

Product Change Notification

Product Group: OPT/Mon Mar 20, 2023/PCN-OPT-1233-2022-REV-0

<u>n</u> (pcn

The DNA of tech."

Changes of materials for TFBS4xxx IRDC Product Series

For further information, please contact your regional Vishay office.

CONTACT INFORMATION

Americas	Europe	Asia
jim toal	boris lazic	jason soon
2585 Junction Avenue	theresienstr.2	25 Tampines Street 92
-	-	keppel building #02-00
San Jose California United States 95134- 1923	Heilbronn baden-wuerttemberg Germany 74072	singapore singapore Singapore 528877
Phone: +14085678358	Phone: +4971317498645	Phone: +6567807879
Fax: +14082405687	Fax: +497131673144	Fax: +6567807897
jim.toal@vishay.com	boris.lazic@vishay.com	jason.soon@vishay.com

Description of Change: -Introduction of a new in-house designed IRDC IC. The Chaldene IC provides

20 percent longer distance (in meters) and improved ESD robustness

from current 1kV to 2kV.

-Introduction of a new Surface Emitting Technology Chip.

-Changeover of the Au wire Diameter from 30um to 25um.

We recommend to test the product in customers application.

Classification of Change: - New IC:

The existing external IC Supplier will end the production. In order to assure a long-term product availability of IRDC products, Vishay developed an inhouse IC in cooperation with the worlds leading Chip Foundry. -New Emitter Chip: Changeover to latest Surface Emitting Technology to assure long-term product availability. -Au wire Diameter reduction: In order to streamline the production and optimize the material supply chain, Vishay introduces a new Standardization of Au wire Diameter. The material is gualified to high Standards.

Expected Influence on Quality/Reliability/Performance: No change on Quality/Reliability. Similar electrical and optical

characteristics.

Part Numbers/Series/Families Affected: Please see materials list on the succeeding page.

Vishay Brand(S): Vishay Semiconductors

Time Schedule:

Start Shipment Date: Mon Jan 1, 2024

Sample Availability: Samples are available ww13 2023.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Product Change Notification

PCN

Product Group: OPT/Mon Mar 20, 2023/PCN-OPT-1233-2022-REV-0

The DNA of tech."

Product Identification: via date code

Qualification Data: Qual pack is available

This PCN is considered approved, without further notification, unless we receive specific customer concerns before Sun Apr 30, 2023 or as specified by contract.

Issued By: Rainer Hauschildt, rainer.hauschildt@vishay.com

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

PCN

Product Group: OPT/Mon Mar 20, 2023/PCN-OPT-1233-2022-REV-0

The DNA of tech."

TFBS4650E-TR1	TFBS4650E-TR3	TFBS4650E-TR3	TFBS4650E-TT1	TFBS4650E-TT3
TFBS4650-TR1	TFBS4650-TR3	TFBS4650-TR4	TFBS4650-TT3	TFBS4652E-TR1
TFBS4652E-TR3	TFBS4652E-TT1	TFBS4652E-TT3	TFBS4652K-TT1	TFBS4652-TR1
TFBS4652-TR3	TFBS4652-TT1	TFBS4711D-TT1	TFBS4711E-TR1	TFBS4711E-TR3
TFBS4711E-TT1	TFBS4711E-TT3	TFBS4711H-TR1	TFBS4711-TR1	TFBS4711-TR3
TFBS4711-TT1				

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Author: Rainer Hauschildt

 Tel:
 +49 7131 7498 - 605

 E-mail:
 Rainer.Hauschildt@Vishay.com

Changes of materials for TFBS4xxx IRDC Series

Vishay Opto has published a PCN announcing materials changes for the IRDC Transceiver products:

-Introduction of a new in-house designed IRDC IC. The Chaldene IC provides 20 percent longer distance (in meters) and improved ESD robustness from current 1kV to 2kV.

-Introduction of a new Surface Emitting Technology Chip.

-Changeover of the Au wire Diameter from 30um to 25um.

We recommend to order samples and test the products in customers application.

FAQ:

Q: Are there any technical differences (form/fit/function) expected?

A: Mechanically there are no changes.

Electrically/Optically the performance of the Transmitter changes in the following way:

Delute FUN.						
TRANSMITTER						
IRED operating current, current controlled	The IRED current is internally controlled but also can be reduced by an external resistor R1	ID	200	300	400	mA
Forward voltage of built-in IRED	I _F = 300 mA	V _F	1.4	1.8	1.9	v
Output leakage IRED current	T _{amb} = 85 °C	IIRED	-	-	1	μA
Output radiant intensity (5)	$\begin{array}{l} a=0^\circ, 15^\circ, TXD=high, SD=low,\\ V_{CC1}=3~V, V_{CC2}=3~V, R1=30~\Omega\\ (resulting in about 50~mA drive \\ current) \end{array}$	le	5	10	25	mW/sr
Output radiant intensity (5)	$\begin{array}{l} a = 0^{\circ}, 15^{\circ}, TXD = high, SD = low, \\ V_{CC1} = 3 V, V_{CC2} = 3 V, R1 = 0 \Omega, \\ I_F = 300 mA \end{array}$	le	30	65	150	mW/sr
Output radiant intensity (5)	$\begin{array}{l} V_{CC1}=5 \ V, \ a=0^\circ, \ 15^\circ \\ TXD = low \ or \ SD = high \\ (receiver is inactive \ as \ long \ as \\ SD = high) \end{array}$	le	-	-	0.04	mW/sr
Saturation voltage of IRED driver	$V_{CC}=3~V,~I_F=50~mA$	V _{CEsat}	-	0.4	-	v
Peak - emission wavelength		λ _p	880	886	900	nm
Spectral bandwidth		Δλ	-	45	-	nm
Optical rise time, optical fall time		t _{ropt} , t _{fopt}	20	-	100	ns
Optical output pulse duration	Input pulse width t < 30 μs Input pulse width t \geq 30 μs	t _{opt} t _{opt}	30	t 50	300	μs μs
Optical output pulse duration	Input pulse width t = 1.63 µs	t _{opt}	1.45	1.61	2.2	μs
Optical overshoot			-	-	20	%

TFBS465x Before PCN:

Product Group: Vishay Opto / Mar 2023

After Surface Emitter implementation:

TRANSMITTER (new surface e	mitter values introduced via PCN)					
IRED operating current limitation	No external resistor for current limitation (4)	ID	200	300	430	mA
Forward voltage of built-in IRED	I _f = 300 mA	V _f	1.4	1.8	1.9	V
Output leakage IRED current	TXD = 0 V, 0 < V _{CC1} < 5.5 V	I _{IRED}	-	0.01	1	μA
	$\alpha = 0^{\circ}$, 15°, TXD = high, SD = low	l _e	40	250	400	mW/sr
Output radiant intensity	$\begin{array}{l} V_{CC1}=5 \ V, \ \alpha=0^\circ, \ 15^\circ, \\ TXD=low \ or \ SD=high \\ (receiver is inactive as long as \ SD \\ = high) \end{array}$	l _e	-	-	0.04	mW/sr
Output radiant intensity, angle of half intensity		α	-	± 30	-	٥
Peak - emission wavelength (5)		λ _p	870	-	910	nm
Spectral bandwidth		Δλ	-	45	-	nm
Optical rise time, fall time		t _{ropt} , t _{fopt}	10	50	300	ns
Optical output pulse duration	Input pulse width 1.6 < t_{TXD} < 23 μs	t _{opt}	t _{TXD} - 0.15	-	t _{TXD} + 0.15	μs
	Input pulse width $t_{TXD} \ge 23 \ \mu s$	t _{opt}	23	50	100	μs
Optical overshoot			-	-	25	%

TFBS4711xx Before PCN:

TRANSMITTER (new surface emitter values introduced via PCN) IRED operating current No external resistor for current limitation ⁽⁵⁾ 200 300 430 mΑ In limitation Forward voltage of built-in IRED I_F = 300 mA Vf 1.4 1.8 1.9 ٧ Output leakage IRED current TXD = 0 V, 0 < V_{CC1} < 5.5 V 0.01 μA IIRED -1 α = 0°, 15 40 140 300 mW/sr le TXD = high, SD = low Output radiant intensity $\label{eq:V_CC1} \begin{array}{l} \mathsf{V} \in \mathsf{V}, \ \alpha = 0^\circ, \ \mathsf{15}^\circ, \\ \mathsf{TXD} = \mathsf{low} \ \mathsf{or} \ \mathsf{SD} = \mathsf{high} \ (\mathsf{receiver} \ \mathsf{is} \\ \mathsf{inactive} \ \mathsf{as} \ \mathsf{long} \ \mathsf{as} \ \mathsf{SD} = \mathsf{high}) \end{array}$ l_e _ -0.04 mW/sr Output radiant intensity, angle of half intensity α ± 24 deg Peak-emission wavelength (5) λp 870 910 nm 45 Spectral bandwidth Δλ nm Optical rise time t_{ropt} 10 50 300 ns t_{fopt} Optical fall time 10 50 300 ns Input pulse width 1.6 < t_{TXD} < 23 μs t_{opt} t_{TXD} - 0.15 t_{TXD} + 0.15 μs Optical output pulse duration 50 Input pulse width $t_{TXD} \geq 23~\mu s$ t_{opt} 23 100 μs Optical overshoot 25

....

After Surface Emitter implementation:

OPTOELECTRONIC CHARACTERISTICS (Tamb = 25 °C, V _{CC1} = V _{CC2} = 2.4 V to 5.5 V unless otherwise noted)							
PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT	
TRANSMITTER	TRANSMITTER						
IRED operating current limitation	No external resistor for current limitation (5)	ID	200	300	430	mA	
Forward voltage of built-in IRED	I _F = 300 mA	Vf	1.4	1.8	1.9	V	
Output leakage IRED current	TXD = 0 V, 0 < V _{CC1} < 5.5 V	IIRED	-1	0.01	1	μA	
Output radiant intensity	$\alpha = 0^{\circ}, 15^{\circ}$ TXD = high, SD = low	l _e	40	140	300	mW/sr	
	$V_{CC1} = 5 V, \alpha = 0^{\circ}, 15^{\circ},$ TXD = low or SD = high (receiver is inactive as long as SD = high)	le	-	-	0.04	mW/sr	
Output radiant intensity, angle of half intensity		α	-	± 24	-	deg	
Peak-emission wavelength (5)		λp	870	-	910	nm	
Spectral bandwidth		Δλ	-	45	-	nm	
Optical rise time		t _{ropt}	10	50	300	ns	
Optical fall time		t _{fopt}	10	50	300	ns	
Optical output pulse duration	Input pulse width 1.6 $<$ t_{TXD} $<$ 23 μs	t _{opt}	t _{TXD} - 0.15	-	t _{TXD} + 0.15	μs	
	Input pulse width $t_{TXD} \ge 23 \ \mu s$	t _{opt}	23	50	100	μs	
Optical overshoot			-	-	25	%	

For all details, please check the latest datasheet on www.vishay.com .

Q: When do we plan to implement the new materials in production? A: In Vishay production work week 1 2024.

Product Group: Vishay Opto / Mar 2023

Q: How can the customer distinguish products including these changes?

A: The PCN announces a changeover date (production work week). The standard bar code label contains the production week as shown below (Batch 202222PH19 produced in ww22 2022). A green sticker will be added to the box label for shipments which include the changes:

Q: Why has Vishay introduced these changes?

A: - New IC:

The existing external IC Supplier will end the production. In order to assure a long-term product availability of IRDC products, Vishay developed an inhouse IC in cooperation with the worlds leading Chip Foundry.

-New Emitter Chip:

Changeover to latest Surface Emitting Technology to assure long-term product availability.

-Au wire Diameter reduction:

In order to streamline the production and optimize the material supply chain, Vishay introduces a new Standardization of Au wire Diameter. The material is gualified to high Standards.

Q: Are datasheets available?

A: Yes. The updated datasheets are available on our website 27th Mar 2023. The header will state that the datasheet content is in accordance with this PCN.

Q: Are samples of TFBS4xxx Series available?

A: Yes, samples can be ordered by contacting me or our Regional Marketing colleagues.

THE AMERICAS

EUROPE

Jim Toal Jim.Toal@vishay.com

Boris Lazic Boris.Lazic@Vishay.com ASIA/PACIFIC

Jason Soon Jason.Soon@vishay.com