes Yes Yes Yes Yes Yes

TRANSFER_SEQUENCE_NUMBER_ERROR Yes Yes Yes Yes Yes Yes Yes

TRANSFER_IN_ERROR No No Yes Yes Yes Yes Yes

4 The CC257x and related modules also include extended events related to the Integrated ANT-FS feature. These are documented in the “D00001417 – Integrated FS/ANT-

FS Interface Control Document”.

http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab

ANT Message Protocol and Usage Page 61 of 134

 thisisant.com

Name

nRF24AP1

and AP1
Modules

ANT11TRx1
Chipsets and

Modules

AT3

Chipsets and
Modules

nRF24AP2 and
AP2 Modules

CC257x and C7

Modules4

nRF24AP2-USB

USB Stick
ANTUSB-m

nRF51 SOC

TRANSFER_BUSY No No No No No No Yes

MESSAGE_SIZE_EXCEEDS_LIMIT No No No Yes Yes Yes Yes

INVALID_MESSAGE Yes Yes Yes Yes Yes Yes Yes

INVALID_NETWORK_NUMBER Yes Yes Yes Yes Yes Yes Yes

INVALID_LIST_ID No No Yes Yes Yes Yes Yes

INVALID_SCAN_TX_CHANNEL No No Yes Yes Yes Yes Yes

INVALID_PARAMETER_PROVIDED No No No Yes Yes Yes Yes

EVENT_QUE_OVERFLOW No No No Yes Yes Yes Yes

EVENT_SERIAL_QUE_OVERFLOW No No No No Yes Yes No

NVM_FULL_ERROR No No Yes No No No No

NVM_WRITE_ERROR No No Yes No No No No

USB_STRING_WRITE_FAIL No No No No Yes Yes No

MESG_SERIAL_ERROR_ID No No No No Yes Yes No

ENCRYPT_NEGOTIATION_SUCCESS No No No No No Yes Yes

ENCRYPT_NEGOTIATION_FAIL No No No No No Yes Yes

Page 62 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.4.3 Output Power Level Settings

Different ANT modules support different output power level settings. The following table is a summary of the power level

settings per ANT device.

Setting
nRF24AP1

and AP1 Modules

ANT11TRx1
Chipsets and

Modules

AT3Chipsets and
Modules,nRF24AP2,

AP2 Modules and
nRF24AP2-USB,and

ANTUSB-m

nRF51xxx
CC257x and C7

Modules

0 -20 dBm -20 dBm -18 dBm -20 dBm -20 dBm

1 -10 dBm -10 dBm -12 dBm -12 dBm -10 dBm

2 -5 dBm -5 dBm -6 dBm -4 dBm -4 dBm

3 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm

4 N/A N/A N/A 4dbm 4 dBm

 ANT Message Protocol and Usage, Rev 5.1

 Page 63 of 134

 thisisant.com

9.5 ANT Message Details

This section provides detailed information regarding ANT messages and data fields for each ANT message type. The

following symbols are used to indicate whether messages in this section refer to individual channels (e.g. Set Channel ID

0x51) or to the ANT device as a whole (e.g. Transmit Power 0x47):

9.5.1 ANT Constants

The constants vary depending on the selected ANT product (see product datasheet for further details):

1. MAX_CHAN – number of supported channels. Valid channels are 0..(MAX_CHAN-1).

2. MAX_NET – number of supported networks. Valid networks are 0..(MAX_NET-1).

3. MAX_BUFFER_SIZE – maximum number of bytes that can be stored before a buffer flush occurs

4. MAX_SDU_MASKS – number of supported SDU masks (selective data update)

5. MAX_ADDRESS – maximum address in the user NVM space.

These values can be determined for the specific ANT implementation by requesting the capabilities message (see section

9.5.7.4) or by referring to the device datasheet.

Page 64 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.2 Configuration Messages

The following messages are used to configure a channel. Care should be taken to configure all appropriate pieces of

information for a channel before opening it. All configuration commands return a response to indicate their success or

failure. Therefore, a simple state machine can be setup for configuration of channels that advances states only when a

RESPONSE_NO_ERROR is received for the current command and to re-send upon failures.

A simple timeout should also be implemented to protect against the case that a success/failure response is not received.

Should this happen, the host should send ANT a series of 15 0’s to effectively reset the ANT receive state machine. Please

see the Interfacing with ANT General Purpose Chipsets and Modules Document for more information.

9.5.2.1 Unassign Channel (0x41)

BOOL ANT_UnAssignChannel(UCHAR ucChannel);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN - 1 The channel to be unassigned.

// Example usage

ANT_AssignChannel(0, 0x00, 0);

ANT_UnAssignChannel(0);

This message is sent to the module to unassign a channel. A channel must be unassigned before it may be reassigned using

the Assign Channel command.

9.5.2.2 Assign Channel (0x42)

BOOL ANT_AssignChannel(UCHAR ucChannel, UCHAR ucChannelType, UCHAR ucNetworkNumber);

 OR

BOOL ANT_AssignChannelExt(UCHAR ucChannel, UCHAR ucChannelType, UCHAR ucNetworkNumber, UCHAR ucExtend);

Parameters Type Range Description

Channel

Number

UCHAR 0..MAX_CHAN-1 The channel number to be associated with the assigned channel. The

channel number must be unique for every channel assigned on the module.

The channel number must also be less than the maximum number of

channels supported by the device.

Channel Type UCHAR As specified Bidirectional Channels:

0x00 – Receive Channel

0x10 - Transmit Channel

Unidirectional Channels:

0x50 – Transmit Only Channel

0x40 – Receive Only Channel

Shared Channels:

0x20 – Shared Bidirectional Receive Channel

0x30 – Shared Bidirectional Transmit Channel

 ANT Message Protocol and Usage, Rev 5.1

 Page 65 of 134

 thisisant.com

Parameters Type Range Description

Network

Number

UCHAR 0..MAX_NET-1 Specifies the network to be used for this channel. Set this to 0, to use the

default public network. See section 5.2.5 for more details.

Extended

Assignment

(optional)

UCHAR As specified 0x01 – Background Scanning Enable

0x04 – Frequency Agility Enable

0x10 – Fast Channel Initiation Enable

0x20 – Asynchronous Transmission Enable

All other bits are reserved

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // Receive channel 0 on network number 0; no extended assignment

OR

ANT_AssignChannelExt(0, 0x00, 0, 0x01); // Background scanning channel on channel 0, network number 0

This message is sent to ANT to assign a channel. Channel assignment reserves a channel number and assigns the type and

network number to the channel. The optional extended assignment byte allows for the following features to be enabled:

frequency agility, background scanning, fast channel initiation, and asynchronous transmission. For more information on

these features see sections 5.2.1.4.1, 5.2.1.4.2, 5.2.1.4.4 and application notes “ANT Frequency Agility” and “ANT Channel

Search and Background Scanning”.

This Assign Channel command should be issued before any other channel configuration messages, and before the channel

is opened. Assigning a channel sets all of the other configuration parameters to their defaults.

http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 66 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.2.3 Set Channel ID (0x51)

BOOL ANT_SetChannelId(UCHAR ucChannel, USHORT usDeviceNum, UCHAR ucDeviceType, UCHAR ucTransmissionType);

Parameters Type Bit Range Range Description

Channel Number UCHAR - 0..MAX_CHAN-1 The channel number

Device Number USHORT

(little endian)

- 0..65535 The device number. For a slave, use 0 to match

any device number.

Device Type MSB

Pairing Request

UCHAR (1bit) 7 0..1 Pairing Request.

Set this bit on master to request pairing

Set this bit on slave to find a pairing transmitter.

Device Type bits

0:6

Device type ID

UCHAR (7bits) 0-6 0..127 The device type. For a slave use 0 to match any

device type.

Transmission

Type

UCHAR - 0..255 The transmission type. For a slave use 0 to

receive from any transmission type.

// Example Usage

// Tx channel

ANT_AssignChannel(0, 0x10, 0);

// wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 1234, 120, 1);

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0); // wildcard used for the device number

// wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 1); // device type 120 with pairing bit OFF

/***/

// Pairing bit on Rx channel

ANT_AssignChannel(0, 0x00, 0); // wildcard used for the device number

// wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 248, 1); // device type 120 with pairing bit ON

This message configures the channel ID for a specific channel.

The channel ID is intended to be unique (or nearly so) for each device link in a network. The ID is owned by the master.

The master sets its ID, and the ID is transmitted along with its messages. The slave sets the channel ID to match the

master it wishes to find. It may do this by providing the exact ID of the device it wishes to search for, or look for a class of

device by setting a wildcard (0) for one of the subfields of the ID (Device Number, Device Type, or Transmission Type).

When a match is found using a wildcard search, the Request Message command (with channel ID in its Message ID field)

can be used to return the channel ID of the matched device. For more information refer to section 9.5.7.2.

If the device number is set to 0 on the slave, it will search for any masters that have matching device and transmission

types. The state of the pair request bits must also match. This allows the product designer to choose the rules for pairing. If

the designer wishes to pair two specific devices only when both sides agree, then the master and slave will both set the

pairing bit when they wish to pair. If the designer intends for any slave of a certain type to pair to any master of a certain

type, on a search at any time, then the pairing bit should always be set to 0.

When the device number is fully known the pairing bit is ignored i.e. if you know the exact device you are looking for, then

pairing bit is irrelevant.

 ANT Message Protocol and Usage, Rev 5.1

 Page 67 of 134

 thisisant.com

Note that transmission type and device type IDs are assigned and regulated to maintain network integrity and

interoperability, except for the default public network. Please visit www.thisisant.com for more details on available standard

network types or on how to obtain your own network type identifier.

9.5.2.4 Channel Messaging Period (0x43)

BOOL ANT_SetChannelPeriod(UCHAR ucChannel, USHORT usMessagePeriod);

Parameters Type Range Default Description

Channel

Number

UCHAR 0..MAX_CHAN-1 - The channel number

Messaging

Period

USHORT

(little

endian)

0..65535 8192 (4Hz) The channel messaging period in seconds * 32768.

Maximum messaging period is ~2 seconds.

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel on network number 0

// wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number wild-card and pairing bit OFF

// wait for RESPONSE_NO_ERROR

ANT_SetChannelPeriod(0, 8192); // 4 Hz channel period

This message configures the messaging period of a specific channel where:

Messaging period = channel period time (s) * 32768.

E.g.: To send or receive a message at 4Hz, set the channel period to 32768/4 = 8192.

Note: The minimum acceptable channel period is difficult to specify as it is system dependent and depends on the number

of configured channels and their use. Caution should be used to appropriately test the system when high data rates are

used, especially in combination with multiple channels.

It is of critical importance that the channel period is defined in a manner consistent with the needs of the application. Some

issues to consider are:

6. A smaller device period increases the message rate and thus increases system power consumption (see respective

ANT product datasheet for details).

7. A smaller device period (faster message rate) allows higher Broadcast data-transfer rates.

8. A smaller device period (faster message rate) speeds up the device search operation.

Note: If the slave does not wish to receive data as fast as it is being transmitted, it may choose to receive data at a slower

rate. This rate MUST be an integer divisor of the transmitted data rate, do not use non-integer divisors. For example, if the

master is transmitting data at 4Hz (8192), the slave may prefer to receive data at 1Hz (32768). The slave will then receive 1

in 4 messages. This type of system provides the advantage of faster acquisition/reacquisition times due to the higher

transmit data-rate, but maintains lower power consumption on the slave. Of course, the required data refresh rate on the

slave needs to be considered if data messages are to be skipped.

http://www.thisisant.com/

Page 68 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.2.5 Channel Search Timeout (0x44)

BOOL ANT_SetChannelSearchTimeout(UCHAR ucChannelNum, UCHAR ucSearchTimeout);

Parameters Type Range Default Description

Channel

Number

UCHAR 0..MAX_CHAN-1 - The channel number

Search Timeout UCHAR 0..255 Non-AP1: 10

(25 seconds)

AP1: 12

(30 seconds)

The search timeout to be used by this channel for

receive searching. Each count in this parameter is

equivalent to 2.5 seconds.

i.e. 240 = 600 seconds = 10 minutes

0 - disable high priority search mode*

255 - infinite search timeout*

*except for AP1: 0 = 0*2.5s = immediate timeout.

 255 = 255*2.5 ~ 10.5mins

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel on network number 0

// wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number wild-card and pairing bit OFF

// wait for RESPONSE_NO_ERROR

ANT_SetChannelSearchTimeout(0, 24); // search timeout is 60s

This message is sent to the module to configure the length of time that the receiver will search for a channel before timing

out. Note that a value of zero will disable high priority search mode, and a value of 255 sets an infinite search time-out. The

exception to this is the AP1 module, which has only a high priority search mode. For AP1 only, a value of 0 is an immediate

search timeout, and a value of 255 corresponds to approximately 10.5 minutes. For more information, refer to the “ANT

Channel Search and Background Scanning Channel” application note.

9.5.2.6 Channel RF Frequency (0x45)

BOOL ANT_SetChannelRFFreq(UCHAR ucChannel, UCHAR ucRFFreq);

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 - The channel to be assigned.

Channel RF

Frequency

UCHAR 0..124 66 Channel Frequency = 2400 MHz + Channel RF

Frequency Number * 1.0 MHz

// Example Usage

ANT_AssignChannel(0, 0x10, 0); // transmit channel on network number 0

// wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number wild-card and pairing bit OFF

// wait for RESPONSE_NO_ERROR

ANT_SetChannelRFFreq(0, 57); // RF frequency is 2457 MHz

This message is sent to ANT to set the RF frequency for a particular channel.

Great care should be taken in choosing an alternate value to the default. The selection of this channel may affect the ability

to certify the product in certain global regions.

http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab

 ANT Message Protocol and Usage, Rev 5.1

 Page 69 of 134

 thisisant.com

Note that some RF channels are assigned and regulated by the ANT+ Alliance to maintain network integrity and

interoperability. A large number of ANT+ devices can be found on RF channels 2450 MHz and 2457 MHz and should be

avoided by non-ANT+ devices.

9.5.2.7 Set Network Key (0x46)

BOOL ANT_SetNetworkKey(UCHAR ucNetNumber, UCHAR *pucKey);

Parameters Type Range Description

Network Number UCHAR 0..MAX_NET-1 The network number

Network Key UCHAR[8] N/A The 8 byte network key

// Example Usage

UCHAR aucNetworkKey = {0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01}; // sample Network Key

ANT_SetNetworkKey(1, aucNetworkKey); // assign the network key to network number 1

// wait for RESPONSE_NO_ERROR

ANT_AssignChannel(0, 0x00, 1); // receive channel on network 1

This message configures a network address for use by one of the available network numbers.

This command is not required when using the default public network. The default public network key is already assigned by

default to Network Number 0. For nRF24AP1 devices, the remaining network numbers are left un-initialized. For most other

ANT devices, all remaining network numbers default to the public network, with the exception of multi-mode chips. Refer to

the device datasheet.

Only valid network keys will be accepted by ANT. Note, if a Set Network Key (0x46) command is sent with an invalid key, a

RESPONSE_NO_ERROR may be received, but the network key will be unchanged; it will retain the value it held prior to the

command being issued.

Note that network keys, transmission type, device type IDs and RF channels are assigned and regulated to maintain

network integrity, and interoperability, except for the default public network. Please visit www.thisisant.com for more details

on available standard network types or on how to obtain your own network key.

9.5.2.8 Transmit Power (0x47)

BOOL ANT_SetTransmitPower(UCHAR ucTransmitPower);

Parameters Type Range Default Description

Filler UCHAR 0 0 A filler 0 byte that must be included

Transmit

Power

UCHAR 0..4 3 (0dBm) Refer to section 9.4.3

// Example Usage

ANT_SetTransmitPower(2); // set the RF output power to -5 dBm

This message is sent to the module to set the transmit power level for all channels.

This parameter must be used with extreme care. Setting the transmit power level to the highest level may not always be

the most appropriate solution. Higher power levels increase current consumption, affect the sphere of influence for the

device, and may have RF certification implications. A selected implementation must be tested to ensure that it meets the

regulatory requirements of the region of intended sale.

http://www.thisisant.com/

Page 70 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.2.9 Search Waveform (0x49)

BOOL ANT_SetSearchWaveform(UCHAR ucChannel, USHORT usSearchWaveform);

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 - The channel number.

Search Waveform USHORT

(little

endian)

316 or 97 Refer to

the table

below

The search waveform to be set. One of these two

values only.

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // Slave channel on network number 0

// wait for RESPONSE_NO_ERROR

ANT_SetChannelRFFreq(0, 57); // RF frequency is 2457 MHz

// wait for RESPONSE_NO_ERROR

ANT_SetSearchWaveform(0, 97); // Search waveform is 97.

This message is sent to the device to set a specific search waveform for a specified channel.

The search waveform command controls the amount of time the radio hardware is active during a slave channel search, and

consequently affects the balance between channel acquisition time and average power consumption.

This command must be used with extreme care. Setting the search waveform to a value other than the ones

recommended here may have unintended consequences. One severe consequence may be the inability to discover master

channels transmitting at certain channel periods, as some ‘timeslots’ may be left undetected by that search waveform.

Type Search
Waveform

Description

Standard Search

Waveform

316 This is the standard search waveform value set as the default on ANT devices

intended for coin cell battery operation (network processor and SoC devices) and is

considered the ideal trade-off between average power consumption and acquisition

time during a channel search.

Fast Search

Waveform

97 This is an accelerated search waveform value set as the default on ANT devices

intended for high power operation (typically used in phones) and is considered to

be the lowest value which can be safely set on all ANT devices. Setting this on

devices which do not default to this value wi ll increase their power consumption

during a search, and reduce the acquisition time of finding a master channel.

The fastest acquisition times can still only be achieved by devices in scanning mode or with high duty search enabled.

The search waveform should not be set when high duty search or scanning mode is in use. Please note, changing the

search waveform after high duty search has been configured may have a detrimental effect on search acquisition time and

should be avoided. For more assistance on optimizing search acquisition time and/or search power consumption, please

contact Dynastream at www.thisisant.com.

http://www.thisisant.com/

 ANT Message Protocol and Usage, Rev 5.1

 Page 71 of 134

 thisisant.com

9.5.2.10 Add Channel ID to List (0x59)

This message shares its message ID with the “Add Encryption ID to List” command. Please note this message is only used

for slave channels. On ANT encrypted master channels the “Add Encryption ID to List” command behaviour described in

9.5.2.11 applies instead.

BOOL ANT_AddChannelID(UCHAR ucChannel, USHORT usDeviceNum, UCHAR ucDeviceType, UCHAR ucTransmissionType,

UCHAR ucListIndex);

Parameters Type Bit Range Range Description

Channel Number UCHAR - 0..MAX_CHAN-1 The channel number

Device Number USHORT

(little endian)

- 0..65535 The device number.

Device Type ID UCHAR (7bits) 0-6 0..127 The device type.

Transmission

Type

UCHAR - 0..255 The transmission type.

List Index UCHAR - 0..3 The index where the specified Channel ID is to be

placed in the list.

// Example Usage

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0);

// wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number is wild -card

ANT_AddChannelID(0, 145, 120, 123, 0); //add ID to list in index 0

ANT_AddChannelID(0, 152, 120, 123, 1); //add ID to list in index 1

ANT_ConfigList(0, 2, 0); //configure list as an inclusion list having 2 entries

ANT_OpenChannel(0);

Please note this message is only available on specific devices, refer to section 9.4, or request capabilities (section 9.5.7.4).

This message is sent to the module to add channel IDs to the inclusion/exclusion list. When this list is used, these IDs will

either be the only IDs accepted in a wild card search or IDs that will not be discovered at all. The use of these IDs is

enabled by the Config List command detailed below. The inclusion/exclusion list is configured per channel. There is a

maximum of 4 IDs allowed per list.

9.5.2.11 Add Encryption ID to List (0x59)

This message shares its message ID with the “Add Channel ID to List” command. Please note this message is only used for

encrypted ANT master channels. On slave channels the “Add Channel ID” command behaviour described in section 9.5.2.10

applies instead.

BOOL ANT_AddCryptoID(UCHAR ucChannel, UCHAR *pucCryptoID, UCHAR ucListIndex);

Page 72 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-

1

The channel number

Encryption ID UCHAR[4] N/A The unique 4 byte identifier of the negotiating slave

List Index UCHAR 0..3 The index where the specified Encryption ID is to be placed in

the list.

// Example Usage

// Encrypted Tx channel…

UCHAR aucCryptoId1 = {0x01, 0x23, 0x45, 0x67}; // example crypto ID

UCHAR aucCryptoId2 = {0x89, 0xAB, 0xCD, 0xEF}; // example crypto ID

ANT_AddCryptoID(0, aucCryptoId1, 0); // add ID1 to whitelist/blacklist in index 0 for channel 0

ANT_AddCryptoID(0, aucCryptoId2, 1); // add ID2 to whitelist/blacklist in index 1 for channel 0

Please note this message is only available on specific devices, refer to section 9.4, or request capabilities.

This message is sent to ANT to add encryption IDs to the whitelist/blacklist. When this list is used, these will either be the

only encryption IDs allowed to negotiate with the encrypted master successfully, or these IDs will never be allowed to

negotiate with the encrypted master successfully respectively. The use of these IDs is enabled by the ConfigCryptoList

command detailed below. The whitelist/blacklist is configured per channel. There is a maximum of 4 IDs allowed per list.

9.5.2.12 Config ID List (0x5A)

BOOL ANT_ConfigList(UCHAR ucChannel, UCHAR ucListSize, UCHAR ucExclude);

Parameters Type Bit Range Range Description

Channel Number UCHAR - 0..MAX_CHAN-1 The channel number

List Size UCHAR - 0-4 The size of the inclusion/exclusion list

Exclude UCHAR - 0-1 Sets the list as include (0) or exclude (1)

// Example Usage

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0);

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number is wild -card

ANT_AddChannelID(0, 145, 120, 123, 0); //add ID to list in index 0

ANT_AddChannelID(0, 152, 120, 123, 1); //add ID to list in index 1

ANT_ConfigList(0, 2, 0); //configure list as an inclusion list having 2 entries

ANT_OpenChannel(0);

Please note this message is only available on specific devices, refer to section 9.4 or request device capabilities (section

9.5.7.4).

This message shares its message ID with the “Config Encryption List ID” command. Please note this message is only used

for ANT slave channels. On encrypted ANT master channels the “Config Encryption List ID” command behaviour applies

instead.

 ANT Message Protocol and Usage, Rev 5.1

 Page 73 of 134

 thisisant.com

This message is sent to ANT to configure the inclusion/exclusion list The list size determines which channel IDs in the list

are to be used; setting a size of 0 disables the inclusion/exclusion list, while setting a size of N includes the IDs stored at list

indices 1-N (section 9.5.2.10). The exclude variable determines whether the IDs are to be found or to be ignored when the

device is searching.

9.5.2.13 Config Encryption ID List (0x5A)

BOOL ANT_ConfigCryptoList(UCHAR ucChannel, UCHAR ucListSize, UCHAR ucListType);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-

1

The channel number

List Size UCHAR 0..4 The size of the encryption whitelist or blacklist

List Type UCHAR As specified The whitelist will only allow slave encryption IDs on the list to

negotiate successfully and the blacklist will never allow slave

encryption IDs on the list to negotiate successfully:

0x00 – Whitelist

0x01 – Blacklist

// Example Usage

// Encrypted Tx channel…

UCHAR aucCryptoId1 = {0x01, 0x23, 0x45, 0x67}; // example crypto ID

UCHAR aucCryptoId2 = {0x89, 0xAB, 0xCD, 0xEF}; // example crypto ID

ANT_AddCryptoID(0, aucCryptoId1, 0); // add ID1 to crypto list in index 0 for channel 0

ANT_AddCryptoID(0, aucCryptoId2, 1); // add ID2 to crypto list in index 1 for channel 0

ANT_ConfigCryptoList(0, 2, 0x00); // configure crypto list for channel 0 as a whitelist having 2 entries

Please note this message is only available on specific devices, refer to section 9.4, or request capabilities.

This message shares its message ID with the “Config List ID” command. Please note this message is only used for

encrypted ANT master channels. On slave channels the “Config List ID” command behaviour applies instead.

This message is sent to ANT to configure the whitelist/blacklist for the encrypted ANT master channel. The list size

determines which encryption IDs in the list are to be used; setting a size of 0 disables the whitelist/blacklist, while setting a

size of N includes the IDs stored at list indices 1-N (section 9.5.2.11). The list type variable determines whether the slave

encryption IDs are to be whitelisted as the only devices allowed to negotiate, or blacklisted as the only devices immediately

rejected by the encrypted ANT master channel.

9.5.2.14 Set Channel Tx Power (0x60)

BOOL ANT_SetChannelTxPower(UCHAR ucChannel, UCHAR ucTxPower);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel number

Transmit

Power

UCHAR 0..4 Refer to section 9.4.3.

// Example Usage

ANT_SetChannelTxPower(0, 3); // set the RF output power to 0 dBm on channel 0

Page 74 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

This message is sent to the module to set the transmit power level for a specified channel. Please note this message is only

available on specific devices, refer to section 9.4.

This parameter must be used with extreme care. Setting the transmit power level to the highest level may not always be

the most appropriate solution. Higher power levels increase current consumption, affect the sphere of influence for the

device, and may have RF certification implications. A selected implementation must be tested to ensure that it meets the

regulatory requirements of the region of intended sale.

9.5.2.15 Channel Low Priority Search Timeout (0x63)

BOOL ANT_SetLowPriorityChannelSearchTimeout(UCHAR ucChannelNum, UCHAR ucSearchTimeout);

Parameters Type Range Default Description

Channel

Number

UCHAR 0..MAX_CHAN-1 - The channel number

Search Timeout UCHAR 0..255 2 (5 seconds) The search timeout to be used with by this channel for

receive searching. Each count in this parameter is

equivalent to 2.5 seconds.

i.e. 240 = 600 seconds = 10 minutes

A value of 0 will result in no low priority search.

A value of 255 specifies infinite search time-out.

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel on network number 0

// wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number wild -card and pairing bit OFF

// wait for RESPONSE_NO_ERROR

ANT_SetLowPriorityChannelSearchTimeout(0, 24); // low priority search timeout is 60s

Please note this message is only available on specific devices, check datasheets for capabilities. This message is sent to ANT

to configure the duration the receiver will search for a channel in low priority mode before switching to high priority mode.

Unlike high priority mode, a low priority search will not interrupt other open channels on the device while searching. If the

low-priority search times out, the module will switch to high priority mode until it either times out or the device is found.

See the “ANT Channel Search and Background Scanning Channel” application note for more details.

http://www.thisisant.com/developer/resources/downloads/#documents_tab

 ANT Message Protocol and Usage, Rev 5.1

 Page 75 of 134

 thisisant.com

9.5.2.16 Serial Number Set Channel ID (0x65)

BOOL ANT_SetSerialNumChannelId(UCHAR ucChannel, UCHAR ucDeviceType, UCHAR ucTransmissionType);

Parameters Type Bit Range Range Description

Channel Number UCHAR - 0..MAX_CHAN-1 The channel number

Pairing Request UCHAR (1bit) 7 0..1 Pairing Request.

Set this bit on master to request pairing

Set this bit on slave to find a pairing

transmitter.

Device Type ID UCHAR (7bits) 0-6 0..127 The device type. For a slave use 0 to match any

device type.

Transmission

Type

UCHAR - 0..255 The transmission type. For a slave, use 0 to

receive from any transmission type.

// Example Usage

// Tx channel

ANT_AssignChannel(0, 0x10, 0);

// wait for RESPONSE_NO_ERROR

ANT_SetSerialNumChannelId(0, 120, 123); // sets the lower 2 bytes of the serial number as the device number

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0); // wildcard used for the device number

// wait for RESPONSE_NO_ERROR

ANT_SetSerialNumChannelId(0, 120, 123); // device type 120 with pairing bit OFF

/***/

// Pairing bit on Rx channel

ANT_AssignChannel(0, 0x00, 0); // wildcard used for the device number

// wait for RESPONSE_NO_ERROR

ANT_SetSerialNumChannelId(0, 248, 123); // device type 120 with pairing bit ON

Please note this message is only available on specific devices, refer to section 9.4 or request device capabilities (section

9.5.7.4). This message configures the channel ID to be used by a specific channel in the same way as the Channel ID

command (refer to section 9.5.2.3); however it uses the two least significant bytes of the device’s serial number as the

device number.

9.5.2.17 Enable Extended Messages (0x66)

BOOL ANT_RxExtMesgsEnable (UCHAR ucEnable);

Parameters Type Range Default Description

Filler UCHAR 0 0 A filler 0 byte that must be included

Enable UCHAR 0..1 0 0 – Disable

1 – Enable

// Example Usage

ANT_RxExtMesgsEnable(1); // enable extended Rx messages

Please note this message is only available on specific devices, refer to section 9.4 or request device capabilities (section

9.5.7.4). This message is sent to ANT to enable or disable the extended Rx messages on the module. If supported, when

Page 76 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

this setting is enabled ANT will include the channel ID with the data messages. Refer to section 7.1.1 for more information

regarding extended data bytes.

9.5.2.18 Enable LED (0x68)

BOOL ANT_EnableLED(UCHAR ucEnable);

Parameters Type Range Default Description

Filler UCHAR 0 0 A filler 0 byte that must be included

Enable UCHAR 0..1 0 0 – Disable

1 – Enable

// Example Usage

ANT_EnableLED(1); // enable the LED

Please note this message is only available on specific devices, refer to section 9.4 or request device capabilities (section

9.5.7.4). This message is sent to the module to enable or disable the LED on the module. When the LED is enabled, it will

blink each time an RF transmit or receive event is detected by the module.

9.5.2.19 Enable Crystal (0x6D)

BOOL ANT_CrystalEnable(void);

Parameters Type Range Description

Enable UCHAR 0 A filler 0 byte that must be included

// Example Usage

ANT_CrystalEnable(0); // enable an external 32kHz Crystal

Please note this message is only available on specific devices, check datasheets for capabilities. If the use of an external

32kHz crystal input is desired, this message must be sent once, each time a start-up message is received (described in

section 9.5.3.1).

Enabling an external 32kHz crystal input as a low power clock source saves ~85uA while ANT is active when compared to

using the internal clock source.

When using other external clock sources that are already available on the initialization, the Enable Crystal command is not

required.

 ANT Message Protocol and Usage, Rev 5.1

 Page 77 of 134

 thisisant.com

9.5.2.20 Lib Config (0x6E)

BOOL ANT_LibConfig(UCHAR ucLibConfig)

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte that must be included

Lib Config UCHAR As specified 0 – Disabled

0x20 – Enables Rx Timestamp Output

0x40 – Enables RSSI Output

0x80 – Enables Channel ID Output

Other entries are combinations of set and cleared

states

// Example Usage

ANT_LibConfib(0xE0); // enable Channel ID output, RSSI output, and Rx Timestamp output

Please note this message is only available on specific devices, refer to section 9.4. This message is sent to ANT to enable or

disable the extended Rx messages on the module. If supported, when this setting is enabled ANT will include the channel

ID, RSSI, or timestamp data with the data messages. See section 7.1.1 for more information regarding the extended data

bytes.

9.5.2.21 Frequency Agility (0x70)

BOOL ANT_ConfigFrequencyAgility(UCHAR ucChannel, UCHAR ucFrequency1, UCHAR ucFrequency2, UCHAR ucFrequency3);

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 - The channel number

ucFrequency1 UCHAR 0-124 3 Sets operating frequency 1 parameter for ANT

frequency Agility.

ucFrequency2 UCHAR 0-124 39 Sets operating frequency 2 parameter for ANT

frequency Agility.

ucFrequency3 UCHAR 0-124 75 Sets operating frequency 3 parameter for ANT

frequency Agility.

// Example Usage

// Tx channel

ANT_AssignChannel(0, 0x10, 0, 0x04); //extended assignment byte enables frequency agility

 // wait for RESPONSE_NO_ERROR

ANT_ConfigFrequencyAgility(0, 5, 23, 80);

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0, 0x04); //extended assignment byte enables frequency agility

 // wait for RESPONSE_NO_ERROR

ANT_ConfigFrequencyAgility(0, 5, 23, 80); // Frequencies must match (in order)

/***/

Please note this message is only available on specific devices, refer to section 9.4.1 or request device capabilities (section

9.5.7.4). This function configures the three operating RF frequencies for ANT frequency agility mode and should be used in

conjunction with the ANT_AssignChannel() extended byte (section 9.5.2.2). Should not be used with shared, or Tx/Rx only

channel types. See section 5.2.1.4.1 and the “ANT Frequency Agility” application note for more details.

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 78 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.2.22 Proximity Search (0x71)

BOOL ANT_SetProximitySearch(UCHAR ucChannel, UCHAR ucSearchThreshold);

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 - The channel number

ucSearchThreshold UCHAR 0-10 0 Sets the proximity threshold bin:

0 – disabled

1:10 – closest to farthest

// Example Usage

// Rx channel

ANT_SetProximitySearch(0, 0x1); // search in nearest vicinity

Please note this message is only available on specific devices, refer to section 9.4 or request device capabilities (section

9.5.7.4). This function enables a one-time proximity requirement for searching. Only ANT devices within the set proximity

bin can be acquired. Search threshold values are not correlated to specific distances as this will be dependent to the system

design. A search threshold value of 1 (i.e. bin 1) will yield the smallest radius search and is generally recommended as there

is less chance of connecting to the wrong device.

Once a proximity search has been successful, this threshold value will be cleared, effectively disabling the proximity search

option. If another proximity search is desired, this command must be sent again prior to the next search. If the search

times out, or if using a background scanning channel, the proximity threshold retains its value. Refer to the “Proximity

Search” application note for more information.

9.5.2.23 Configure Event Buffer (0x74)

BOOL ANT_ConfigEventBuffer(UCHAR ucConfig,USHORT usSize, USHORT usTime)

Parameters Type Range Description

Config UCHAR 0x00

0x01

0x00 - Buffer Low Priority Events†

0x01 - Buffer all Events

All other values are reserved

Size USHORT 0-

MAX_BUFFER_

SIZE‡

Maximum number of bytes that will be stored before a buffer flush occurs

Setting size to 0 disables event buffering

Time USHORT 0-0xFFFF Maximum time in 10ms units before a buffer flush occurs

Setting time to 0 disables timer

// Example Usage

#define LOW_PRIORITY ((UCHAR)0x00);

#define ALL_EVENTS ((UCHAR)0x01);

USHORT usMyAppBufSize = 0x64;

USHORT usMaxBufTime = 0x03E8;

ANT_ConfigEventBuffer(LOW_PRIORITY, usMyAppBufSize, 0); // Buffer 100 bytes of events

ANT_ConfigEventBuffer(ALL_EVENTS, 0xFFFF, usMaxBufTime); // Buffer events for 10s at a time
†EVENT_TX, EVENT_RX_FAIL, and EVENT_CHANNEL COLLISION only
‡If the buffer size is set to a larger value than supported by the ANT device the device specific maximum is used instead

http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab

 ANT Message Protocol and Usage, Rev 5.1

 Page 79 of 134

 thisisant.com

Please note this message is only available on specific devices, refer to section 9.4. This command may be sent to ANT to

configure Event Buffering. Event Buffering allows the host to limit the frequency at which events are sent from the ANT

device to the host. By deferring the processing of ANT Events, the host may remain in a lower power state for a longer

period of time. Event Buffering may be used in conjunction with Event Filtering (Section 9.5.2.28).

Different groups of messages to buffer may be selected via the config argument (Low Priority Events or All Events)

The Buffer Size sets the number of bytes that can be stored before a flush occurs. Values that exceed the buffer size of the

ANT device will instead be set to the maximum supported size. This maximum supported size can be determined by setting

the buffer size to 0xffff and then requesting the EVENT_BUFFER_CONFIG message. Setting the buffer size to 0x00

disables buffering.

The Buffer Time is set in 10ms increments and sets the amount of time events are stored before a flush occurs. To use the

Buffer Time, the Buffer Size must also be set to a non-zero value. Typically when using the Max Buffer Time the Buffer Size

is set to the maximum value (0xFFFF). The buffer will be flushed on the next event after the buffer time elapses.

High priority events (Acknowledged or Burst messages) or other requests will trigger an event buffer flush before the buffer

size or time expires.

9.5.2.24 Channel Search Priority (0x75)

BOOL ANT_SetChannelSearchPriority(UCHAR ucChannelNum, UCHAR ucSearchPriority)

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 - The channel number

Search Priority UCHAR 0…255 0 The search priority to be used for this channel.

Higher numbers are given higher priority.

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel on network number 0

//wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); //device number wild card and pairing bit OFF

//wait for RESPONSE_NO_ERROR

ANT_SetChannelSearchPriority(0, 2) //search priority is 2

This message is used to configure the search priority of the channel. If a channel has a higher search priority, it will pre-

empt lower search priority search channels that are already in progress. A pre-empted search will resume when the higher

priority search has either acquired a connection, or timed out. This functionality is primarily for determining precedence with

multiple search channels that cannot co-exist (Search channels with different networks or RF frequency settings). Please

note that this message is only available on specific devices, refer to section 9.4 for capabilities.

Example:

If both channel 0 and channel 1 have a search priority of 0, then whichever channel goes to search first is the search

channel and the other channel must wait until it is finished before searching.

If channel 1 has a search priority of 2 and channel 0 has a search priority of 0, then channel 1 will become the search

channel anytime it goes to search, forcing channel 0 to wait until channel 1 has either acquired a device, or times out.

9.5.2.25 Set 128-Bit Network Key (0x76)

BOOL ANT_Set128BitNetworkKey(UCHAR ucNetNumber, UCHAR *pucKey);

Page 80 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Parameters Type Range Description

Network Number UCHAR 0..MAX_NET-1 The network number

Network Key UCHAR[16] N/A The 16 byte network key

// Example Usage

UCHAR aucNetworkKey[] = {0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,

0x01}; // sample Network Key

ANT_Set128BitNetworkKey(1, aucNetworkKey); // assign the network key to network number 1

// wait for RESPONSE_NO_ERROR

ANT_AssignChannel(0, 0x00, 1); // receive channel on network 1

This message configures a network address for use by one of the available network numbers and is only applicable to multi-

mode devices.

This command is not required on multi-mode devices when using the default public network, ANT+ network or ANT-FS

network. The default public network key is already assigned by default to Network Number 0, the ANT+ network key is

assigned to Network Number 1, and the ANT-FS network key is assigned to Network Number 2.

Only valid network keys will be accepted by ANT. Note, if a Set 128-bit Network Key (0x76) command is sent with an invalid

key, a RESPONSE_NO_ERROR may be received, but the network key will be unchanged; it will retain the value it held prior

to the command being issued.

Note that network keys, transmission type, device type IDs and RF channels are assigned and regulated to maintain

network integrity, and interoperability, except for the default public network. Please visit www.thisisant.com for more details

on available standard network types or on how to obtain your own network key.

9.5.2.26 High Duty Search (0x77)

BOOL ANT_ConfigHighDutySearch(UCHAR ucChannel, UCHAR ucEnable, UCHAR ucSuppressionCycle);

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte that must be included.

Enable UCHAR 0..1 0x01: Enable High Duty Search

0x00: Disable High Duty Search

Suppression

Cycle

(optional)

UCHAR 0…5 Interval to allow high priority search in increments of 250ms. The search

period is 1.25s. 0 enables high priority search full time and 5 suppresses it

entirely. The default setting is 3. Not all parts support this setting.

// Example Usage

// Rx channel

ANT_AssignChannel(0, 0x00, 0);

// wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number is wild -card

// wait for RESPONSE_NO_ERROR

ANT_ConfigHighDutySearch (0, 1, 4); // High duty search on channel 0, enable 1/1.25s low priority search

http://www.thisisant.com/

 ANT Message Protocol and Usage, Rev 5.1

 Page 81 of 134

 thisisant.com

// wait for RESPONSE_NO_ERROR

ANT_OpenChannel(0);

This message is sent to enable high duty searching on a device. The command must be set with all channels closed,

otherwise an error will be returned.

High duty search uses the entire available resources of the radio to search for a master device. The effect is that latency to

acquire the master device is drastically reduced to an average of ½ period assuming ideal RF conditions. Once the device is

acquired the channel becomes synchronized to the master. This mode of operation consumes high power while in search

and should only be used in applications that have considerable power resources available such as PC and mobile

applications.

A channel in high duty search can co-exist with other channels. However the effect of the high duty search on the other

channels must be taken into account as a high priority searching scheme can interfere with the performance of other

channels causing unacceptable outages due to constant channel collisions. To mitigate this problem the suppression cycle

may be used to alternate windows of high and low priority search modes. A search window is defined to be 250ms within a

period of 1.25s. The application has the option of setting X windows of low priority search within the period. For example, a

suppression cycle of 1 opens up one 250ms low priority window within a 1.25s period. A suppression cycle of 0 uses high

priority search across the entire period, whereas a suppression cycle of 5 uses low priority across the entire period. For

more details please consult the “ANT Channel Search and Background Scanning” application note. Please note that not all

parts that support high duty search also support the suppression cycle. For these parts the high duty search uses high

priority mode at all times. High duty search may also be affected by co-existence with other protocols on multi-mode com

chips. Please refer to section 9.4 and the datasheet of specific parts for more details.

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 82 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.2.27 Configure Advanced Burst (0x78)

BOOL ANT_ConfigAdvancedBurst(BOOL bEnable, UCHAR ucMaxPacketLength, ULONG ulRequiredFeatures, ULONG

ulOptionalFeatures);

 OR

BOOL ANT_ConfigAdvancedBurstExt(BOOL bEnable, UCHAR ucMaxPacketLength, ULONG ulRequiredFeatures, ULONG

ulOptionalFeatures, USHORT usStallCount, UCHAR ucRetryCount);

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte that must be included

Enable UCHAR 0..1 Enables/disables advanced burst mode. Advanced burst is disabled by

default.

0x00 – Disable

0x01 – Enable

Max Packet

Length

UCHAR As specified Specifies the maximum burst packet size that will be sent or received by the

device:

0x01 – 8 byte

0x02 – 16 byte

0x03 – 24 byte

Required

Features

ULONG

(3

bytes,

little

endian)

As specified Required advanced burst features. See “Supported Features” field in section

9.5.7.7 for a list of available features.

Optional

Features

ULONG

(3

bytes,

little

endian)

As specified Optional advanced burst features. See “Supported Features” field in section

9.5.7.7 for a list of available features.

Stall Count

(optional)

USHORT

(little

endian)

0..65535 Number of stall packets that will be sent before a transfer enters the retry

count. Each packet corresponds to ~3ms. Typical default value is 3210 to

provide ~10s of stalling.

This byte is optional and does not need to be included

Retry Count

Extension

(optional)

UCHAR 0..255 Number of retry count cycle (5 retries) extensions. Typical default value is

4, providing 20 retries.

This byte is optional and does not need to be included

// Example Usage

ANT_ConfigAdvancedBurst(0, 0x01, 0x03, 0x01, 0x00); // Enable advanced burst, with maximum packet size of 24 bytes

and frequency hopping as a required feature.

This message is sent to ANT to enable and configure advanced burst. Advanced burst provides enhancements to the burst

transfer mechanism, by increasing the transfer speed and providing additional features to improve the efficiency of

transfers. For more details on available advanced burst features, please refer to the “Supported Features” field in section

9.5.7.7.

 ANT Message Protocol and Usage, Rev 5.1

 Page 83 of 134

 thisisant.com

Advanced burst introduces support for burst packets of up to 24 bytes (transfer speed up to 60kbps). Devices with limited

serial buffering may set a smaller maximum packet size; however, this will limit the transfer speed accordingly (up to 20

kbps for 8 byte packets, and 40 kbps for 16 byte packets). Note that the actual packet size used for the transfer will depend

on the supported packet size on both ends.

Advanced burst features can be enabled independently as “required” or “optional”. Required features not supported by the

peer device will cause a transfer failure. Optional features not supported by the peer device will not cause a transfer failure

and instead, will not be used for the transfer. Note that if particular advanced burst features are supported by an ANT

device, but configured as disabled, they will be used in a burst transfer if the burst is initiated by another device requesting

to use these features.

In order to make the burst transfer less susceptible to failure in the case of data throughput limitations between the host

and ANT (i.e., if the host is unable to send data to ANT on a timely basis, or there is a lack of ability to push data to the

host on the side receiving the burst), a stall mechanism is available. In this case, a configurable number of stall packets can

be used to maintain the RF link and timing without transferring any data to the host. These packets are sent automatically

by ANT and do not contain a data payload (similar to acknowledgements sent in response to acknowledged messages).

Additional retry cycles (one cycle = 5 retries) can be enabled to make transfers less susceptible to failure. This allows

extending the number of retries for each burst packet beyond the default 5 retries used in normal burst transfers. Setting

the Retry Count Extension requires the Stall Count to also be set. Retry counts should be synchronized between devices

(i.e., they must match between master and slave). For interoperability with implementations from other manufacturers it is

recommended to use the default value.

Advanced burst transfer is backwards compatible with devices that do not support this data type: if an advanced burst

transfer is attempted with a device without this capability, the transfer will be downgraded to a normal burst transfer

provided that a key property is not marked as required. This includes all advanced burst configuration options, including

retry count extension and stall count.

Please note that this message is only available on specific devices, refer to section 9.4.1or request device capabilities

(section 9.5.7.4).

9.5.2.28 Configure Event Filter (0x79)

BOOL ANT_ConfigEventFilter(USHORT usEventFilter)

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte that must be included

Event Filter USHORT

(2 bytes, little

endian)

0..65535 The Event Filter bit fields is as follows:

Bit 0 – Filter event 1 (RESPONSE_NO_ERROR)

Bit 1 – Filter event 2 (EVENT_RX_SEARCH_TIMEOUT)

…

Bit N – Filter event (N+1) where N is max 15

Setting a bit to 1 applies a filter to the corresponding event.

// Example Usage

ANT_ConfigEventFilter(0, 0x04); //Filter event value 3: EVENT_TX

Please note that this message is only available on specific devices as listed in section 9.4. This message is sent to ANT to

apply a filter to specified events. Refer to section 9.5.6.1 for a list of events and their corresponding values.

Event filtering allows the host to prevent specific ANT events from being sent from the ANT device to the host. This allows

the host to remain in a lower power state for longer, and to reduce processing. Event filtering may be used in conjunction

with event buffering (section 9.5.2.23).This command will not yield significant power reduction when used on SOCs.

Page 84 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.2.29 Configure Selective Data Updates (0x7A)

BOOL ANT_ConfigSelectiveDataUpdate(UCHAR ucChannel, UCHAR ucSelectedData)

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel number that SDU mask applies to.

Selected Data UCHAR

N/A The Selected Data bit fields is as follows:

- Bits 0-4: SDU Mask Number (cannot exceed

MAX_SDU_MASKS)

- Bits 5-6: Reserved set to 0

- Bit 7: 0 -> Filter Broadcast messages only

 1 -> Filter Broadcast and Acknowledged Messages

A value of 0xFF disables the SDU Mask for the specified

channel

// Example Usage

UCHAR aucSduMask = {0x00, 0x00, 0x00, 0x00, 0x00 ,0x00, 0x00, 0xFF }; // Configure mask to look for changes in the

last byte of the payload

ANT_SetSduMask(0x01, aucSduMask); //Define SDU Mask 1

ANT_ConfigSelectiveDataUpdate(0x00, 0x81); //Apply SDU Mask 1 to broadcast and acknowledged messages on channel 0

//To clear the selective data updates setting from a channel:

ANT_ConfigSelectiveDataUpdate(0x00,0x00);

Please note that this message is only available on specific devices as listed in section 9.4. This message is sent to ANT to

apply a selective data update (SDU) mask to a channel. Refer to section 9.5.2.29 for information about SDU masks.

Selective data updating allows an application to request that an ANT device only generates received data serial messages if

data in specified bytes has changed. This could be useful for display units or similar devices which only need to update the

display when the displayed data has actually changed and can remain in a lower power state otherwise.

This feature can be enabled for Broadcast messages only or Broadcast and Acknowledged messages. This feature does not

apply to Burst Transfers. Once a channel is configured for selective data updates, it will remain configured until it is cleared

(by resending the command with the selected data field set to 0xFF).

Note that if this feature is used in conjunction with single channel encryption, then the selective data update mask will be

applied after the data has been decrypted.

 ANT Message Protocol and Usage, Rev 5.1

 Page 85 of 134

 thisisant.com

9.5.2.30 Set Selective Data Update (SDU) Mask (0x7B)

BOOL ANT_SetSduMask(UCHAR ucSduMaskNumber, UCHAR *pucMask)

Parameters Type Range Description

SDU Mask Number UCHAR 0..MAX_SDU_MASKS-

1

The SDU mask number to be associated with the SDU Mask

SDU Mask

(8 bytes)

UCHAR[8]

N/A Sets the bits in an 8-byte message that should be compared

for selective data update purposes.

0 – Ignore

1 – Compare and send data update when this data changes

// Example Usage

UCHAR aucSduMask = {0x00, 0x00, 0x00, 0x00, 0x00 ,0x00, 0x00, 0xFF }; // Configure mask to look for changes in the

last byte of the payload

ANT_SetSduMask(0x01, aucSduMask); //Define SDU Mask 1

Please note that this message is only available on specific devices as listed in section 9.4. This message is sent to ANT to

define a selective data update mask.

Selective data update masks consist of an 8 byte bit field, where each bit indicates whether to ignore or process data in the

corresponding bit locations in the payload of a received data message. For example, consider the following SDU mask:

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF

Setting this Mask value would indicate that the application should only be notified if any bit in the last byte in a standard

message payload changes.

9.5.2.31 Configure User NVM (0x7C)

BOOL ANT_ConfigUserNVM(USHORT usAddr, UCHAR* ucData)

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte that must be included

Address USHORT 0..MAX_ADDRESS¥ Little endian offset into user space where data will be written

Data UCHAR[] Variable length binary user data to be stored

// Example Usage

USHORT myBaseAddr = 0x100;

UCHAR myAppData = “ANT+ Alliance”;

ANT_ConfigUserNVM(myBaseAddr, myAppData, sizeof(myAppData));

¥The combination of Address and Size must not exceed the user NVM space of the device.

Please note this message is only available on specific devices, refer to section 9.4.

This command is sent to ANT to configure the user NVM space on an ANT device with application specific data. This

configuration should not be done while channels are active. There are no word boundaries, data may be written to any

Page 86 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

address within the user space. Block size may be arbitrary up to the device specific maximum (refer to the device

datasheet). Data may not be written beyond the user address range. It is not possible to secure NVM so existing data may

be overwritten. Data may be read from the user NVM using the requested response message to request message 0x7C as

described in section 9.5.7.11.

9.5.2.32 Enable Single Channel Encryption (0x7D)

BOOL ANT_EncryptedChannelEnable(UCHAR ucChannel, UCHAR ucEnable, UCHAR ucKeyNum, UCHAR ucDecimationRate)

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel number

Encryption Mode UCHAR As specified The “include user data” option will pass a user data field to the master

with the encryption negotiation:

0x00 – Disable

0x01 – Enable

0x02 – Enable and Include User Information String

Volatile Key Index UCHAR 0 Specifies which active encryption key (stored in volatile memory) to

reference for this channel

Decimation Rate UCHAR 1..255 Division of the master channel rate by the slave’s tracking channel

rate

// Example Usage

ANT_EncryptedChannelEnable(0, 0x01, 0, 4); // Encrypt channel 0, normal enable with 1 Hz Slave tracking 4Hz Master

This message is sent to ANT to enable encryption/decryption of an ANT channel using 128-bit AES-CTR. Advanced burst

mode MUST be enabled on both the master and slave nodes before single channel encryption can be enabled; see “

 ANT Message Protocol and Usage, Rev 5.1

 Page 87 of 134

 thisisant.com

Configure Advanced Burst (0x78)” for more detail. Single channel encryption operates independently from all other

advanced burst mode configuration parameters.

Enabling “Include User Information String” (section 9.5.2.34) will cause the ANT slave channel to pass a 19-byte user

information string to the encrypted ANT master channel if the negotiation is successful. This feature does not need to be

enabled on the encrypted ANT master channel.

Single channel encryption can only be enabled on a slave channel once it has acquired an encrypted ANT master channel.

Once it is enabled on the slave channel, the slave will automatically initiate a negotiation request with the encrypted ANT

master channel node. ANT will respond with either an ENCRYPT_NEGOTIATION_SUCCESS or

ENCRYPT_NEGOTIATION_FAIL event depending on the result of the attempted negotiation. If the negotiation is successful

the user information string will be included with the ENCRYPT_NEGOTIATION_SUCCESS event. Refer to section 9.5.6.2 for

details.

Single channel encryption must be re-enabled on a slave channel if the channel is closed or if the channel drops to search in

order to trigger a new negotiation.

The decimation rate is the division of the encrypted ANT master channel period by the ANT slave channel period which is

tracking it. The decimation rate parameter does not need to be specified on the ANT master and should be set to 1. For

example, if an ANT slave channel tracking at 1 Hz was attempting to pair to an encrypted ANT master channel transmitting

at 4 Hz, the decimation rate should be set to 4 on the ANT slave channel, and to 1 on the master channel.

Note that single channel encryption can only be enabled on one channel per node.

Page 88 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.2.33 Set Encryption Key (0x7E)

BOOL ANT_SetCryptoKey(UCHAR ucKeyNum, UCHAR *pucKey);

Parameters Type Range Description

Volatile Key Index UCHAR 0 The reference index of the key in volatile memory to be set

Encryption Key UCHAR[16] N/A The 128-bit secret key to be set

// Example Usage

UCHAR aucCryptoKey =

{0x03,0x01,0x04,0x01,0x05,0x09,0x02,0x06,0x05,0x03,0x05,0x08,0x09,0x07,0x09,0x03}; //example encryption key

ANT_SetCryptoKey(0, aucCryptoKey); // assign the example encryption key to key number 0

This message is sent to set the specified key location with a 16-byte encryption key which will be used for ANT single

channel encryption/decryption. Note that only one volatile key index is available on current parts, and this parameter must

therefore be set to zero.

9.5.2.34 Set Encryption Info (0x7F)

 BOOL ANT_SetCryptoInfo(UCHAR ucSetParam, UCHAR *pucInfo);

Parameters Type Range Description

Set Parameter UCHAR

N/A Determines the value being set by the string parameter:

0x00 – Encryption ID

0x01 – User Information String

0x02 – Random Number Seed

Data String

UCHAR[4]

or

UCHAR[19]

or

UCHAR[16]

N/A The Encryption ID of the device to be set or the user information string to

be set or the random number seed to be set depending on the set parameter

operation requested respectively:

Encryption ID - 4 Bytes

User Information String - 19 Bytes

Random Number Seed - 16 Bytes

// Example Usage

UCHAR aucCryptoId = {0x00, 0x00, 0x04, 0x02}; // example encryption ID

ANT_SetCryptoInfo(0x00, aucCryptoId); // assign the example encryption ID

UCHAR aucUserInfo =

{0x03,0x01,0x04,0x01,0x05,0x09,0x02,0x06,0x05,0x03,0x05,0x08,0x09,0x07,0x09,0x03,0x02,0x03,0x08}; // example user

ANT_SetCryptoInfo(0x01, aucUserInfo); // assign the example user info string

UCHAR aucRanNumSeed =

{0x03,0x01,0x04,0x01,0x05,0x09,0x02,0x06,0x05,0x03,0x05,0x08,0x09,0x07,0x09,0x03}; // example random number seed

ANT_SetCryptoInfo(0x02, aucRanNumSeed); // assign the example random number seed

This message is used to set the parameters used in the ANT single channel encryption/decryption process:

 The encryption ID is a unique 4-byte string used for identification which is always passed with an encryption

negotiation event from the master channel to the slave and vice versa. This value must be set each time a channel

with single channel encryption enabled is assigned. The encryption ID is the parameter used to identify devices for

encryption whitelist/blacklist purposes (section 9.5.2.11).

 The user information string is an optional 19-byte data string which is passed from the ANT slave to the encrypted

ANT master channel after a successful negotiation event.

 ANT Message Protocol and Usage, Rev 5.1

 Page 89 of 134

 thisisant.com

 The random number seed is required for certain devices which do not have a built-in random number generator

and must be seeded by a cryptographically secure random number generator. Refer to the individual device’s

datasheet for information.

9.5.2.35 Channel Search Sharing (0x81)

BOOL ANT_SetSearchSharingCycles(UCHAR ucChannelNum, UCHAR ucSearchSharingCycles)

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 - The channel number

Search Sharing

Cycles

UCHAR 0…255 0 The number of search cycles to run before

alternating searches. Setting this value to 0

disables search sharing.

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // slave channel on network number 0

//wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); //device number wild card and pairing bit OFF

//wait for RESPONSE_NO_ERROR

ANT_SetSearchSharingCycles(0, 1) //search sharing is enabled on channel 0, will run for 1 search cycle before alternating

// Assign second channel

ANT_AssignChannel(1, 0x00, 1); // slave channel on network number 1

// wait for RESPONSE_NO_ERROR

ANT_SetChannelId(1, 0, 120, 123); // device number wild card and pairing bit OFF

//wait for RESPONSE_NO_ERROR

ANT_SetSearchSharingCycles(1,1); //search sharing is enabled on channel 1, will run for 1 search cycle before alternating

This message is used to configure the search sharing behaviour of the channel. To enable two (or more) channels to search

concurrently on different RF channels or network keys, they can be configured to alternate which channel uses the radio for

searching. The search sharing cycles parameter is used to specify how many cycles of the search waveform should be run

before switching to other channels which also have search sharing enabled, are currently searching, and do not share the

same RF channel or network key.

Search sharing will only be active for slave channels which share the same search priority level; i.e. slave channels with

higher channel search priority (section 9.5.2.24) will not share usage of the radio with slave channels of lower search

priority when attempting to acquire a channel. This is not to be confused with low priority search timeout (section 9.5.2.15),

which prevents searches on a channel from interrupting other active channels.

It is recommended that the search sharing cycles parameter be set to 1 (or to 7 on devices with high duty

search enabled). This will reduce any potential complications due to search sharing. High duty search cycles require

additional time to start and stop compared to normal searches, thus setting the search sharing cycles parameter too low will

result in increased acquisition times. Please note that some devices have high duty search enabled by default, e.g. USB-m.

Assuming power consumption constraints allow, it is recommended that the fast search waveform be set on devices which

enable search sharing but do not enable high duty search. Optimizing the search waveform may be used to decrease the

search latency.

The search waveform of each channel should be set to the same value in order to improve the determinism of the

acquisition time for each channel. Differing search waveforms on each channel may result in extremely variant acquisition

times for each channel.

Page 90 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Each additional channel that shares searching with other channels will increase the average acquisition time by a

proportional amount, assuming the channels share the same search waveform and search sharing cycle count. For example,

if the average acquisition time for every channel is 1 second, then each additional channel that the search is shared with will

increase the average acquisition time by 1 second.

Note that whenever search sharing is used it is important to test with each application’s master channel period to ensure

that each application’s master channel period(s) can always be found. If incompatible parameters are chosen for

search sharing it is possible that the search time for a given master may be infinite.

For more assistance on optimizing search acquisition time for multiple RF channels and/or networks, please contact

Dynastream at www.thisisant.com.

http://www.thisisant.com/

 ANT Message Protocol and Usage, Rev 5.1

 Page 91 of 134

 thisisant.com

9.5.2.36 Load/Store Encryption Key from/in NVM (0x83)

BOOL System_CryptoKeyNVMOp(UCHAR ucOperation, UCHAR *pucParams, UCHAR ucSize);

Parameters Type Range Description

Operation UCHAR N/A Determines the operation to be executed:

0x00 – Load Encryption Key from NVM

0x01 – Store Encryption Key in NVM

NVM Key Index UCHAR 0..3 The index of the Encryption Key in NVM to be loaded or stored to

depending on the selected operation

Volatile Key Index

or

Encryption Key

UCHAR

or

UCHAR[16]

0

or

N/A

When Operation is set to 0x00: The index of the volatile key

location that should be loaded with the NVM stored encryption

key.

When Operation is set to 0x01: The 128-bit Encryption Key to

be stored to NVM

// Example Usage

System_CryptoKeyNVMOp(0x00, 1, 0); // copy encryption key stored in NVM key index 1 to volatile key index 0

UCHAR aucCryptoKey =

{0x03,0x01,0x04,0x01,0x05,0x09,0x02,0x06,0x05,0x03,0x05,0x08,0x09,0x07,0x09,0x03}; //example encryption key

System_ CryptoKeyNVMOp(0x01, 0, aucCryptoKey); // store the example encryption key in NVM key index 0

This message is used to load/store encryption keys from/to non volatile memory on the device. If a load operation is

requested, the Volatile Key Index parameter is used and the command becomes 3 bytes long. If a store operation is

requested the Encryption Key parameter is used and the command becomes 18 bytes long.

Page 92 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.2.37 Set USB Descriptor String (0xC7)

BOOL ANT_SetUSBDescriptorString(UCHAR ucStringNum, UCHAR *pucDescString, UCHAR ucStringSize);

Parameters Type Range Description

String Number UCHAR 0..3 Descriptor String Number:

0 – PID/VID

1 – Manufacturer String

2 – Device String

3 – Serial Number String

String Character 0 UCHAR 0..255 String Character 0/VID LSB

String Character 1 UCHAR 0..255 String Character 1/VID MSB

String Character 2 UCHAR 0..255 String Character 2/PID LSB

String Character 3 UCHAR 0..255 String Character 3/PID MSB

String Character 4 – (N-1) UCHAR 0..255 Remaining String Characters

String Character N UCHAR 0 NULL character (except for string 0, PID/VID string)

// Example Usage

UCHAR aucDescString0 = {0xCF, 0x0F, 0x08, 0x10}; // sample VID/PID string

UCHAR aucDescString1 = “Dynastream Innovations”; // sample Manufacturer String

UCHAR aucDescString2 = “ANT USBStick2”; // sample Device String

UCHAR aucDescString3 = {‘1’, ’2’, ’3’, 0}; // sample Serial Number String (SN will be displayed by the OS as 123)

ANT_SetUSBDescriptorString (0, aucDescString0, sizeof(aucDescString0)); // set the VID/PID string

ANT_SetUSBDescriptorString (1, aucDescString1, sizeof(aucDescString1)); // set the Manufacturer String

ANT_SetUSBDescriptorString (2, aucDescString2, sizeof(aucDescString2)); // set the Device String

ANT_SetUSBDescriptorString (3, aucDescStr ing3, sizeof(aucDescString3)); // set the Serial Number String

IMPORTANT: This message configures USB descriptor strings. The AP2-USB does not support re-writeable flash

memory. Instead, space is allocated for three instances of each string descriptor. The last descriptor set is the one that is

used. Once a descriptor has been set three times, it cannot be changed.

 ANT Message Protocol and Usage, Rev 5.1

 Page 93 of 134

 thisisant.com

9.5.3 Notifications

9.5.3.1 Start-up Message(0x6F)

ResponseFunc (-, 0x6F)

Parameters Type Range Description

Start-up

Message

UCHAR 0..255 The Start-up Message bit field is as follows:

0x00 – POWER_ON_RESET

Bit 0 – HARDWARE_RESET_LINE

Bit 1 – WATCH_DOG_RESET

Bit 5 – COMMAND_RESET

Bit 6 – SYNCHRONOUS_RESET

Bit 7 – SUSPEND_RESET

Other bits are reserved

Please note this message is only available on specific devices, refer to section 9.4. The start-up message returns a 1-byte bit

field, on every ANT power up or reset event. The bit field indicates the type of reset that occurred.

9.5.3.2 Serial Error Message (0xAE)

ResponseFunc(-,0xAE)

Parameters Type Range Description

Serial Error

Message

UCHAR 0..255 The first byte of data (usually the channel number) is the error

number:

Error number 0 – the first byte of the USB data packet was not the

ANT serial message Tx sync byte (0xA4)

Error number 2 – the checksum of the ANT message was incorrect

Error number 3 – the size of the ANT message was too large

The rest of the data contains a copy of the message that was sent.

Please note this message is only available on specific devices. Refer to section 9.4 for capabilities.

The Serial Error Message is sent in response to a poorly formed USB data. The data portion of this message may be used to

debug the USB packet.

Page 94 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.4 Control Messages

9.5.4.1 Reset System (0x4A)

BOOL ANT_ResetSystem(void);

Parameters Type Range Description

Filler UCHAR 0

This message is sent to the module to reset the system and put it in a known, low-power state. Execution of this command

terminates all channels. All information previously configured in the system can no longer be considered valid. After a Reset

System command has been issued, the application should wait 500ms to ensure that ANT is in the proper, “after-reset”

state before any further commands are issued from the host. For AT3 and newer modules, the RTS line can be monitored

instead: only send commands after an RTS toggle has been observed. Please see the Interfacing with ANT General Purpose

Chipsets and Modules Document for more information.

9.5.4.2 Open Channel (0x4B)

BOOL ANT_OpenChannel(UCHAR ucChannel);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The number of the channel to be opened

This message is sent to the module to open a channel that has been previously assigned and configured with the

configuration messages outline in prior sections. Execution of this command causes the channel to commence operation,

and either data messages or events begin to be issued in association with this channel.

9.5.4.3 Close Channel (0x4C)

BOOL ANT_CloseChannel(UCHAR ucChannel);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The number of the channel to be closed

This message is sent to close a channel that has been previously opened. The host will initially receive a

RESPONSE_NO_ERROR message indicating the message was successfully received by ANT. The actual closing of the

channel will be indicated by an EVENT_CHANNEL_CLOSED, and the host should wait for this message before performing

any other operations on the channel.

When a channel is closed it remains assigned with all associated parameters remaining valid. The channel may be reopened

at any time with the Open Channel Command.

 ANT Message Protocol and Usage, Rev 5.1

 Page 95 of 134

 thisisant.com

9.5.4.4 Request Message (0x4D)

BOOL ANT_RequestMessage(UCHAR ucChannel, UCHAR ucMessageID);

 OR

BOOL ANT_RequestMessage(UCHAR ucChannel, UCHAR ucMessageID, USHORT usAddr, UCHAR ucSize);

Parameters Type Range Description

Channel

Number/Sub

Message ID

UCHAR 0..MAX_CHAN-1 The channel number associated with the message request ,

or sub message ID for commands that apply to the whole

device.

If requesting Advanced Burst Capabilities/Configuration,

instead of channel number, set to:

0x00 – Request Advanced Burst Capabilities

0x01 – Request Advanced Burst Current Configuration

Message ID

Requested

UCHAR Refer to section 9.3 ID of the message being requested

addr¥ USHORT Refer to section

9.5.7.11

Starting address to read, used when requesting User NVM

message only

size¥ UCHAR Refer to section

9.5.7.11

Block size to read, used when requesting User NVM

message only

// Example Usage

ANT_RequestMessage(0, MESG_CHANNEL_ID_ID); // request the channel ID of channel 0

// response message contains the channel ID; no RESPONSE_NO_ERROR will be sent by ANT

¥These arguments are only used when requesting the User NVM message. The combination of addr and size must not

exceed the user NVM space of the device.

This message is sent to the device to request a specific information message from the device.

Valid messages include channel status, channel ID, ANT version, capabilities, event buffer, advanced burst

capabilities/configuration, event filter, and user NVM. Requesting one of these messages causes ANT to send the

appropriate response message. Please see these messages for specific details.

9.5.4.5 Open Rx Scan Mode (0x5B)

BOOL ANT_OpenRxScanMode(0 , UCHAR ucSyncChannelPacketsOnly);

Parameters Type Range Description

Filler UCHAR 0 Filler byte

Synchronous Channel

Packets Only

(optional)

UCHAR 0..1

(optional)

0 – Default configuration.

1 – Allow synchronous channel packets only.

// Example Usage

ANT_OpenRxScanMode(0,1); //Enable Rx Scan Mode allowing synchronous channel packets only

Please note this message is not available on all ANT modules; refer to section 9.4 or request the device capabilities (section

9.5.7.4).

This message is sent to the module in order to open channel 0 in continuous scan mode. Channel 0 should have been

previously assigned and configured as a slave receive channel. Execution of this command causes channel 0 to commence

Page 96 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

operation in continuous scanning mode. In this mode, the radio is active and receiving 100% of the time; no other channels

may operate when the node is in continuous scanning mode. The node will pick up any message, regardless of the message

period, that is transmitted on the correct RF frequency and matches its channel ID mask. It can receive from multiple

devices simultaneously. It can also have messages pending to be sent to MAX_CHAN – 1 individual devices that are

communicating with the scanning device. This is achieved by passing an extended data message with the correct channel

ID for the device the data is to be sent to on a channel in the range of 1:MAX_CHAN – 1. Refer to the “Continuous Scanning

Mode for Asynchronous Topologies” application note.

Continuous scanning mode may also be configured to only return synchronous channel packets on newer devices.

Synchronous channel packets consist of the initial message which an ANT master channel sends on every channel period in

the forward direction (master to slave). This is useful to filter out acknowledged messages occurring in the reverse direction

(slave to master), and broken burst messages occurring between ANT channels which the scanning mode device may be

receiving from.

9.5.4.6 Sleep Message (0xC5)

BOOL ANT_SleepMessage(void);

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte that must be included

// Example Usage

ANT_SleepMessage(0); // Puts ANT into deep sleep mode

Please note this message is only available on specific devices, refer to section 9.4. The Sleep command will put ANT into an

ultra-low power mode (i.e. deep sleep_mode). Once this command has been issued, ANT will wait 1.2ms before attempting

to enter this mode, by which time the SLEEP/(!MSGRDY) line must be set high. ANT will remain in this state until the

SLEEP/(!MSGRDY) line is pulled low. Please refer to the “ANT Power States” application note and the “Interfacing with ANT

General Purpose Chipsets and Modules” document for more details.

On exiting deep sleep mode, ANT will perform a reset and any prior configuration information will be lost.

http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab

 ANT Message Protocol and Usage, Rev 5.1

 Page 97 of 134

 thisisant.com

9.5.5 Data Messages

There are four data types for sending and receiving data on a channel. These are described below.

9.5.5.1 Broadcast Data (0x4E)

BOOL ANT_SendBroadcastData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

 OR

ChannelEventFunc (Channel, EVENT_RX_BROADCAST) // Receive

On embedded platforms, the broadcast message may be processed the same as any other message received from ANT by

processing the MESG_BROADCAST_DATA_ID (0x4E). In order to ensure appropriate message processing, check the

message length field. For standard message packets, the message length will be 9. For flagged extended messages, the

message length will be greater to account for the extra information appended to the data; check the flag byte for the

presence of extended data bytes. The message length will be determined by the type of extended data present.

Note, data payload for a broadcast message is 8 bytes. The host application shall always define the full 8 bytes of the data

packet and set unused bytes appropriately. If an application requires less than 8 bytes of data to be transmitted over the

air, the remaining unused bytes shall be set to a predefined “unused” value (for example, ANT+ device profiles specify

unused byte values, such as 0x00 or 0xFF).

For PC platforms, the ANT DLL will generate a channel event that may be processed the same as other events. The event is

EVENT_RX_BROADCAST for standard broadcast messages and EVENT_RX_FLAG_BROADCAST for flagged extended data

messages.

Please note that flagged extended data messages must be enabled using the ANT_RxExtMesgsEnable (0x66) or

ANT_LibConfig(0x6E) messages.

Any application that processes flagged messages to get channel ID should also process legacy extended messages

(MESG_EXT_BROADCAST_DATA_ID (0x5D) for embedded or EVENT_RX_EXT_BROADCAST for PC applications) to ensure

compatibility.

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is for/from

Data 0 UCHAR 0..255 The first data byte

..

Data 7 UCHAR 0..255 The eighth data byte

Flag Byte

(optional)

UCHAR Refer to section

7.1.1

Indicates presence of extended

data bytes

Extended Data Bytes

(optional)

Varies, Refer to

section 7.1.1

Refer to section

7.1.1

Optional extended messages bytes.

Only included if flag byte indicates

their presence. Refer to section

7.1.1 for more information on the

possible extended data bytes.

Page 98 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TX:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendBroadcastData(Channel_0, DATA);

 break;

 }

 }

 break;

 }

 }

}/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_FLAG_BROADCAST: // PC only; use MsgID 0x4E in embedded

 {

 UCHAR ucFlag = aucRxBuffer[9]; // First byte after the payload

 if(ucFlag & ANT_EXT_MESG_BITFIELD_DEVICE_ID)

 {

 // Channel ID of the device that we just received a message from.

 USHORT usDeviceNumber = aucRxBuffer [10] |(aucRxBuffer [11] << 8);

 UCHAR ucDeviceType = aucRxBuffer [12];

 UCHAR ucTransmissionType = aucRxBuffer [13];

 printf("Chan ID(%d/%d/%d) - ", usDeviceNumber, ucDeviceType, ucTransmissionType);

 }

 // INTENTIONAL FALLTHROUGH

 }

 case EVENT_RX_BROADCAST: // PC applications only; use MsgID 0x4E in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer

 break;

 }

 }

 break;

 }

 }

}

 ANT Message Protocol and Usage, Rev 5.1

 Page 99 of 134

 thisisant.com

Broadcast data is the default method of moving data between the transmitter and the receiver. Broadcast data is not

acknowledged, therefore there is no way of knowing if it was actually received. Figure 9-1 below describes the broadcast

message transactions from master host to ANT, over the RF channel to Slave ANT and host in the forward direction and

similarly in the reverse direction (Slave->Master).

Page 100 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Figure 9-1. Broadcast data sequence diagram

Master

A master ANT channel defaults to sending broadcast messages to the slave at the programmed channel period. The host

uses an ANT_SendBroadcastData() message to send data to ANT (1), which will then buffer the data to be sent over the RF

channel on the next designated time slot (i.e. channel period Tch). At the start of the next time slot, ANT sends the

message over the RF channel (2) and issues the host an EVENT_TX Channel Event Function (3). This EVENT_TX message

 ANT Message Protocol and Usage, Rev 5.1

 Page 101 of 134

 thisisant.com

indicates to the host that ANT is ready to buffer new data. The host can send more data with another

ANT_SendBroadcastData() command (4).

Once the slave’s ANT receives the transmitted data, it will both notify and send data to the host with a ChannelEventFunc

(0x4E) message (5). The slave has the option of sending data back in the reverse direction (6). In the case shown in Figure

9-1, the slave did not have any data to send, the dotted arrow is used to indicate the reverse direction, but no actual data

sent.

On the next channel period (8), the process is repeated: ANT sends the data in its buffer over the RF channel, the master’s

host receives an EVENT_TX, and the slave’s host receives the ChannelEventFunc (x04E). However, should the slave’s host

have requested a data transmission prior to that channel period (7), than it will be sent in the reverse direction on that

timeslot (9). Similarly, an EVENT_TX ChannelEventFunc(1) will be sent from the slave’s ANT to host (10) and a

ChannelEventFunc (0x4E) from the master’s slave will inform its host that a broadcast data type message was received

(11).

The process above describes the message transactions for basic bidirectional broadcast operation.

Notes:

The EVENT_TX message can be used to prompt the master MCU that ANT is ready for the next data packet. It should NOT

be used to prompt the slave MCU as, unlike the master, EVENT_TX does not necessarily occur on every channel period. This

is illustrated in the example in Figure 9-1, where EVENT_TX occurs every second channel period. The ChannelEventFunc

(0x4E), on the other hand, can be used instead as this does occur every channel period on the slave. These

implementations are shown for both slave and master in the example usage at the beginning of this section.

If the slave does not manage to receive a data packet for its given time slot, an EVENT_RX_FAIL will be generated instead.

No data is sent over the RF channel from slave to master on an EVENT_RX_FAIL.

If the host does not send the ANT_SendBroadcastData() message prior to the next channel timeslot, then the old data in

ANT’s buffer will be re-transmitted. It is up to the master’s MCU to send new data on every message.

9.5.5.2 Acknowledged Data (0x4F)

BOOL ANT_SendAcknowledgedData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

 OR

ChannelEventFunc(Channel, EVENT_RX_ACKNOWLEDGED) // Receive

On embedded platforms, the acknowledged message may be processed as any other message received from ANT by

processing the MESG_ACKNOWLEDGED_DATA_ID (0x4F). In order to ensure appropriate message processing, check the

message length field. For standard message packets, the message length will be 9. For flagged extended messages, the

message length will be greater to account for the extra information appended to the data; check the flag byte for the

presence of extended data bytes.

Note that the data payload for an acknowledged message is 8 bytes. The host application shall always define the full 8

bytes of the data packet. If an application requires less than 8 bytes of data to be transmitted over the air, the remaining

unused bytes shall be set to a predefined “unused” value (for example, ANT+ device profiles specify unused byte values,

such as 0x00 or 0xFF).

For PC platforms, the ANT DLL will generate a channel event that may be processed in the same way as other events. The

event is EVENT_RX_ACKNOWLEDGED for standard acknowledged messages and EVENT_RX_FLAG_ACKNOWLEDGED for

flagged extended data messages.

Please note that flagged extended data messages must be enabled using the ANT_RxExtMesgsEnable (0x66) or

ANT_LibConfig(0x6E) messages.

Page 102 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Any application that processes flagged extended messages to get channel ID should also process legacy extended messages

(MESG_EXT_ACKNOWLEDGED_DATA_ID (0x5E) for embedded or EVENT_RX_EXT_ACKNOWLEDGED for PC applications) to

ensure compatibility.

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is for/from

Data 0 UCHAR 0..255 The first data byte

..

Data 7 UCHAR 0..255 The eighth data byte

Flag Byte

(optional)

UCHAR Refer to section

7.1.1

Indicates presence of extended data bytes

Extended Data Bytes

(optional)

Varies, Refer

to section

7.1.1

Refer to section

7.1.1

Optional extended messages bytes. Only included if

flag byte indicates their presence. Refer to section

7.1.1 for more information on the possible extended

data bytes.

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TRANSFER_TX_COMPLETED:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendAckknowledgedData(Channel_0, DATA);

 break;

 }

 }

 break;

}

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_FLAG_ ACKNOWLEDGED: // PC only; use MsgID 0x4E in embedded

 {

 UCHAR ucFlag = aucRxBuffer[9]; // First byte after the payload

 if(ucFlag & ANT_EXT_MESG_BITFIELD_DEVICE_ID)

 {

 // Channel ID of the device that we just received a message from.

 USHORT usDeviceNumber = aucRxBuffer [10] |(aucRxBuffer [11] << 8);

 UCHAR ucDeviceType = aucRxBuffer [12];

 UCHAR ucTransmissionType = aucRxBuffer [13];

 ANT Message Protocol and Usage, Rev 5.1

 Page 103 of 134

 thisisant.com

 printf("Chan ID(%d/%d/%d) - ", usDeviceNumber, ucDeviceType, ucTransmissionType);

 }

 // INTENTIONAL FALLTHROUGH

 }

 case EVENT_RX_ACKNOWLEDGED: // PC only; use MsgID 0x4F in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer

 break;

 }

 }

 break;

 }

 }

}

The Acknowledged Data message can be used in place of the Broadcast Data message to ensure the successful

transmission of data. Acknowledged data is transmitted in the same transmission time slot as Broadcast Data but extends

the length of the timeslot to accommodate the acknowledgement.

Acknowledged Data transmissions cannot be sent from channels configured for transmit only.

Acknowledged data messages can be sent from a slave to a master. In this case the message is sent immediately after a

message is received from the master. If the acknowledged data message is sent successfully, this will be indicated by the

channel event TRANSFER_TX_COMPLETED. If no acknowledgement is received from the master, this will be indicated by

TX_TRANSFER_FAILED, which either means that the message failed to reach the master, or that the response from the

master failed to reach the slave. In this case the slave’s application layer may retry the message. A third possible scenario is

that the channel is dropped and the slave begins to search; in this case the event GO_TO_SEARCH will be received, instead

of either of the other two commands. If GO_TO_SEARCH is received then the acknowledged message will not be sent, and

the channel should be unassigned

Page 104 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Figure 9-2 below describes the acknowledged message transactions from the master’s host to ANT, over the RF channel to

the slave ANT, host and vice versa in the reverse direction.

Figure 9-2. Acknowledged data sequence diagram

 ANT Message Protocol and Usage, Rev 5.1

 Page 105 of 134

 thisisant.com

Similar to broadcast messaging, the host application requests the acknowledged data type when it sends the data payload

to ANT with the ANT_SendAcknowledgedData() function (1); ANT buffers the data, which is transmitted on the next channel

period (2). Unlike broadcast, the slave’s ANT will automatically send an acknowledgement of receipt of data (this response

indicated by the smaller arrowhead on (2)). If the master’s ANT successfully receives this acknowledgement, it will send the

host an EVENT_TRANSFER_TX_COMPLETED Channel Event Function (3). In this way, the master’s host can be sure the

message was transmitted successfully. Similar to broadcast and EVENT_TX, the EVENT_TRANSFER_TX_COMPLETED can be

used to indicate to the host that ANT can receive new data. The host can send more data to ANT with another

ANT_SendAcknowledgedData() command (4).

Once the slave’s ANT receives the transmitted data, it will both notify and send data to the host with a

ChannelEventFunc(0x4F) message (5). The slave has the option of sending data back in the reverse direction (6). In this

case, the slave did not have any data to send, and the dotted arrow is used to indicate no actual data sent.

On the next channel period (7), the process repeats. However, should the slave’s host have requested an acknowledged

data transmission (8), this data will be sent in the reverse direction on that timeslot (9). The master’s ANT will automatically

send an acknowledgement of receipt (small arrowhead on (9)), and the slave’s ANT, on receiving the acknowledgement, will

send its host an EVENT_TRANSFER_TX_COMPLETED (10). The master’s ANT will send a ChannelEventFunc(0x4F) both

notifying and sending the data to its host (11).

Should the acknowledged message be subject to RF interference (12) and ANT fails to receive the appropriate

acknowledgment, ANT will send an EVENT_TRANSFER_TX_FAILED to the host (13). This can occur for one of two reasons:

either the recipient node (in this case the slave) never received the data and an acknowledgement was never sent; OR, the

recipient (slave) got the data and sent an acknowledgement, but this failed to reach the originator (master).

Notes:

Similar to broadcast, the EVENT_TRANSFER_TX_COMPLETED or EVENT_TRANSFER_TX_FAILED can be used to indicate to

the master MCU that ANT is ready for the next data packet. Also, on the slave side, the ChannelEventFunc (0x4F) function

can be used to prompt the host for more data. These implementations are shown in the example usage at the beginning of

this section.

If desired, the application can use EVENT_TRANSFER_TX_FAILED to resend the data. ANT does not automatically resend

failed data.

Similar to broadcast, if the slave ANT fails to receive a message in the designated channel period, an EVENT_RX_FAIL

occurs.

If the master host does not send any new data for the next channel timeslot (14 indicates the missing

ANT_SendAcknowledgedData() command), then ANT will resend the old data as a broadcast message (15).

9.5.5.3 Burst Data (0x50)

BOOL ANT_SendBurstTransfer(UCHAR ucChannel, UCHAR* pucData, USHORT usNumDataPackets);

BOOL ANT_SendBurstTransferPacket(UCHAR ucChannelSeq, UCHAR* pucData); // Transmit

 OR

ChannelEventFunc (Channel, EVENT_RX_BURST_PACKET) // Receive

On embedded platforms, the burst message may be processed as any other message received from ANT by processing the

MESG_BURST_DATA_ID (0x50). In order to ensure appropriate message processing, check the message length field. For

standard message packets, the message length will be 9. For flagged extended messages, the first burst packet will have a

message length greater than 9 to account for the extra information appended to the data; check the flag byte for the

presence of extended data bytes. Subsequent message packets will not contain any extra messages and will be 9 bytes in

length.

Page 106 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Note, data payload for a broadcast message is 8 bytes. The host application shall always define the full 8 bytes of the data

packet and set unused bytes appropriately. If an application requires less than 8 bytes of data to be transmitted over the

air, the remaining unused bytes shall be set to a predefined “unused” value (for example, ANT+ device profiles specify

unused byte values, such as 0x00 or 0xFF).

For PC platforms, the ANT DLL will generate a channel event that may be processed the same as other events. The event is

EVENT_RX_BURST for standard acknowledged messages and EVENT_RX_FLAG_BURST for flagged extended data

messages. Note, for bursting only the first packet will contain the flag and extra information, the remaining burst packets

will result in an EVENT_RX_BURST.

Please note that flagged extended data messages must be enabled using the ANT_RxExtMesgsEnable (0x66) or

ANT_LibConfig (0x6E) messages.

Any application that processes flagged messages to get channel ID should also process legacy extended messages

(MESG_EXT_BURST_DATA_ID (0x5F) for embedded or EVENT_RX_EXT_BURST for PC applications) to ensure compatibility.

Parameters Type Range Description

Sequence Number UCHAR (Bits

7:5)

As specified The upper 3 bits of this byte are used as a sequence number

to ensure transfer integrity (see below).

Channel Number UCHAR (Bits

4:0)

0..MAX_CHAN-1 The lower 5 bits represent the channel number that the burst

transfer is taking place on.

Data 0 UCHAR 0..255 The first data byte

..

Data 7 UCHAR 0..255 The eighth data byte

Flag Byte

(optional)

UCHAR Refer to section

7.1.1

Indicates presence of extended data bytes

Extended Data

Bytes

(optional)

Varies, Refer

to section

7.1.1

Refer to section

7.1.1

Optional extended messages bytes. Only included if flag byte

indicates its presence. Refer to section 7.1.1 for more

information on the possible extended data bytes.

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TRANSFER_TX_COMPLETED:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendBurstTransfer(Channel_0, DATA, 4); // 8 bytes per packet, 32 bytes t otal

 break;

 }

 }

 break;

 }

 }

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

 ANT Message Protocol and Usage, Rev 5.1

 Page 107 of 134

 thisisant.com

{

 switch (ucEvent)

 {

 case EVENT_RX_FLAG_ BURST_PACKET: // PC only; use MsgID 0x4E in embedded

 {

 UCHAR ucFlag = aucRxBuffer[9]; // First byte after the payload

 if(ucFlag & ANT_EXT_MESG_BITFIELD_DEVICE_ID)

 {

 // Channel ID of the device that we just received a message from.

 USHORT usDeviceNumber = aucRxBuffer [10] |(aucRxBuffer [11] << 8);

 UCHAR ucDeviceType = aucRxBuffer [12];

 UCHAR ucTransmissionType = aucRxBuffer [13];

 printf("Chan ID(%d/%d/%d) - ", usDeviceNumber, ucDeviceType, ucTransmissionType);

 }

 // INTENTIONAL FALLTHROUGH

 }

 case EVENT_RX_BURST_PACKET: // PC applications only; use MsgID 0x50 in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer one packet at a time validating the

 // sequence

 break;

 }

 }

 break;

 }

 }

}

Burst data transmission is used to send larger amounts of data by sending messages continuously at the fastest rate

possible. Each message packet in a Burst Transfer is acknowledged, and all lost packets are tried up to a maximum of 5

times to guarantee reception of the entire data transfer. Should a packet also fail on the 5th retry, the rest of the transfer

will be aborted and ANT will send an error message to the host’s MCU.

Transmission begins at the start of the normal time slot and multiple data packets are sent consecutively, extending the

time slot for the duration of the burst transfer. Figure 9-3 below describes the burst message transactions from the master’s

host to ANT, over the RF channel to the slave’s ANT, to host and back. Also refer to the application note “Burst Transfers”

for more details.

http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 108 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Figure 9-3. Burst transfer sequence diagram

 ANT Message Protocol and Usage, Rev 5.1

 Page 109 of 134

 thisisant.com

In the example in Figure 9-3, assume the master’s typical mode of operation is sending broadcast data to the slave. If the

master wishes to send a large amount of data, the master’s host can send multiple packets in fast succession, using the

Burst Data message in place of a Broadcast or Acknowledged Data message.

Figure 9-3 (1) shows the master’s host, in typical operation, sending a broadcast data message, which is transmitted at the

beginning of the next channel period (2). The EVENT_TX (3) informs the host that ANT is ready for more data, and the host

initiates the burst transfer request by sending an ANT_SendBurstTransferPacket() command (4). Meanwhile, the slave’s

host has been sent the ChannelEventFunc(0x4E) (5) and no data was sent back in the reverse direction (6).

Once a burst transfer starts transmitting (i.e. on the next channel period), data packets are transmitted at a very high rate.

It is important that the Host/ANT interface can sustain the maximum 20kbps rate. In order to facilitate this transfer, it is

possible to ‘prime’ the ANT buffers with 2 (or 8, depending on ANT device) burst packets prior to the next channel period.

Figure 9-3 shows the host priming the ANT buffers with two ANT_SendBurstTransferPacket() messages (4&7). Please refer

to the “Burst Transfers” application note for more information on burst queuing.

Once the transfer starts on the next channel period (8), an EVENT_TRANSFER_TX_START (9) will be issued (note this is

only applicable for some ANT devices, refer to section 9.4.2), indicating that ANT has started sending packets and is ready

for more data. The slave’s host is informed with a ChannelEventFunc(0x50) (10).

The host’s MCU is also notified for new data through hardware flow control. In asynchronous communication mode, the RTS

line is toggled, whereas the SEN line is toggled in the synchronous communication mode. See the “Interfacing with ANT

General Purpose Chipsets and Modules” document for more information on these lines.

Note that for each packet ANT sends over the RF channel, ANT receives an acknowledgement (indicated by the small arrow

heads on (8) and subsequent arrows); however, this acknowledgement is not passed onto the host. ANT will automatically

retry any failed packet transfer up to 5 times.

When a single packet burst is sent, it behaves identically to an acknowledged message, there are no retries associated with

a single packet burst.

Burst transfers are synchronized off each other and are independent of the channel period. If a burst is long enough, it will

override the subsequent channel periods (11). Once the burst transfer has completed, the host is notified with an

EVENT_TRANSFER_TX_COMPLETED (12). Similar to the acknowledged data type, the master host could use this response

as a prompt to send more data to ANT for transmission on the next channel period. In this example, the host does not send

more data for transmission.

If a transmit was requested by the slave’s host prior to the commencement of the burst (13), then that message will be

sent in the reverse direction, at the end of the burst transfer (14). In this case, the request is for an acknowledged

message, and the slave will receive an EVENT_TRANSFER_TX_COMPLETED (or failed) (15). The master ANT will notify and

send data to the host with the ChannelEventFunc(0x4F) message (16). As the master host did not send any new data after

receiving the response function (12), ANT will default to broadcasting on the next channel period (17). It will retransmit the

last burst packet (i.e. the data in its buffer).

http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/downloads/#documents_tab

Page 110 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Notes:

If any packet still fails after 5 retries, ANT will terminate the burst transfer and the host will be notified with an

EVENT_TRANSFER_TX_FAILED. If the application wishes to retry, it must restart the Burst Transfer sequence.

If a burst transfer fails in the forward direction (i.e. EVENT_TRANSFER_TX_FAILED), no reverse direction data can be sent

by the slave. Any data the slave has to transmit will wait for the next channel period.

It should be noted that although the example in the figure shows only a master to slave (i.e. forward

direction) burst transaction, burst transfers are also supported in the reverse direction. A Slave can burst in

the reverse direction after a master broadcast, acknowledge or burst data transfer.

Sequence Numbers:

The upper three bits of the channel number field are used as a sequence number to ensure transfer integrity.

The transmit MCU must ensure that the sequence numbers are generated correctly in order for the ANT burst state machine

to function correctly.

The first packet of a burst transfer will have a sequence number of %000. The sequence number is then incremented with

%001 for each successive packet in the transfer rolling over back to %001, when a value of %011 is reached. The most

significant bit of the sequence bits %100 is used as a flag to indicate the last packet in a Burst Transfer.

Example:

 Channel = 3

 Packet # Channel Number

 %000 00011 (0x03)

 %001 00011 (0x23)

 %010 00011 (0x43)

 %011 00011 (0x63)

 %001 00011 (0x23)

 %110 00011 (0xC3) [Last Packet]

It should be noted that although the example in the figure shows only a master to slave (i.e. forward direction) burst

transaction, burst transfers are also supported in the reverse direction.

The node receiving the burst packet does not need to keep track of the sequence numbers of the burst packets, as those

are automatically checked by ANT. It is not possible to receive packets in an incorrect order, or to skip a packet. When a

packet is missed, the burst fails; it does not skip the packet. From the point where the burst begins until the node receives

the last packet with the complete bit set in the sequence number or EVENT_TRANSFER_RX_FAILED, all burst packets are in

the correct order.

9.5.5.4 Advanced Burst Data (0x72)

BOOL ANT_SendAdvancedTransfer(UCHAR ucChannel, UCHAR* pucData, ULONG ulSize, UCHAR

ucStdPacketsPerSerialMesg);

BOOL ANT_SendAdvancedBurstDataPacket(UCHAR ucChannelSeq, UCHAR* pucData, UCHAR ucStdPacketsPerSerialMesg);

// Transmit

 ANT Message Protocol and Usage, Rev 5.1

 Page 111 of 134

 thisisant.com

 OR

ChannelEventFunc(Channel, EVENT_RX_ADV_BURST_PACKET); // Receive

On embedded platforms, the burst message may be processed as any other message received from ANT by processing the

MESG_ADV_BURST_DATA_ID (0x72).

Data can be provided for an advanced burst in two ways: sending standard 8-byte Burst Data (0x50) messages or sending

variable length Advanced Burst Data (0x72) messages. The number of data bytes to include in the Advanced Burst Data

(0x72) messages is limited by the capabilities of the device.

Data received in an advanced burst is passed to the host using variable length Advanced Burst Data (0x72) messages. In

order to ensure appropriate message processing, check the message length field. Please note that under rare conditions, it

is possible to receive an empty advanced burst data message with a message length of only 1 at the end of the burst.

Note:

The initial received packet is always a normal burst message (0x50).

Parameters Type Range Description

Sequence Number UCHAR (Bits

7:5)

As specified The upper 3 bits of this byte are used as a sequence number

to ensure transfer integrity (see Section 9.5.5.3 for details on

the sequence number).

Channel Number UCHAR (Bits

4:0)

0..MAX_CHAN-1 The lower 5 bits represent the channel number that the burst

transfer is taking place on.

Data 0 UCHAR 0..255 The first data byte

..

Data N UCHAR 0..255 The last data byte.

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TRANSFER_TX_COMPLETED:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendAdvancedTransfer(Channel_0, DATA, 32, 3); // 24 bytes per packet, 32 bytes total

 break;

 }

 }

 break;

 }

 }

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

Page 112 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

 switch (ucEvent)

 {

 case EVENT_RX_BURST_PACKET: // PC applications only; use Msg ID 0x50 in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process initial received 8-byte normal burst packet. If extended messages are enabled, extended

information is only present in this first packet

 break;

 }

 }

 break;

 }

 case EVENT_RX_ADV_BURST_PACKET: // PC applications only; use Msg ID 0x72 in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer one packet at a time validating the

 // sequence

 break;

 }

 }

 break;

 }

 }

}

Since advanced burst transfers offer the same functionality of standard bursts with additional enhancements, the

mechanism for sending and receiving advanced burst transfers is very similar to that of normal burst transfers. Please refer

to Section 9.5.5.3 for more details on normal burst data.

 ANT Message Protocol and Usage, Rev 5.1

 Page 113 of 134

 thisisant.com

Figure 9-4 below describes the message transactions between host and ANT in both the master and slave device, and over

the RF channel, when sending and advanced burst transfer from master to slave.

ANT_SendBroadcastData()

EVENT_TX

ANT/HOST
Interface

RF
CHANNEL

ANTHOST HOSTANT

MASTER SLAVE

ANT/HOST
Interface

Tch

ChannelEventFunc(0x4E)

ChannelEventFunc(0x50)

ChannelEventFunc(0x72)

ChannelEventFunc(0x4E)

ChannelEventFunc(1)

ChannelEventFunc(1)

ChannelEventFunc(1)

1

23

4

5

6

7
8

ANT_SendAdvBurstPackt()

EVENT_TRANSFER
TX_START*

EVENT_TRANSFER
TX_COMPLETED

ChannelEventFunc(1)
EVENT_TX

9

ANT_SendAdvBurstPackt()

EVENT_TX
ChannelEventFunc(1)

ChannelEventFunc(0x72)
ChannelEventFunc(0x72)
ChannelEventFunc(0x72)
ChannelEventFunc(0x72)

ChannelEventFunc(0x72)
ChannelEventFunc(0x72)
ChannelEventFunc(0x72)

ChannelEventFunc(0x72)

11

12

ChannelEventFunc(0x4E)

ANT_SendAdvBurstPackt()
ANT_SendAdvBurstPackt()
ANT_SendAdvBurstPackt()
ANT_SendAdvBurstPackt()

ANT_SendAdvBurstPackt()
ANT_SendAdvBurstPackt()
ANT_SendAdvBurstPackt()
ANT_SendAdvBurstPackt()

13

10

Page 114 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Figure 9-4. Advanced Burst Transfer Sequence Diagram

Similar to normal bursts, transmission begins at the start of the normal time slot and multiple data packets are sent

consecutively. In the example in Figure 9-4, assume the master’s typical mode of operation is sending broadcast data to the

slave. If the master wishes to send a large amount of data, the master’s host can send multiple packets in fast succession,

using the Advanced Burst Data message in place of a Broadcast or Acknowledged Data message.

In Figure 9-4 (1) shows the master’s host, in typical operation, sending a broadcast data message, which is transmitted at

the beginning of the next channel period (2). The EVENT_TX (3) informs the host that ANT is ready for more data, and the

host initiates the burst transfer request by sending an ANT_SendAdvancedBurstDataPacket() command (4). Meanwhile, the

slave’s host has been sent the ChannelEventFunc(0x4E) (5).

Once the transfer starts (7), an EVENT_TRANSFER_TX_START (8) will be issued, indicating that ANT has started sending

packets and is ready for more data. The slave’s host is informed with a ChannelEventFunc(0x50) for the first packet (9), and

variable length ChannelEventFunc(0x72) for the rest of the packets in the burst (10). The size of the received advanced

burst packets at the slave depends on the maximum packet size supported by both peers involved in an advanced burst

transfer, and the size of the data transferred. For example, if a packet size of 24-bytes is being used, and the master sends

a burst with 256 bytes of data, the slave will receive an initial 8-byte normal burst packet, followed by 10 24-byte advanced

burst packets, and a final 8-byte advanced burst packet.

As with normal burst transfers, for each packet ANT sends over the RF channel, ANT receives an acknowledgement

(indicated by the small arrow heads on (7) and subsequent arrows); however, this acknowledgement is not passed onto the

host. ANT will automatically retry any failed packet transfer. The maximum number of retries depends on the configured

retry count extension.

Advanced burst packets are synchronized relative to each other and are independent of the channel period. If a burst is

long enough, it will override the subsequent channel periods (11). Similarly to normal burst transfers, once the transfer has

completed, the host is notified with an EVENT_TRANSFER_TX_COMPLETED (12). Similar to the acknowledged data type,

the master host could use this response as a prompt to send more data to ANT for transmission on the next channel period.

In this example, the host does not send more data for transmission, so ANT will default to broadcasting on the next channel

period (13), and will retransmit the data in its buffer. Unlike normal burst transfers, the retransmitted data will be the first

packet of the burst (the initial 8-byte normal burst packet).

 ANT Message Protocol and Usage, Rev 5.1

 Page 115 of 134

 thisisant.com

9.5.6 Channel Response / Event Messages

The Response/Event Messages are messages sent from the ANT device to the controller device, either in response to a

message (see section 9.3 for a list of messages that generate responses), or as generated by an RF event on the ANT

device.

9.5.6.1 Channel Response / Event (0x40)

ChannelEventFunc (Channel, MessageCode) // MessageID == 1

 OR

ResponseFunc (Channel, MessageID) // MessageID != 1

The response/event message is either generated in response to a message or from an RF event.

Parameters Type Range Description

Channel

Number

UCHAR 0.. MAX_CHAN-1 The channel number of the channel associated with the event.

Message ID UCHAR 0..255 ID of the message being responded too. This is set to 1 for an RF

Event. (Message codes prefixed by EVENT_)

Message Code enum 0..255 The response code or event code for a specific response or event

Message Codes* (The following message codes are defined in antdefines.h)

 Not all message Events are generated by all products. See section 9.4.2 for information on which event messages

are supported by which products.

 Some channel events also include extended event parameters as detailed in section 9.5.6.2

Name Value Description

RESPONSE_NO_ERROR 0 (0x00) Returned on a successful operation

EVENT_RX_SEARCH_TIMEOUT 1 (0x01) A receive channel has timed out on searching. The search is

terminated, and the channel has been automatically closed.

In order to restart the search the Open Channel message

must be sent again.

EVENT_RX_FAIL 2 (0x02) A receive channel missed a message which it was expecting.

This happens when a slave is tracking a master and is

expecting a message at the set message rate.

EVENT_TX 3 (0x03) A Broadcast message has been transmitted successfully. This

event should be used to send the next message for

transmission to the ANT device if the node is setup as a

master.

EVENT_TRANSFER_RX_FAILED 4 (0x04) A receive transfer has failed. This occurs when a Burst

Transfer Message was incorrectly received.

EVENT_TRANSFER_TX_COMPLETED 5 (0x05) An Acknowledged Data message or a Burst Transfer sequence

has been completed successfully. When transmitting

Acknowledged Data or Burst Transfer, there is no EVENT_TX

message.

Page 116 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Name Value Description

EVENT_TRANSFER_TX_FAILED 6 (0x06) An Acknowledged Data message, or a Burst Transfer Message

has been initiated and the transmission failed to complete

successfully

EVENT_CHANNEL_CLOSED 7 (0x07) The channel has been successfully closed. When the Host

sends a message to close a channel, it first receives a

RESPONSE_NO_ERROR to indicate that the message was

successfully received by ANT; however,

EVENT_CHANNEL_CLOSED is the actual indication of the

closure of the channel. As such, the Host must use this event

message rather than the RESPONSE_NO_ERROR message to

let a channel state machine continue.

EVENT_RX_FAIL_GO_TO_SEARCH 8 (0x08) The channel has dropped to search mode after missing too

many messages.

EVENT_CHANNEL_COLLISION 9 (0x09) Two channels have drifted into each other and overlapped in

time on the device causing one channel to be blocked.

EVENT_TRANSFER_TX_START 10 (0x0A) Sent after a burst transfer begins, effectively on the next

channel period after the burst transfer message has been

sent to the device.

EVENT_TRANSFER_NEXT_DATA_BLOCK 17 (0x11) Returned to indicate a data block release on the burst buffer.

CHANNEL_IN_WRONG_STATE 21 (0x15) Returned on attempt to perform an action on a channel that

is not valid for the channel’s state

CHANNEL_NOT_OPENED 22 (0x16) Attempted to transmit data on an unopened channel

CHANNEL_ID_NOT_SET 24 (0x18) Returned on attempt to open a channel before setting a valid

ID

CLOSE_ALL_CHANNELS 25 (0x19) Returned when an OpenRxScanMode() command is sent while

other channels are open.

TRANSFER_IN_PROGRESS 31 (0x1F) Returned on an attempt to communicate on a channel with a

transmit transfer in progress.

TRANSFER_SEQUENCE_NUMBER_ERROR 32 (0x20) Returned when sequence number is out of order on a Burst

Transfer

TRANSFER_IN_ERROR 33 (0x21) Returned when a burst message passes the sequence number

check but will not be transmitted due to other reasons.

MESSAGE_SIZE_EXCEEDS_LIMIT 39 (0x27) Returned if a data message is provided that is too large.

INVALID_MESSAGE 40 (0x28) Returned when message has invalid parameters

INVALID_NETWORK_NUMBER 41 (0x29) Returned when an invalid network number is provided. As

mentioned earlier, valid network numbers are between 0 and

MAX_NET-1.

INVALID_LIST_ID 48 (0x30) Returned when the provided list ID or size exceeds the limit.

INVALID_SCAN_TX_CHANNEL 49 (0x31) Returned when attempting to transmit on ANT channel 0 in

scan mode.

INVALID_PARAMETER_PROVIDED 51 (0x33) Returned when invalid configuration commands are requested

EVENT_SERIAL_QUE_OVERFLOW 52 (0x34) This event indicates that the outgoing serial buffer of the

USB chip has overflowed. This typically happens if the ANT

chip is actively generating serial messages but the PC

application is stalled/not running. This event is sent to notify

the host application that the message buffer was full and

some messages were lost

 ANT Message Protocol and Usage, Rev 5.1

 Page 117 of 134

 thisisant.com

Name Value Description

EVENT_QUE_OVERFLOW 53 (0x35) May be possible when using synchronous serial port, or using

all channels on a slow asynchronous connection. Indicates

that one or more events were lost due to excessive latency in

reading events out over the serial port. This typically

happens if the serial queue is full.

ENCRYPT_NEGOTIATION_SUCCESS 56 (0x38) When an ANT slave has negotiated successfully with an

encrypted ANT master this event is passed to both the

master and the slave.

ENCRYPT_NEGOTIATION_FAIL 57 (0x39) When an ANT slave fails negotiation with an encrypted ANT

master this event is passed to both the master and the slave.

This can occur due to configuration mismatch, poor RF,

mismatched encryption keys, or white/blacklisting by the

master.

NVM_FULL_ERROR 64 (0x40) Returned when the NVM for SensRcore mode is full.

NVM_WRITE_ERROR 65 (0x41) Returned when writing to the NVM for SensRcore mode fails.

USB_STRING_WRITE_FAIL 112 (0x70) Returned when configuration of a USB descriptor string fails.

MESG_SERIAL_ERROR_ID 174 (0xAE) This message is generated if the ANT chip receives a USB

data packet that is not correctly formatted. The data portion

of this message may be used to debug the USB packet.

The first byte of the data (usually channel number) is the

error number.

0 – the first byte of the USB data packet was not the ANT

serial message Tx sync byte (0xA4)

2 – the checksum of the ANT message was incorrect

3 – the size of the ANT message was too large

The rest of the data is a copy of the message that was sent.

// Example Usage

BOOL ANT_ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_BROADCAST:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process data which is in aucChannelEventBuffer

 break;

 }

 case Channel_N:

 {

 // process data which is in aucChannelEventBuffer

 break;

 }

 }

 break;

 }

 case EVENT_RX_FAIL:

Page 118 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Name Value Description

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // data packet was lost

 break;

 }

 case Channel_N:

 {

 // data packet was lost

 break;

 }

 }

 break;

 }

 case Default:

 {

 // catch unexpected message codes

 break;

 }

 }

}

 ANT Message Protocol and Usage, Rev 5.1

 Page 119 of 134

 thisisant.com

9.5.6.2 Extended Event Parameters

 Certain events generated by ANT may include additional bytes after the message code

 The host can check the length of the event to determine if these additional fields were sent by ANT

9.5.6.2.1 ENCRYPT_NEGOTIATION_SUCCESS (0x38)

Parameters Type Description

Encryption ID UCHAR[4] The unique 4 byte identifier of the encrypted master or the negotiating slave.

User Info String

(optional)

UCHAR[19]

(optional)

The user information string, ANT only sends this to the host if the negotiating slave

has enabled this capability. This parameter is not passed to the slave.

9.5.6.2.2 ENCRYPT_NEGOTIATION_FAIL (0x39)

Parameters Type Description

Encryption ID UCHAR[4] The unique 4 byte identifier of the encrypted master or the negotiating slave. In the

case where negotiation fails due poor RF this parameter may not be passed.

Page 120 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.7 Requested Response Messages

The following messages are returned in response to a Request Message (refer to section 9.5.4.4) sent to ANT. The specific

response message sent is dependent on request’s message ID parameter. The ANT PC library will call the Host application’s

ANT response function with the message ID as indicated below for each message.

The message ID codes are defined in antmessage.h.

9.5.7.1 Channel Status (0x52)

ResponseFunc (Channel, 0x52)

Parameters Type Range Description

Channel Number UCHAR 0..

MAX_CHAN-1

The channel number

Channel Status UCHAR Bits 4:7 Channel type (invalid on AP1 devices) Refer to Table 5-1

Bits 2:3 Network number (invalid on AP1 devices) Refer to section

5.2.5.1.

Bits 0:1 Channel State:

 Un-Assigned = 0

 Assigned = 1

 Searching = 2

 Tracking = 3

// Example Usage

BOOL ANT_ResponseFunction(UCHAR ucChannel, UCHAR ucResponseMesgID)

{

 Switch (ucResponseMesgID)

 {

 case MESG_CHANNEL_STATUS_ID:

 {

 switch (aucResponseBuffer[1] & 0x3) // channel status

 {

 case 0:

 {

 // channel is un-assigned

 break;

 }

 case 1:

 {

 // channel is assigned

 break;

 }

 }

 break;

 }

 }

}

 ANT Message Protocol and Usage, Rev 5.1

 Page 121 of 134

 thisisant.com

9.5.7.2 Channel ID (0x51)

ResponseFunc (Channel, 0x51)

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel number

Device Number USHORT

(little endian)

0..65535 The device number

Device Type ID UCHAR 0..127 The device type

Transmission Type UCHAR 0..255 The transmission type

This message returns the channel ID of the specified channel. This message is useful when trying to pair devices. When a

slave is attempting to pair with a master, it will typically set one or more of the device number, device type, or transmission

type fields with a wild card. When the slave finds a device that matches the search – by successfully receiving data, the

Request Message can be used to return the discovered channel’s ID. This ID can then be saved for future use in opening

the channel and searching for this specific device. Refer to section 6 for more information.

Note that the transmission type and device type IDs are assigned and regulated to maintain network integrity, and

interoperability, except for the default public network. Please visit www.thisisant.com for more details on available standard

network types or on how to obtain your own network type identifier.

9.5.7.3 ANT Version (0x3E)

ResponseFunc (-, 0x3E)

The version message returns an N-byte null-terminated version string, corresponding to the ANT host interface version.

Parameters Type Description

Version Message char[] Variable length string.

Please note that this message is not supported on all ANT products. Refer to section 9.4 for capabilities. The length of the

ANT version message is part specific, and can be checked by requesting this string.

http://www.thisisant.com/

Page 122 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.7.4 Capabilities (0x54)

ResponseFunc (-, 0x54)

This message returns a summary of the ANT device’s capabilities, which is dependent on both the software embedded in

the ANT MCU and on hardware limitations.

Parameters Type Range Description

Max ANT

Channels

UCHAR 0..MAX_CHAN Returns the number of ANT channels available

Max Networks UCHAR 0..MAX_NET-1 Returns the number of networks available

Standard

Options

UCHAR 0..255

The Standard Options bit field is encoded as follows:

Bit 0 - CAPABILITIES_NO_RECEIVE_CHANNELS

Bit 1 - CAPABILITIES_NO_TRANSMIT_CHANNELS

Bit 2 - CAPABILITIES_NO_RECEIVE_MESSAGES

Bit 3 - CAPABILITIES_NO_TRANSMIT_MESSAGES

Bit 4 - CAPABILITIES_NO_ACKD_MESSAGES

Bit 5 - CAPABILITIES_NO_BURST_MESSAGES

Other bits are reserved

Advanced

Options

UCHAR 0..255 The Advanced Options bit field is encoded as follows:

Bit 1 - CAPABILITIES_NETWORK_ENABLED

Bit 3 - CAPABILITIES_SERIAL_NUMBER_ENABLED

Bit 4 - CAPABILITIES_PER_CHANNEL_TX_POWER_ENABLED

Bit 5 - CAPABILITIES_LOW_PRIORITY_SEARCH_ENABLED

Bit 6 - CAPABILITIES_SCRIPT_ENABLED

Bit 7 - CAPABILITIES_SEARCH_LIST_ENABLED

Other bits are reserved

Advanced

Options 2

UCHAR 0..255 The Advanced Options 2 bit field is encoded as follows:

Bit 0 - CAPABILITIES_LED_ENABLED

Bit 1 - CAPABILITIES_EXT_MESSAGE_ENABLED

Bit 2 - CAPABILITIES_SCAN_MODE_ENABLED

Bit 3 - Reserved

Bit 4 - CAPABILITIES_PROX_SEARCH_ENABLED

Bit 5 - CAPABILITIES_EXT_ASSIGN_ENABLED

Bit 6 - CAPABILITIES_FS_ANTFS_ENABLED

Bit 7 - CAPABILITIES_FIT1_ENABLED

Max SensRcore

Channels

UCHAR 0..255 Returns the number of SensRcore channels available.

Advanced

Options 3

UCHAR 0..255 The Advanced Options 3 bit field is encoded as follows:

Bit 0 - CAPABILITIES_ADVANCED_BURST_ENABLED

Bit 1 - CAPABILITIES_EVENT_BUFFERING_ENABLED

Bit 2 - CAPABILITIES_EVENT_FILTERING_ENABLED

Bit 3 - CAPABILITIES_HIGH_DUTY_SEARCH_ENABLED

Bit 4 - CAPABILITIES_SEARCH_SHARING_ENABLED

Bit 5 - Reserved.

Bit 6 - CAPABILITIES_SELECTIVE_DATA_UPDATES_ENABLED

Bit 7 - CAPABILITIES_ENCRYPTED_CHANNEL_ENABLED

Advanced

Options 4

UCHAR 0..255 The Advanced Options 4 bit field is encoded as follows:

Bit 0 - CAPABILITIES_RFACTIVE_NOTIFICATION_ENABLED

Other bits are reserved

 ANT Message Protocol and Usage, Rev 5.1

 Page 123 of 134

 thisisant.com

9.5.7.5 Device Serial Number (0x61)

ResponseFunc (-, 0x61)

Parameters Type Range Description

Serial Number char[4] 1..255 4 byte serial number

Please note this message is only available on specific devices, refer to section 9.4 for capabilities. The serial number is a 4-

byte, little-endian encoded unsigned integer.

9.5.7.6 Event Buffer Configuration (0x74)

Response Func(-, 0x74)

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte.

Buffer Config UCHAR
0..255 0x00 - Buffer Low Priority Events†

0x01 - Buffer all Events

Buffer Size USHORT ‡ Bytes received before a buffer flush occurs

Buffer Time USHORT 0..0xFFFF Time in 10ms units before a buffer flush occurs
†EVENT_TX, EVENT_RX_FAIL, and EVENT_CHANNEL COLLISION only
‡The Buffer Size may be a value between 0 and a device specific maximum

Please note that this message is not supported on all ANT products, refer to section 9.4. The Event Buffer message returns

the current event buffering settings. These settings may be configured using the Configure Event Buffer command

(9.5.2.23).

9.5.7.7 Advanced Burst Capabilities (0x78)

ResponseFunc (-, 0x78)

This message returns a summary of the ANT device’s advanced burst capabilities.

Parameters Type Range Description

Message Type UCHAR 0 If this field is set to 0, this message contains the

capabilities of the device for advanced burst.

Supported Max

Packet Length

UCHAR As specified Specifies the maximum burst packet size that can be sent

or received by the device:

0x01 – 8-byte

0x02 – 16-byte

0x03 – 24-byte

Supported Features ULONG

(3 bytes,

little

endian

As specified The Supported Options bitfield is encoded as follows:

Bit 0 – ADV_BURST_FREQUENCY_HOP_ENABLED

Other bits are reserved – set to zero.

// Example Usage

ANT_RequestMessage(0, MESG_ADVANCED_BURST_CAPABILITIES_CONFIG); // request the advanced burst capabilities of

the device

// response message will contain the advanced burst capabilities; no RESPONSE_NO_ERROR will be sent by ANT

The frequency hopping feature provides increased immunity to RF interference by rotating through 6 RF frequencies on

each transaction pair (data packet and acknowledged packet) during the transfer. The set of frequencies used is

Page 124 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

automatically selected by ANT; no additional configuration is required on the application level other than enabling this

feature.

9.5.7.8 Advanced Burst Current Configuration (0x78)

ResponseFunc(-, 0x78)

This message returns the current advanced burst configuration, as set by the Configure Advanced Burst Command (0x78).

Parameters Type Range Description

Message Type UCHAR 1 If this field is set to 1, this message contains the current

advanced burst configuration.

Enable UCHAR 0..1 Specifies whether advanced burst is enabled or disabled:

0x00 – Disabled

0x01 - Enabled

Max Packet Length UCHAR As specified Specifies the maximum burst packet size that will be sent

or received by the device:

0x01: 8 byte

0x02: 16 byte

0x03: 24 byte

Required Features ULONG

(3

bytes,

little

endian)

As specified Required advanced burst features. See “Supported

Features” field in section 9.5.7.7 for a list of available

features.

Optional Features ULONG

(3

bytes,

little

endian)

As specified Optional advanced burst features. See “Supported

Features” field in section 9.5.7.7 for a list of available

features.

Stall Count

(optional)

USHORT

(little

endian)

0..65535 Number of stall packets that will be sent before a transfer

enters the retry count. Each packet corresponds to ~3ms.

Typical default value is 3210 to provide ~10s of stalling.

Retry Count

Extension

(optional)

UCHAR 0..255 Number of retry count (5 retries) cycle extensions. Typical

default value is 4, providing 20 retries.

// Example Usage

ANT_RequestMessage(1, MESG_ADVANCED_BURST_CAPABILITIES_CONFIG); // request the advanced burst current

configuration of the device

// response message will contain the advanced burst capabilities; no RESPONSE_NO_ERROR will be sent by ANT

 ANT Message Protocol and Usage, Rev 5.1

 Page 125 of 134

 thisisant.com

9.5.7.9 Event Filter (0x79)

Response Func (-, 0x79)

Parameters Type Range Description

Channel Number UCHAR 0 Set to 0x00

Event Filter USHORT

(2 bytes,

little

endian)

0..65535 The Event Filter bit fields is as follows:

Bit 0 – Filter event 1 (RESPONSE_NO_ERROR)

Bit 1 – Filter event 2 (EVENT_RX_SEARCH_TIMEOUT)

…

Bit N – Filter event (N+1) where N is max 15

Setting a bit to 1 applies a filter to the corresponding

event.

// Example Usage

ANT_RequestMessage(0, MESG_CONFIG_EVENT_FILTER); // request the event filter applied to the specified channel

// response message will contain the channel number and event filter; no RESPONSE_NO_ERROR will be sent by ANT

Please note that this message is only available on specific devices as listed in section 9.4. The Event Filter message returns

the current event filter settings. These settings may be configured using the Configure Event Filter command (9.5.2.28).

9.5.7.10 Selective Data Update (SDU) Mask Setting (0x7B)

Response Func (-, 0x7B)

Parameters Type Range Description

Sub Message ID:

SDU Mask Number

UCHAR 0..MAX_SDU_MASKS The SDU mask number associated with the SDU Mask

SDU Mask

(8 bytes)

UCHAR[8]

N/A Defines which bits in an 8 byte message are compared for

selective data update purposes.

0 – Ignore

1 – Compare and send data update when this data changes

// Example Usage

ANT_RequestMessage(SDU Mask Number, MESG_SET_SDU_MASK); // request the SDU mask associated with the specified

SDU mask number

// response message will contain the SDU mask number and the SDU mask; no RESPONSE_NO_ERROR will be sent by ANT

Please note that this message is only available on specific devices as listed in section 9.4. The SDU Mask Setting message

returns the current SDU Mask. This is configured using the Set SDU Mask command (section 9.5.2.30).

9.5.7.11 User NVM (0x7C)

Response Func (-, 0x7C)

Parameters Type Range Description

Filler UCHAR 0 Set to zero.

Data UCHAR[] Variable Variable length user data.

Please note that this message is not supported on all ANT products, refer to section 9.4. The User NVM message returns the

requested data from User NVM. The starting address and size of the data correspond to the values specified in the Request

Message. Read block size may be arbitrary up to the device specific maximum. It is not possible to read beyond any address

in the user space.

Page 126 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.7.12 Single Channel Encryption Parameters (0x7D)

ResponseFunc (Parameter, 0x7D)

Parameters Type Range Description

Requested

Encryption

Parameter

UCHAR As specified 0x00 – Max Supported Encryption Mode

0x01 – Encryption ID

0x02 – User Information String

Max Supported

Encryption

Mode

or

Encryption ID

or

User Info

String

UCHAR

or

UCHAR[4]

or

UCHAR[19]

0..2

or

N/A

or

N/A

The maximum encryption mode supported

or

The unique 4 byte identifier used for encryption mode

or

The user information string

// Example Usage

ANT_RequestMessage(1, MESG_CRYPTO_PARAMETER) //Request the 4 byte encryption ID

The max supported encryption mode parameter indicates all lower value modes are also supported, for example a max

supported encryption mode value of 2 implies that encryption mode 1 is also supported. (Refer to section 9.5.2.32 for

information on encryption modes.)

 ANT Message Protocol and Usage, Rev 5.1

 Page 127 of 134

 thisisant.com

9.5.8 Test Mode

9.5.8.1 Init CW Test Mode (0x53)

BOOL ANT_InitCWTestMode(void);

Parameters Type Range Description

Filler UCHAR 0

This function must be called before the CW Test Mode message below in order to initialize the module to the correct state

for CW mode.

Note: This command should be executed only directly after a reset, or a System Reset command. Failure to do so may

result in unpredictable results.

9.5.8.2 CW Test Mode (0x48)

BOOL ANT_SetCWTestMode(UCHAR ucTransmitPower, UCHAR ucRFChannel);

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte that must be included

Transmit

Power

UCHAR 0..4 Refer to section 9.4.3.

Channel Frequency = 2400 MHz + Channel RF Frequency

Number * 1.0 MHz

Channel RF Frequency UCHAR 0..127

// Example Usage

ANT_InitCWTestMode();

// wait for RESPONSE_NO_ERROR

ANT_SetCWTestMode(3, 57); // set RF power to 0dBm and CW 2457MHz

This message is used to put the radio into a CW test mode using a given transmit power level and channel RF frequency.

This command is intended to test your implementation for RF regulatory requirements. It will set ANT to transmit an

unmodulated carrier wave on the specified RF frequency, at the specified power level.

Note: This command should be executed only directly after an Init CW Test Mode (0x53) command as described above.

Failure to do so may result in unpredictable results.

Page 128 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.9 Extended Data Messages

Each of the Data Message functions described in section 9.5.5 can be sent in the legacy extended data message format.

These functions are now supported in nRF24AP2 and CC257x modules as flagged extended message bytes in existing data

messages. Refer to section 7.1.1. However, AP2 and CC257x ANT can still accept the data messages as described here.

9.5.9.1 Extended Broadcast Data (0x5D)

BOOL ANT_SendExtBroadcastData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

 or

ChannelEventFunc (Channel, EVENT_RX_EXT_BROADCAST) // Receive

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is received from

Device Number USHORT 0..65536 The device number

Device Type UCHAR 0..255 The device type

Transmission Type UCHAR 0..255 The transmission type

Data 0 UCHAR 0..255 The first data byte

Data N UCHAR 0..255 The Nth data byte

Data 7 UCHAR 0..255 The eighth data byte

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TX:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendExtBroadcastData(Channel_0, DATA);

 break;

 }

 }

 break;

 }

 }

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_EXT_BROADCAST: // PC applications only; use MsgID 0x5D in embedded

 {

 switch (ucChannel)

 ANT Message Protocol and Usage, Rev 5.1

 Page 129 of 134

 thisisant.com

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer

 break;

 }

 }

 break;

 }

 }

}

The legacy extended broadcast functions the same way as normal broadcast, except that the Channel ID is appended to the

front of the data. Extended messages are enabled by default when Rx Scan Mode is being used.

Receiver

The corresponding channel slave receives the data at its programmed channel period and generates a legacy Extended

Broadcast Data message to its MCU. If the slave does not manage to receive a data packet for its time slot, an

EVENT_RX_FAIL will be generated instead.

If you are using the ANT library interface it will fill the data into your receive buffer, then send a special library-only event

EVENT_RX_EXT_BROADCAST to let you know that a valid extended broadcast message has been received.

9.5.9.2 Extended Acknowledged Data (0x5E)

BOOL ANT_SendExtAcknowledgedData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

 OR

ChannelEventFunc(Channel, EVENT_RX_EXT_ACKNOWLEDGED) // Receive

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is for/from

Device Num USHORT 0..65536 The device number

Device Type UCHAR 0..255 The device type

Transmission Type UCHAR 0..255 The transmission type

Data 0 UCHAR 0..255 The first data byte

Data N UCHAR 0..255 The Nth data byte

Data 7 UCHAR 0..255 The eighth data byte

Page 130 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TRANSFER_TX_COMPLETED:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendExtAckknowledgedData(Channel_0, DATA);

 break;

 }

 }

 break;

 }

 }

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_EXT_ACKNOWLEDGED: // PC applications only; use MsgID 0x5E in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer

 break;

 }

 }

 break;

 }

 }

}

Extended acknowledged data functions the same way as normal acknowledge, except that the Channel ID is appended to

the front of the data. Extended messages are enabled by default when Rx Scan Mode is being used.

Receiver

Reception of Acknowledged Data from the master causes an Extended Acknowledged Data message to be sent to the slave

MCU. If the message reception fails, an EVENT_RX_FAIL occurs.

If you are using the ANT library interface it will fill the data into your receive buffer, then send a special library only event

EVENT_RX_EXT_ACKNOWLEDGED to let you know that a valid extended acknowledge message has been received.

 ANT Message Protocol and Usage, Rev 5.1

 Page 131 of 134

 thisisant.com

9.5.9.3 Extended Burst Data (0x5F)

BOOL ANT_SendExtBurstTransfer(UCHAR ucChannel, UCHAR* pucData, USHORT usNumDataPackets); // Transmit

BOOL ANT_SendExtBurstTransferPacket(UCHAR ucChannelSeq, UCHAR* pucData); // Transmit

 or

ChannelEventFunc (Channel, EVENT_RX_EXT_BURST_PACKET) // Receive

Parameters Type Range Description

Sequence Number UCHAR

(Bits 7:5)

As specified The upper 3 bits of this byte are used as a sequence number

to ensure transfer integrity (see below).

Channel Number UCHAR

(Bits 4:0)

0..MAX_CHAN-1 The lower 5 bits are the channel number the burst transfer is

taking place on.

Device Num USHORT 0..65536 The device number

Device Type UCHAR 0..255 The device type

Transmission Type UCHAR 0..255 The transmission type

Data 0 UCHAR 0..255 The first data byte

Data N UCHAR 0..255 The Nth data byte

Data 7 UCHAR 0..255 The eighth data byte

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TRANSFER_TX_COMPLETED:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendExtBurstData(Channel_0, DATA, 4); // 8 bytes per packet, 32 bytes total

 break;

 }

 }

 break;

 }

 }

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_EXT_BURST_PACKET: // PC applications only; use MsgID 0x5F in embedded

 {

 switch (ucChannel)

 {

Page 132 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

Parameters Type Range Description

 case Channel_0:

 {

 // process received data which is in channel event buffer one packet at a time validating the

 // sequence

 break;

 }

 }

 break;

 }

 }

}

Extended burst data functions the same way as normal burst data, except that the Channel ID is appended to the front of

the data. Extended messages are enabled by default when Rx Scan Mode is being used.

Receiver

Reception of Burst Data from the master causes Extended Burst Data Messages to be sent to the slave MCU. If burst

message reception exceeds the maximum number of retries an EVENT_TRANSFER_RX_FAIL occurs.

 ANT Message Protocol and Usage, Rev 5.1

 Page 133 of 134

 thisisant.com

9.5.10 PC Functional Interface Configuration

The functions described in this section are unique to the ANT PC Library interface, and are used to set up and configure the

ANT PC Library for use. They are not available to an embedded application as the messages are exchanged directly through

a serial interface.

9.5.10.1 ANT PC Library Usage Notes

The following notes apply when using the ANT PC Library. The files for this library can be downloaded from

www.thisisant.com:

 ANT_DLL.dll, DSI_CP210xManufacturing_3_1.dll and DSI_SiUSBXp_3_1.dll must be accessible to the application

that is using the ANT PC Library. In other words, these files must be placed in the same folder as the executable,

or in a Windows system folder.

 antmessage.h and antdefines.h must be included where calls to the ANT PC Library are made.

9.5.10.2 ANT_Init

BOOL ANT_Init(UCHAR ucUSBDeviceNum, USHORT usBaudrate);

Parameters Type Range Description

ucUSBDeviceNum UCHAR 0..N-1 USB device number of the module to connect to. Modules connected to

a PC will be assigned USB device numbers starting from 0. N is the

number of USB ANT devices that are connected.

usBaudrate USHORT Asynchronous baud rate used to connect to the ANT controller. See

specific ANT controllers for allowable baud rates.

// Example Usage

if (ANT_Init(0, 38400) == false)

 // error message

else

 // continue to ANT initialization

ANT_Init is called to initialize the ANT library and connect to the ANT module. Function returns TRUE if successfully

connected to the module, otherwise returns FALSE.

9.5.10.3 ANT_Close

void ANT_Close (void);

Parameters Type Range Description

None

// Example Usage

ANT_Close();

ANT_Close() closes the USB connection to the ANT module.

http://thisisant.com/

Page 134 of 134 ANT Message Protocol and Usage, Rev 5.1

 thisisant.com

9.5.10.4 ANT_AssignResponseFunction

void ANT_AssignResponseFunction(RESPONSE_FUNC pfResponse, UCHAR *pucResponseBuffer);

Parameters Type Description

pfResponse RESPONSE_FUNC Pointer to the function that will be called whenever a response / event

message is received from the module.

pucResponseBuffer UCHAR* Pointer to the buffer where the data of the response / event message

will be written to. This buffer should be sized to

MESG_RESPONSE_EVENT_SIZE.

// Example Usage

BOOL ANT_ResponseFunction(UCHAR ucChannel, UCHAR ucResponseMesgID);

UCHAR aucResponseBuffer[MESG_RESPONSE_EVENT_SIZE];

..

ANT_AssignResponseFunction(&ANT_ResponseFunction, aucResponseBuffer);

ANT_AssignResponseFunction sets the response callback function and the return data buffer. The callback function and data

buffer are used whenever a response message is received from ANT. The response buffer needs to be large enough to hold

an incoming response, which is of size MESG_RESPONSE_EVENT_SIZE. This function must be called immediately after

calling ANT_Open and before any other ANT calls are made.

The response function must be a C function.

9.5.10.5 ANT_AssignChannelEventFunction

void ANT_AssignChannelEventFunction(UCHAR ucChannel, CHANNEL_EVENT_FUNC pfChannelEvent, UCHAR *pucRxBuffer);

Parameters Type Description

ucChannel UCHAR Channel Number

pfChannelEvent CHANNEL_EVENT_FUNC Pointer to the function that will be called whenever an event for

this channel occurs.

pucResponseBuffer UCHAR* Pointer to the buffer where the data of the response/event message

is written. This buffer should be sized to MESG_DATA_SIZE.

// Example Usage

BOOL ANT_ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent);

UCHAR aucChannelEventBuffer[MESG_DATA_SIZE];

ANT_AssignChannelEventFunction(channel_0, &ANT_ChannelEventFunction, aucChannelEventBuffer);

ANT_AssignChannelEventFunction sets the channel event function and the return data buffer. The callback function and

data buffer are used whenever an event message is received from ANT for the given channel. The response buffer needs to

be large enough to hold an incoming response which is of size MESG_DATA_SIZE. This function must be called to set up a

given channel before any other ANT functions that use this channel are called.

The channel event callback function must be a C function. Each channel can have its own event callback function, along

with a unique data buffer; or they can both be shared, or any combination thereof, that best suits the application.

	Copyright Information and Usage Notice
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	List of Equations
	1 Introduction
	2 The ANT Product Family
	3 Network Topologies
	4 ANT Nodes
	5 ANT Channels
	5.1 Channel Communication
	5.2 Channel Configuration
	5.2.1 Channel Type
	5.2.1.1 Bidirectional Channel
	5.2.1.2 Shared Bidirectional Channel
	5.2.1.3 Transmit/Receive Only Channel
	5.2.1.4 Channel Extended Assignment
	5.2.1.4.1 Frequency Agility
	5.2.1.4.2 Background Scanning
	5.2.1.4.3 Fast Channel Initiation
	5.2.1.4.4 Asynchronous Transmission

	5.2.2 RF Frequency
	5.2.3 Channel ID
	5.2.3.1 Transmission Type
	5.2.3.2 Device Type (including Pairing Bit)
	5.2.3.3 Device Number

	5.2.4 Channel Period
	5.2.5 Network
	5.2.5.1 Network Number
	5.2.5.2 Network Key

	5.2.6 Example Channel Configuration

	5.3 Establishing a channel
	5.4 ANT Data Types
	5.4.1 Broadcast Data
	5.4.2 Acknowledged Data
	5.4.3 Burst Data
	5.4.4 Advanced Burst Data
	5.4.5 Summary of Data Types

	5.5 Independent Channels
	5.5.1 ANT Single Channel Encryption

	5.6 Shared Channels
	5.7 Continuous Scanning Mode

	6 Device Pairing
	6.1 Pairing Example
	6.2 Inclusion/Exclusion Lists
	6.3 White/Blacklists used with Single Channel Encryption
	6.4 Proximity Search

	7 ANT Interface
	7.1 Message Structure
	7.1.1 Extended Messages Format
	7.1.1.1 Channel ID Output
	7.1.1.2 RSSI Output
	7.1.1.2.1 Measurement Type
	7.1.1.2.2 RSSI Value
	7.1.1.2.3 Threshold Configuration Value

	7.1.1.3 Timestamp Output
	7.1.1.3.1 Rx Timestamp

	7.1.1.4 Relative Order of Combined Extended Message Formats

	7.2 Host MCU Serial Interface – Physical Layer
	7.3 Host PC Serial Interface
	7.4 Interface to SoC
	7.5 Mobile Devices Interface to ANT

	8 Example ANT Network Implementation
	8.1 Implementation using Independent Channels
	8.1.1 Channel between Node B and Node A
	8.1.2 Channel between Node C and Node A
	8.1.3 Channel between Node D and Node A

	8.2 Implementation using Shared Channels
	8.2.1 Shared Channel Transmission Type

	9 Appendix A – ANT Message Details
	9.1 ANT Messages
	9.1.1 Configuration Messages
	9.1.2 Notifications
	9.1.3 Control Messages
	9.1.4 Data Messages
	9.1.5 Channel Event/Response Messages
	9.1.6 Requested Response Messages
	9.1.7 Test Mode

	9.2 ANT Message Structure - Notes
	9.3 ANT Message Summary
	9.4 ANT Product Capabilities
	9.4.1 Interface
	9.4.2 Events
	9.4.3 Output Power Level Settings

	9.5 ANT Message Details
	9.5.1 ANT Constants
	9.5.2 Configuration Messages
	9.5.2.1 /Unassign Channel (0x41)
	9.5.2.2 /Assign Channel (0x42)
	9.5.2.3 /Set Channel ID (0x51)
	9.5.2.4 Channel Messaging Period (0x43)
	9.5.2.5 /Channel Search Timeout (0x44)
	9.5.2.6 /Channel RF Frequency (0x45)
	9.5.2.7 /Set Network Key (0x46)
	9.5.2.8 /Transmit Power (0x47)
	9.5.2.9 Search Waveform (0x49)
	9.5.2.10 /Add Channel ID to List (0x59)
	9.5.2.11 /Add Encryption ID to List (0x59)
	9.5.2.12 /Config ID List (0x5A)
	9.5.2.13 /Config Encryption ID List (0x5A)
	9.5.2.14 /Set Channel Tx Power (0x60)
	9.5.2.15 /Channel Low Priority Search Timeout (0x63)
	9.5.2.16 /Serial Number Set Channel ID (0x65)
	9.5.2.17 /Enable Extended Messages (0x66)
	9.5.2.18 /Enable LED (0x68)
	9.5.2.19 /Enable Crystal (0x6D)
	9.5.2.20 /Lib Config (0x6E)
	9.5.2.21 //Frequency Agility (0x70)
	9.5.2.22 Proximit/y Search (0x71)
	9.5.2.23 Configure Event Buffer (0x74)
	9.5.2.24 /Channel Search Priority (0x75)
	9.5.2.25 /Set 128-Bit Network Key (0x76)
	9.5.2.26 /High Duty Search (0x77)
	9.5.2.27 /Configure Advanced Burst (0x78)
	9.5.2.28 /Configure Event Filter (0x79)
	9.5.2.29 /Configure Selective Data Updates (0x7A)
	9.5.2.30 /Set Selective Data Update (SDU) Mask (0x7B)
	9.5.2.31 /Configure User NVM (0x7C)
	9.5.2.32 /Enable Single Channel Encryption (0x7D)
	9.5.2.33 /Set Encryption Key (0x7E)
	9.5.2.34 Set Encryption Info (0x7F)
	9.5.2.35 Channel Search Sharing (0x81)/
	9.5.2.36 /Load/Store Encryption Key from/in NVM (0x83)
	9.5.2.37 /Set USB Descriptor String (0xC7)

	9.5.3 Notifications
	9.5.3.1 Start-up Message(0x6F)
	9.5.3.2 Serial Error Message (0xAE)

	9.5.4 Control Messages
	9.5.4.1 Reset System (0x4A)
	9.5.4.2 Open Channel (0x4B)
	9.5.4.3 Close Channel (0x4C)
	9.5.4.4 Request Message (0x4D)
	9.5.4.5 Open Rx Scan Mode (0x5B)
	9.5.4.6 Sleep Message (0xC5)

	9.5.5 Data Messages
	9.5.5.1 Broadcast Data (0x4E)
	9.5.5.2 Acknowledged Data (0x4F)
	9.5.5.3 Burst Data (0x50)
	9.5.5.4 Advanced Burst Data (0x72)

	9.5.6 Channel Response / Event Messages
	9.5.6.1 Channel Response / Event (0x40)
	9.5.6.2 Extended Event Parameters
	9.5.6.2.1 ENCRYPT_NEGOTIATION_SUCCESS (0x38)
	9.5.6.2.2 ENCRYPT_NEGOTIATION_FAIL (0x39)

	9.5.7 Requested Response Messages
	9.5.7.1 Channel Status (0x52)
	9.5.7.2 Channel ID (0x51)
	9.5.7.3 ANT Version (0x3E)
	9.5.7.4 Capabilities (0x54)
	9.5.7.5 Device Serial Number (0x61)
	9.5.7.6 Event Buffer Configuration (0x74)
	9.5.7.7 Advanced Burst Capabilities (0x78)
	9.5.7.8 Advanced Burst Current Configuration (0x78)
	9.5.7.9 Event Filter (0x79)
	9.5.7.10 Selective Data Update (SDU) Mask Setting (0x7B)
	9.5.7.11 User NVM (0x7C)
	9.5.7.12 Single Channel Encryption Parameters (0x7D)

	9.5.8 Test Mode
	9.5.8.1 Init CW Test Mode (0x53)
	9.5.8.2 CW Test Mode (0x48)

	9.5.9 Extended Data Messages
	9.5.9.1 Extended Broadcast Data (0x5D)
	9.5.9.2 Extended Acknowledged Data (0x5E)
	9.5.9.3 Extended Burst Data (0x5F)

	9.5.10 PC Functional Interface Configuration
	9.5.10.1 ANT PC Library Usage Notes
	9.5.10.2 ANT_Init
	9.5.10.3 ANT_Close
	9.5.10.4 ANT_AssignResponseFunction
	9.5.10.5 ANT_AssignChannelEventFunction

