
DC-8297-03

PREFACE

Thank you for your interest in the Z380™ Central Processing Unit (CPU) and its
associated family of products. This Technical Manual describes programming
and operation of the Z380™ Superintegration™ Core CPU, which is found in the
Z380 Microprocessor Unit (MPU), and products built around Z380™ CPU core.

This Z380 User's Manual consists of the following Sections:

1. Z380™ Architectural Overview
Chapter 1 is an introductory section covering the key features and
giving an overview of the architecture of the device.

2. Address Spaces
Chapter 2 explains the address spaces the Z380 CPU can handle.
Also, this chapter includes a brief description of the on-chip regis-
ters.

3. Native/Extended Mode, Word/Long Word Mode of Operation,
and Decoder Directives
This chapter provides a detailed explanation on the Z380’s unique
features, operation modes, and the Decoder Directives.

4. Addressing Modes and Data Types
Chapter 4 describes the Addressing mode and data types which the
Z380 can handle.

5. Instruction Set
Chapter 5 contains an overview of the instruction set; as well as a
detailed instruction-by-instruction description in alphabetical order.

6. Interrupts and Traps
Chapter 6 explains the interrupts and traps features of the Z380.

7. Reset
Chapter 7 describes the Reset function.

8. Z380 Benchmark Appnote

9. Z380 Questions & Answers

Z80380 CPU
USER'S MANUAL

ZILOG

DC-8297-03

Appendix A
Appendix A covers the Z380’s instruction format.

Appendix B
Appendix B contains all Z380 instructions sorted in Alphabetical
Order.

Appendix C
Appendix C contains all Z380 instructions sorted in Numerical
Order.

Appendix D
The Tables in Appendix D lists all the Z380 instructions in instruction
affected by Native/Extended mode and Word/Long Word mode.

Appendix E
The Tables in Appendix E lists all the Z380 instructions in instruction
affected by DDIR IM (Immediate Decoder Directives) mode.

Index
A to Z listing of Z380™ User's Manual key words and phrases.

This manual assumes the reader has a basic knowledge of CPU-
based system architectures and software development systems,
such as the use of the text editor, and invoking the assembler/
compiler. Also, knowledge of the Z80® CPU architecture is desirable.

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

USER'S MANUALZILOG

1.1 INTRODUCTION

USER’s MANUAL

CHAPTER 1
Z380™ ARCHITECTURAL OVERVIEW

The Z380 CPU incorporates advanced architectural fea-
tures that allow fast and efficient throughput and increased
memory addressing capabilities while maintaining Z80®

CPU and Z180® MPU object-code compatibility. The Z380
CPU core provides a continuing growth path for present
Z80- or Z180®-based designs and offers the following key
features:

■ Full Static CMOS Design with Low Power Standby
Mode Support

■ DC to 18 MHz Operating Frequency @ 5 Volts VCC

■ DC to 10 MHz Operating Frequency @ 33 Volts VCC

■ Enhanced Instruction Set that Maintains Object-Code
Compatibility with Z80 and Z180 Microprocessors

■ 16-Bit (64K) or 32-Bit (4G) Linear Address Space

■ 16-Bit Internal Data Bus

■ Two Clock Cycle Instruction Execution (Minimum)

■ Multiple On-Chip Register Files (Z380 MPU has Four
Banks)

■ BC/DE/HL/IX/IY Registers are Augmented by 16-Bit
Extended Registers (BCz/DEz/HLz/IXz/IYz), PC/SP/I
Registers are Augmented by Extended Registers (PCz/
SPz/Iz) for 32-Bit Addressing Capability.

■ Newly Added IX’ and IY’ Registers with Extended
Registers (IXz’/IYz’)

■ Enhanced Interrupt Capabilities, Including 16-Bit
Vector

■ Undefined Opcode Trap for Full Z380 CPU Instruction
Set

The Z380 CPU, an enhanced version of the Z80 CPU,
retains the Z80 CPU instruction set to maintain complete
binary-code compatiblity with present Z80 and Z180 codes.
The basic addressing modes of the Z80 microprocessor
have been augmented with Stack Pointer Relative loads
and stores, 16-bit and 24-bit Indexed offsets, and in-
creased Indirect register addressing flexibility, with all of
the addressing modes allowing access to the entire 32-bit
address space. Significant additions have been made to
the instruction set iincorporating16-bit arithmetic and logi-
cal operations, 16-bit I/O operations, multiply and divide,
a complete set of register-to-register loads and exchanges,
plus 32-bit load and exchange, and 32-bit arithmetic
operation for address calculation.

The basic register file of the Z80 microprocessor is ex-
panded to include alternate register versions of the IX and
IY registers. There are four sets of this basic Z80 micropro-
cessor register file present in the Z380 MPU, along with the
necessary resources to manage switching between the
different register sets. All of the register pairs and index
registers in the basic Z80 microprocessor register file are
expanded to 32 bits.

The Z380 CPU expands the basic 64 Kbyte Z80 and Z180
address space to a full 4 Gbyte (32-bit) address space.
This address space is linear and completely accessible to
the user program. The external I/O address space is
similarly expanded to a full 4 Gbyte (32-bit) range, and 16-
bit I/O, both simple and block move are included. A 256
byte-wide internal I/O space has been added. This space
will be used to access on-chip I/O resources on future
Superintegration implementation of this CPU core.

Figure 1-1 provides a detailed description of the basic
register architecture of the Z380 CPU with the size of the
register banks shown at four each, however, the Z380 CPU
architecture allows future expansion of up to 128 sets of
each.

1-2

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

1.1 INTRODUCTION (Continued)

A F

B C

D E

H L

IXU IXL

IYU IYL

A' F'

B' C'

D' E'

H' L'

IXU' IXL'

IYU' IYL'

BCz'

DEz'

HLz'

IXz'

IYz'

BCz

DEz

HLz

IXz

IYz

R

I

SPz

PCz

Iz

SP

PC

4 Sets of Registers

Figure 1-1. Z380 ™ CPU Register Architecture

1-3

Z380™

USER'S MANUALZILOG

DC-8297-03

1.2 CPU ARCHITECTURE

The Z380 CPU is a binary-compatible extension of the Z80
CPU and the Z180 CPU architecture. High throughput
rates are achieved by a high clock rate, high bus band-
width, and instruction fetch/execute overlap. Communi-
cating to the external world through an 8-bit or 16-bit data
bus, the Z380 CPU is a full 32-bit machine internally, with
a 32-bit ALU and 32-bit registers.

1.2.1 Modes of Operation

To maintain compatibility with the Z80/Z180 CPU while
having the capability to manipulate 4 Gbytes of memory
address range, the Z380 CPU has two bits in the Select
Register (SR) to control the modes of operation. One bit
controls the address manipulation mode: Native mode or
Extended mode; and the other bit controls the data ma-
nipulation mode: Word mode or Long Word mode. In
result, the Z380 CPU has four modes of operation. On
reset, the Z380 CPU is in Native/Word mode, which is
compatible to the Z80/Z180’s operation mode. For details
on this subject, refer to Chapter 3, “Native/Extended Mode,
Word/Long Word Mode of Operation, and Decoder Direc-
tive Instructions.”

1.2.1.1 Native Mode and Extended Mode
The Z380 CPU can operate in either Native or Extended
mode, as controlled by a bit in the Select Register (SR). In
Native mode (the Reset configuration), all address ma-
nipulations are performed modulo 65536 (216). In this
mode, the Program Counter (PC) only increments across
16 bits, all address manipulation instructions (increment,
decrement, add, subtract, indexed, stack relative, and PC
relative) only operate on 16 bits, and the Stack Pointer (SP)
only increments and decrements across 16 bits. The PC
high-order word is left at all zeros, as the high-order words
of the SP and the I register. Thus, Native mode is fully
compatible with the Z80 CPU’s 64 Kbyte address mode. It
is still possible to address memory outside of 64 Kbyte
address space for data storage and retrieval in Native
mode, however, since direct addresses, indirect addresses,
and the high-order word of the SP, I, and the IX and IY
registers may be loaded with non-zero values. Executed
code and interrupt service routines must reside in the
lowest 64 Kbytes of the address space.

In Extended mode, however, all address manipulation
instructions operate on 32 bits, allowing access to the
entire 4 Gbyte address space of the Z380 CPU. In both
Native and Extended modes, the Z380 drives all 32 bits of
the address onto the external address bus; only the width
of the manipulated addresses distinguishes Native from
Extended mode. The Z380 CPU implements one instruc-
tion to allow switching from Native to Extended mode
(SETC XM); however, once in Extended mode, only Reset

will return the Z380 CPU to Native mode. This restriction
applies because of the possibility of “misplacing” interrupt
service routines or vector tables during the transition from
Extended mode back to Native mode.

1.2.1.2 Word or Long Word Mode
In addition to Native and Extended mode, which are
specific to memory space addressing, the Z380 CPU can
operate in either Word or Long Word mode specific to data
load and exchange operations. In Word mode (the Reset
configuration), all word load and exchange operations
manipulate 16-bit quantities. For example, only the low-
order words of the source and destination are exchanged
in an exchange operation, with the high-order words
unaffected.

In the Long Word mode, all 32 bits of the source and
destination are exchanged. The Z380 CPU implements
two instructions plus decoder directives to allow switching
between Word and Long Word mode; SETC LW (Set
Control Long Word) and RESC LW (Reset Control Long
Word) perform a global switch, while DDIR W, DDIR LW
and their variants are decoder directives that select a
particular mode only for the instruction that they precede.

Note that all word data arithmetic (as opposed to address
manipulation arithmetic), rotate, shift, and logical opera-
tions are always in 16-bit quantities. They are not con-
trolled by either the Native/Extended or Word/Long Word
selections. The exceptions to the 16-bit quantities are, of
course, those multiply and divide operations with 32-bit
products or dividends.

All word Input/Output operations are performed on 16-bit
values, regardless of Word/Long Word operation.

1.2.2 Address Spaces

Addressing spaces in the Z380 CPU include the CPU
register, the CPU control register, the memory address,
on-chip I/O address, and the external I/O address. The
CPU register space is a superset of the Z80 CPU register
set, and consists of all of the registers in the CPU register
file. These CPU registers are used for data and address
manipulation, and are an extension of the Z80 CPU register
set, with four sets of this extended Z80 CPU register set
present in the Z380 CPU. Access to these registers is
specified in the instruction, with the active register set
selected by bits in the Select Register (SR) in the CPU
control register space.

1-4

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

1.2.2 Address Spaces (Continued)

Each register set includes the primary registers A, F, B, C,
D, E, H, L, IX, and IY, as well as the alternate registers A’,
F’, B’, C’, D’, E’, H’, L’, IX’, and IY’. Also, IX, IX’, IY, and IY’
registers are accessible as two byte registers, each named
as IXU, IXL, IXU’ IXL’, IYU, IYL, IYU’, and IYL’. These byte
registers can be paired B with C, D with E, H with L, B’ with
C’, D’ with E’, and H’ with L’ to form word registers, and
these word registers are extended to 32 bits with the “z”
extension to the register. This register extension is only
accessible when using the register as a 32-bit register (in
the Long Word mode) or when swapping between the
most-significant and least-significant word of a 32-bit
register using SWAP instructions. Whenever an instruction
refers to a word register, the implicit size is controlled by
Word or Long Word mode. Also included are the R, I, and
SP registers, as well as the PC.

The Select Register (SR) determines the operation of the
Z380 CPU. The contents of this register determine the CPU
operating mode, which register bank will be used, the
interrupt mode in effect, and so on.

The Z380 CPU’s memory address space is linear 4 Gbytes.
To keep compatibility with the Z80 CPU memory address-
ing model, it has two control bits to change its operation
modes—Native or Extended, Word or Long Word.

The Z380 CPU architecture also distinguishes between
the memory and I/O addressing space and, therefore,
requires specific I/O instructions. Furthermore, I/O ad-
dressing space is subdivided into the on-chip I/O address
space and the external I/O addressing space. External
I/O addressing space in the Z380 CPU is 32 bits long, and
internal I/O addressing space is 8-bits long. There are
separate sets of I/O instructions for each I/O addressing
space.

Some of the Internal I/O registers are used to control the
functionality of the device, such as to program/read status
of Trap, Assigned Vector Base address, enabling of inter-
rupts, and to get Chip version ID.

For details on this topic, refer to Chapter 2, “Address
Spaces.”

1.2.3 Data Types

Many data types are supported by the Z380 CPU architec-
ture. The basic data type is the 8-bit byte, which is also the
basic addressable memory element. The architecture also
supports operations on bits, BCD (Binary Coded Decimal)
digits, words (16 bits or 32 bits), byte strings and word
strings. For details on this topic, refer to Section 4.3, “Data
Types.”

1.2.4. Addressing Modes

Addressing modes are used by the Z380 CPU to calculate
the effective address of an operand needed for execution
of an instruction. Seven addressing modes are supported
by the Z380 CPU. Of these seven, one is an addition to the
Z80 CPU addressing modes (Stack Pointer Relative) and
the remaining six modes are either existing or extensions
to Z80 CPU addressing modes.

■ Register
■ Immediate
■ Indirect Register
■ Direct Address
■ Indexed
■ Program Counter Relative
■ Stack Pointer Relative

All addressing modes are available on the 8-bit load,
arithmetic, and logical instructions; the 8-bit shift, rotate,
and bit manipulation instructions are limited to the regis-
ters and Indirect register addressing modes. The 16-bit
loads on the addressing registers support all addressing
modes except Index, while other 16-bit operations are
limited to the Register, Immediate, Indirect Register, In-
dex, Direct Address, and PC Relative addressing modes.

For details on this subject, refer to Chapter 4, “Addressing
Modes and Data Types.”

1.2.5. Instruction Set

The Z380 CPU instruction set is an expansion of the Z80
instruction set; the enhancements include support for
additional addressing modes for the Z80 instructions as
well as the addition of new instructions. The Z380 CPU
instruction set provides a full complement of 8-bit, 16-bit,
and 32-bit operation, including multiplication and division.

For details on this subject, refer to Chapter 5, “Instruction
Set.”

1.2.6 Exception Conditions

The Z380 CPU supports three types of exceptions (condi-
tions that alter the normal flow of program execution);
interrupts, traps, and resets.

Interrupts are asynchronous events typically triggered by
peripherals requiring attention. The Z380 CPU interrupt
structure has been significantly enhanced by increasing
the number of interrupt request lines and by adding an
efficient means for handling nested interrupts. The Z380
CPU has five interrupt lines. These are: Nonmaskable
Interrupt line (/NMI) and Maskable interrupt lines (/INT0,
/INT1, /INT2, and /INT3). Interrupt requests on /INT3-/INT1

1-5

Z380™

USER'S MANUALZILOG

DC-8297-03

are handled by a newly added interrupt handing mode,
“Assigned Vectored Mode,” which is a fixed vectored
interrupt mode similar in interrupt handling to the Z180’s
interrupts from on-chip peripherals. For handling interrupt
requests on the /INT0 line, there are four modes available:

■ 8080 compatible (Mode 0), in which the interrupting
device provides the first instruction of the interrupt
routine.

■ Dedicated interrupts (Mode 1), in which the CPU
jumps to a dedicated address when an interrupt
occurs.

■ Vectored interrupt mode (Mode 2), in which the
interrupting peripheral device provides a vector into a
table of jump address.

■ Enhanced vectored interrupt mode (Mode 3), wherein
the CPU expects 16-bit vector, instead of 8-bit interrupt
vectors in Mode 2.

The first three modes are compatible with Z80 interrupt
modes; the fourth mode provides more flexibility.

Traps are synchronous events that trigger a special CPU
response when an undefined instruction is executed. It
can be used to increase system reliability, or used as a
“software trap instruction.”

Hardware resets occur when the /RESET line is activated
and override all other conditions. A /RESET causes certain
CPU control registers to be initialized.

For details on this subject, refer to Chapter 6, “Interrupts
and Traps.”

1.3 BENEFITS OF THE ARCHITECTURE

The Z380 CPU architecture provides several significant
benefits, including increased program throughput achieved
by higher bus bandwidth (16-bit wide bus), reduction to
two clocks/basic machine cycle (vs four clocks/cycle on
the Z80 CPU), prefetch cue, access to the larger linear
addressing space, enhanced instructions/new address-
ing mode, data/address manipulation in 16/32 bits, and
faster context switching by utilizing multiple register banks.

1.3.1 High Throughput

Very high throughput rates can be achieved with the Z380
CPU, due to the basic machine cycle’s reduction to two
clocks/cycle from four clocks/cycle on the Z80 CPU, fine
tuned four staged pipeline with prefetch cue. This well
designed pipeline and prefetch cue are both totally trans-
parent to the user, thus maximizing the efficiency of the
pipeline all the time. The Z380 CPU implemented onto the
Z380 MPU is configured with a 16-bit wide data bus, which
doubles the bus bandwidth. These architectural features
result in two clocks/instructions execution minimum, three
clocks/instruction on average. The high clock rates (up to
40 MHz) achievable with this processor. Make the overall
performance of the Z380 CPU more than ten times that of
the Z80.

1.3.2 Linear Memory Address Space

Z380 CPU architecture has 4 Gbytes of linear memory
address space. The Z80 CPU architecture allows 64
Kbytes of memory addressing space. This was more than
sufficient when the Z80 CPU was first developed. But as

the technology improved over time, applications started to
demand more complicated processing, multitasking, faster
processing, etc., with the high level language needed to
develop software. As a result, 64 Kbytes of memory ad-
dressing space is not enough for some Z80 CPU based
applications. In order to handle more than 64 Kbytes of
memory, the Z80 CPU requires a Memory Banking scheme,
or MMU (Memory Management Unit), like the Z180 MPU or
Z280 MPU. These provide the overhead to access more
than 64 Kbytes of memory.

The Z380 CPU architecture allows access to a full 4 Gbytes
(232) of memory addressing space as well as 4 Gbytes of
I/O addressing area, without using a Memory Banking
scheme, or MMU.

1.3.3. Enhanced Instruction Set with 16-Bit
and 32-Bit Manipulation Capability

The Z380 CPU instruction set is 100% upward compatible
to the Z80 CPU instruction set; that is all the Z80 instruc-
tions have been preserved at the binary level. New instruc-
tions added to the Z380 CPU include:

■ Less restricted operand source/destination
combinations.

■ More flexible register exchange instructions.

■ Stack Pointer Relative addressing mode.

1-6

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

1.3.3. Enhanced Instruction Set with 16-Bit
and 32-Bit Manipulation Capability
(Continued)

■ DDIR (Decoder Directive Instructions) to enhance
addressing capability to cover 4 Gbytes of memory
space, as well as data manipulation capability.

■ Jump relative/Call relative instructions with 8-bit,
16-bit, or 24-bit displacement.

■ Full complements of 16-bit arithmetic instructions.

■ 32-bit manipulate instructions for address manipulation.

These new instructions help to compact the code, as well
as shorten the program’s overall execution speed.

For details on this subject, refer to Chapter 5, “Instruction
Set.”

1.3.4 Faster Context Switching

The Z380 CPU architecture allows multiple sets of register
banks for AF/AF’, BC/DE/HL, BC’/DE’/HL’, IX/IX’, IY/IY’

register pairs (including each register's Extended portion).
When doing context switching, by exceptional condition
(trap or interrupts) or by subroutine/procedure calls, the
CPU has to save the contents of the registers currently in
use, along with the current CPU status.

Traditionally in the Z80 CPU architecture, this is done by
saving the contents of the register into memory, usually
using push/pop instructions or the auxiliary register file.
Register contents are then restored when the process is
finished.

With the Z380 CPU’s multiple register banks, saving the
contents of the working register set currently in use is just
a matter of an instruction to change the field in the Select
Register, which allows fast context switching.

1.4 SUMMARY

The Z380 CPU is a high-performance 16-bit Central Pro-
cessing Unit Superintegration™ core. Code-compatible
with the Z80 CPU, the Z380 CPU architecture has been
expanded to include features such as multiple register
banks, 4 Gbytes of linear memory addressing space, and
efficient handling of nested interrupts. The benefits of this

architecture, including high throughput rates, code den-
sity, and compiler efficiency, greatly enhance the power
and versatility of the Z380 CPU. Thus, the Z380 CPU
provides both a growth path for existing Z80-based de-
signs and a powerful processor for applications and the
products to be developed around this CPU core.

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

2-1

Z380™

USER'S MANUALZILOG

DC-8297-03

2.1 INTRODUCTION

USER’s MANUAL

CHAPTER 2
ADDRESS SPACES

The Z380 CPU supports five address spaces correspond-
ing to the different types of locations that can be ad-
dressed and the method by which the logical addresses
are formed. These five address spaces are:

■ CPU Register Space. This consists of all the register
addresses in the CPU register file.

■ CPU Control Register Space. This consists of the
Select Register (SR).

■ Memory Address Space. This consists of the
addresses of all locations in the main memory.

2.2 CPU REGISTER SPACE

The Z380 register file is illustrated in Figure 2-1. Note that
this figure shows the configuration of the register on the
Z380 CPU, and the number of the register files may vary on
future Superintegration devices. The Z380 CPU contains
abundant register resources. At any given time, the pro-
gram has immediate access to both primary and alternate
registers in the selected register set. Changing register
sets is a simple matter of an LDCTL instruction to program
the Select Register (SR).

The CPU register file is divided into five groups of registers
(an apostrophe indicates a register in the auxiliary regis-
ters).

■ Four sets of Flag and Accumulator registers (F, A, F’,
A’)

■ Four sets of Primary and Working registers (B, C, D, E,
H, L, B’, C’, D’, E’, H’, L’)

■ External I/O Address Space. This consists of all
external I/O ports addresses through which peripheral
devices are accessed.

■ On-Chip I/O Address Space. This consists of all
internal I/O port addresses through which peripheral
devices are accessed. Also, this addressing space
contains registers to control the functionality of the
device, giving status information.

■ Four sets of Index registers (IX, IY, IX’, IY’)

■ Stack Pointer (SP)

■ Program Counter, Interrupt register, Refresh register
(PC, I, R)

Register addresses are either specified explicitly in the
instruction or are implied by the semantics of the instruc-
tion.

2-2

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

2.2 CPU REGISTER SPACE (Continued)

A F

B C

D E

H L

IXU IXL

IYU IYL

A' F'

B' C'

D' E'

H' L'

IXU' IXL'

IYU' IYL'

BCz'

DEz'

HLz'

IXz'

IYz'

BCz

DEz

HLz

IXz

IYz

R

I

SPz

PCz

Iz

SP

PC

4 Sets of Registers

Figure 2-1. Register File Organization (Z380 MPU)

2-3

Z380™

USER'S MANUALZILOG

DC-8297-03

2.2.1 Primary and Working Registers

The working register set is divided into two register files:
the primary file and the alternate file (designated by prime
(‘)). Each file contains an 8-bit accumulator (A), a Flag
register (F), and six 8-bit general-purpose registers (B, C,
D, E, H, and L) with their Extended registers. Only one file
can be active at any given time, although data in the
inactive file can still be accessed by using EX R, R’
instructions for the byte-wide registers, EX RR, RR’ instruc-
tions for register pairs (either in 16-bit or 32-bit wide
depending on the LW status). Exchange instructions allow
the programmer to exchange the active file with the inac-
tive file. The EX AF, AF’, EXX, or EXALL instructions
changes the register files in use. Upon reset, the primary
register file in register set 0 is active. Changing register
sets is a simple matter of an LDCTL instruction to program
SR.

The accumulator is the destination register for 8-bit arith-
metic and logical operations. The six general-purpose
registers can be paired (BC, DE, and HL), and are ex-
tended to 32 bits by the extension to the register (with suffix
“z”; BCz/DEz/HLz), to form three 32-bit general-purpose
registers. The HL register serves as the 16-bit or 32-bit
accumulator for word operations. Access to the Extended
portion of the registers is possible using the SWAP instruc-
tion or word Load instructions in Long Word operation
mode.

The Flag register contains eight status flags. Four can be
individually used for control of program branching, two are
used to support decimal arithmetic, and two are reserved.
These flags are set or reset by various CPU operations. For
details on Flag operations, refer to Section 5.2, “Flag
Register.”

2.2.2. Index Registers

The four index registers, IX, IX’, IY, and IY’, are extended
to 32 bits by the extension to the register (with suffix “z”;
IXz/IYz), to form 32-bit index registers. To access the
Extended portion of the registers use the SWAP instruction
or word Load instructions in Long Word operation mode.
These Index registers hold a 32-bit base address that is
used in the Index addressing mode.

Only one register of each can be active at any given time,
although data in the inactive file can still be accessed by
using EX IX, IX’ and EX IY, IY’ (either in 16-bit or 32-bit wide
depending on the LW bit status). Index registers can also
function as general-purpose registers with the upper and
lower bytes of the lower 16 bits being accessed individu-
ally. These byte registers are called IXU, IXU’, IXL, and IXL’

for the IX and IX’ registers, and IYU, IYU’, IYL, and IYL’ for
the IY and IY’ registers.

Selection of primary or auxiliary Index registers can be
made by EXXX, EXXY, or EXALL instructions, or program-
ming of SR. Upon reset, the primary registers in register set
0 is active. Changing register sets is a simple matter of an
LDCTL instruction to program SR.

2.2.3. Interrupt Register

The Interrupt register (I) is used in interrupt modes 2 and
3 for /INT0 to generate a 32-bit indirect address to an
interrupt service routine. The I register supplies the upper
24 or 16 bits of the indirect address and the interrupting
peripheral supplies the lower eight or 16 bits. In Assigned
Vectors mode for /INT3-/INT1, the upper 16 bits of the
vector are supplied by the I register; bits 15-9 are supplied
from the Assigned Vector Base register, and bits 8-0 are
the assigned vector unique to each of /INT3-/INT1.

2.2.4. Program Counter

The Program Counter (PC) is used to sequence through
instructions in the currently executing program and to
generate relative addresses. The PC contains the 32-bit
address of the current instruction being fetched from
memory. In Native mode, the PC is effectively only 16 bits
long, since the upper word [PC31-PC16] of the PC is
forced to zero, and when carried from bit 15 to bit 16 (Lower
word [PC15-PC0] to Upper word [PC31-PC16]) are inhib-
ited in this mode. In Extended mode, the PC is allowed to
increment across all 32 bits.

2.2.5. R Register

The R register can be used as a general-purpose 8-bit
read/write register. The R register is not associated with
the refresh controller and its contents are changed only by
the user.

2.2.6. Stack Pointer

The Stack Pointer (SP) is used for saving information when
an interrupt or trap occurs and for supporting subroutine
calls and returns. Stack Pointer relative addressing allows
parameter passing using the SP. The SP is 16 bits wide, but
is extended by the SPz register to 32 bits wide.

2-4

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

2.2.6 Stack Pointer (Continued)

Increment/decrement of the Stack Pointer is affected by
modes of operation (Native or Extended). In Native mode,
the stack operates in modulo 216, and in Extended mode,
it operates in modulo 232. For example, SP holds 0001FFFEH,
and does the Word size Pop operation. After the operation,

SP holds 00010000H in Native mode, and 00020000H in
Extended mode. In either case, SPz can be programmed
to set Stack frame. This is done by the Load- to-Stack
pointer instructions in Long Word mode.

2.3. CPU CONTROL REGISTER SPACE

The CPU control register space consists of the 32-bit
Select Register (SR). The SR may be accessed as a whole
or the upper three bytes of the SR may be accessed
individually as YSR, XSR, and DSR. In addition, these

upper three bytes can be loaded with the same byte value.
The SR may also be PUSHed and POPed and is cleared to
zeros on Reset. For details on this register, refer to Chapter
5.3, “Select Register.”

2.4 MEMORY ADDRESS SPACE

The memory address space can be viewed as a string of
4 Gbytes numbered consecutively in ascending order.
The 8-bit byte is the basic addressable element in the Z380
MPU memory address space. However, there are other
addressable data elements: bits, 2-byte words, byte strings,
and 4-byte words.

The size of the data element being addressed depends on
the instruction being executed as well as the Word/Long
Word mode. A bit can be addressed by specifying a byte
and a bit within that byte. Bits are numbered from right to
left, with the least significant bit being 0, as illustrated in
Figure 2-2.

The address of a multiple-byte entity is the same as the
address of the byte with the lowest memory address in the
entity. Multiple-byte entities can be stored beginning with

either even or odd memory addresses. A word (either 2-
byte or 4-byte entity) is aligned if its address is even;
otherwise it is unaligned. Multiple bus transactions, which
may be required to access multiple-byte entities, can be
minimized if alignment is maintained.

The format of multiple-byte data types is also shown in
Figure 2-2. Note that when a word is stored in memory, the
least significant byte precedes the more significant byte of
the word, as in the Z80 CPU architecture. Also, the lower-
addressed byte is present on the upper byte of the external
data bus.

2-5

Z380™

USER'S MANUALZILOG

DC-8297-03

7 6 5 4 3 2 1 0

Bits within a byte:

16-bit word at address n:

Least Significant Byte

Most Significant Byte

Address n

Address n+1

32-bit word at address n:

D7-0 (Least Significant Byte)

D15-8

Address n

Address n+1

Address n+2

Address n+3D31-24 (Most Significant Byte)

D23-16

Memory addresses:

Least Significant Byte

Even address (A0=0)

Most Significant Byte

Odd address (A0=1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 2-2. Bit/Byte Ordering Conventions

2-6

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

2.5. EXTERNAL I/O ADDRESS SPACE

External I/O address space is 4 Gbytes in size and External
I/O addresses are generated by I/O instructions except
those reserved for on-chip I/O address space accesses. It

can take a variety of forms, as shown in Table 2.1. An
external I/O read or write is always one transaction, regard-
less of the bus size and the type of I/O instruction.

Table 2-1. I/O Addressing Options

Address Bus
I/O Instruction A31-A24 A23-A16 A15-A8 A7-A0

IN A, (n) 00000000 00000000 A7-A0 n
IN dst,(C) BC31-B24 BC23-B16 BC15-B8 BC7-B0
INA(W) dst,(mn) 00000000 00000000 m n

DDIR IB INA(W) dst,(lmn) 00000000 l m n
DDIR IW INA(W) dst,(klmn) k l m n
Block Input BC31-B24 BC23-B16 BC15-B8 BC7-B0

OUT (n),A 00000000 00000000 A7-A0 n
OUT (C),dst BC31-B24 BC23-B16 BC15-B8 BC7-B0
OUTA(W) (mn),dst 00000000 00000000 m n

DDIR IB OUTA(W) (lmn),dst 00000000 l m n
DDIR IW OUTA(W) (klmn),dst k l m n
Block Output BC31-B24 BC23-B16 BC15-B8 BC7-B0

2.6. ON-CHIP I/O ADDRESS SPACE

The Z380 CPU has the on-chip I/O address space to
control on-chip peripheral functions of the Superintegra-
tion™ version of the devices. A portion of its interrupt
functions are also controlled by several on-chip registers,
which occupy an on-chip I/O address space. This on-chip
I/O address space can be accessed only with the following
reserved on-chip I/O instructions which are identical to the
Z180 original I/O instructions to access Page 0 I/O ad-
dressing area.

IN0 R,(n) OTIM
IN0 (n) OTIMR
OUT0 (n),R OTDM
TSTIO n OTDMR

When one of these I/O instructions is executed, the Z380
MPU outputs the register address being accessed in a
pseudo-transaction of two BUSCLK cycles duration, with
the address signals A31-A8 at zero. In the pseudo-trans-
actions, all bus control signals are at their inactive state.

The following four registers are assigned to this address-
ing space as a part of the Z380 CPU core:

Register Name Internal I/O Address

Interrupt Enable Register 17H
Assigned Vector Base Register 18H
Trap and Break Register 19H
Chip Version ID Register 0FFH

The Chip Version ID register returns one byte data, which
indicates the version of the CPU, or the specific implemen-
tation of the Z380 CPU based Superintegration device.
Currently, the value 00H is assigned to the Z380 MPU, and
other values are reserved.

For the other three registers, refer to Chapter 6, “Interrupts
and Traps.”

Also, the Z380 MPU has registers to control chip selects,
refresh, waits, and I/O clock divide to Internal I/O address
00H to 10H. For these registers, refer to the Z380 MPU
Product specification (DC-3003-01).

2-7

Z380™

USER'S MANUALZILOG

DC-8297-03

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

2-1

Z380™

USER'S MANUALZILOG

DC-8297-03

2.1 INTRODUCTION

USER’s MANUAL

CHAPTER 2
ADDRESS SPACES

The Z380 CPU supports five address spaces correspond-
ing to the different types of locations that can be ad-
dressed and the method by which the logical addresses
are formed. These five address spaces are:

■ CPU Register Space. This consists of all the register
addresses in the CPU register file.

■ CPU Control Register Space. This consists of the
Select Register (SR).

■ Memory Address Space. This consists of the
addresses of all locations in the main memory.

2.2 CPU REGISTER SPACE

The Z380 register file is illustrated in Figure 2-1. Note that
this figure shows the configuration of the register on the
Z380 CPU, and the number of the register files may vary on
future Superintegration devices. The Z380 CPU contains
abundant register resources. At any given time, the pro-
gram has immediate access to both primary and alternate
registers in the selected register set. Changing register
sets is a simple matter of an LDCTL instruction to program
the Select Register (SR).

The CPU register file is divided into five groups of registers
(an apostrophe indicates a register in the auxiliary regis-
ters).

■ Four sets of Flag and Accumulator registers (F, A, F’,
A’)

■ Four sets of Primary and Working registers (B, C, D, E,
H, L, B’, C’, D’, E’, H’, L’)

■ External I/O Address Space. This consists of all
external I/O ports addresses through which peripheral
devices are accessed.

■ On-Chip I/O Address Space. This consists of all
internal I/O port addresses through which peripheral
devices are accessed. Also, this addressing space
contains registers to control the functionality of the
device, giving status information.

■ Four sets of Index registers (IX, IY, IX’, IY’)

■ Stack Pointer (SP)

■ Program Counter, Interrupt register, Refresh register
(PC, I, R)

Register addresses are either specified explicitly in the
instruction or are implied by the semantics of the instruc-
tion.

2-2

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

2.2 CPU REGISTER SPACE (Continued)

A F

B C

D E

H L

IXU IXL

IYU IYL

A' F'

B' C'

D' E'

H' L'

IXU' IXL'

IYU' IYL'

BCz'

DEz'

HLz'

IXz'

IYz'

BCz

DEz

HLz

IXz

IYz

R

I

SPz

PCz

Iz

SP

PC

4 Sets of Registers

Figure 2-1. Register File Organization (Z380 MPU)

2-3

Z380™

USER'S MANUALZILOG

DC-8297-03

2.2.1 Primary and Working Registers

The working register set is divided into two register files:
the primary file and the alternate file (designated by prime
(‘)). Each file contains an 8-bit accumulator (A), a Flag
register (F), and six 8-bit general-purpose registers (B, C,
D, E, H, and L) with their Extended registers. Only one file
can be active at any given time, although data in the
inactive file can still be accessed by using EX R, R’
instructions for the byte-wide registers, EX RR, RR’ instruc-
tions for register pairs (either in 16-bit or 32-bit wide
depending on the LW status). Exchange instructions allow
the programmer to exchange the active file with the inac-
tive file. The EX AF, AF’, EXX, or EXALL instructions
changes the register files in use. Upon reset, the primary
register file in register set 0 is active. Changing register
sets is a simple matter of an LDCTL instruction to program
SR.

The accumulator is the destination register for 8-bit arith-
metic and logical operations. The six general-purpose
registers can be paired (BC, DE, and HL), and are ex-
tended to 32 bits by the extension to the register (with suffix
“z”; BCz/DEz/HLz), to form three 32-bit general-purpose
registers. The HL register serves as the 16-bit or 32-bit
accumulator for word operations. Access to the Extended
portion of the registers is possible using the SWAP instruc-
tion or word Load instructions in Long Word operation
mode.

The Flag register contains eight status flags. Four can be
individually used for control of program branching, two are
used to support decimal arithmetic, and two are reserved.
These flags are set or reset by various CPU operations. For
details on Flag operations, refer to Section 5.2, “Flag
Register.”

2.2.2. Index Registers

The four index registers, IX, IX’, IY, and IY’, are extended
to 32 bits by the extension to the register (with suffix “z”;
IXz/IYz), to form 32-bit index registers. To access the
Extended portion of the registers use the SWAP instruction
or word Load instructions in Long Word operation mode.
These Index registers hold a 32-bit base address that is
used in the Index addressing mode.

Only one register of each can be active at any given time,
although data in the inactive file can still be accessed by
using EX IX, IX’ and EX IY, IY’ (either in 16-bit or 32-bit wide
depending on the LW bit status). Index registers can also
function as general-purpose registers with the upper and
lower bytes of the lower 16 bits being accessed individu-
ally. These byte registers are called IXU, IXU’, IXL, and IXL’

for the IX and IX’ registers, and IYU, IYU’, IYL, and IYL’ for
the IY and IY’ registers.

Selection of primary or auxiliary Index registers can be
made by EXXX, EXXY, or EXALL instructions, or program-
ming of SR. Upon reset, the primary registers in register set
0 is active. Changing register sets is a simple matter of an
LDCTL instruction to program SR.

2.2.3. Interrupt Register

The Interrupt register (I) is used in interrupt modes 2 and
3 for /INT0 to generate a 32-bit indirect address to an
interrupt service routine. The I register supplies the upper
24 or 16 bits of the indirect address and the interrupting
peripheral supplies the lower eight or 16 bits. In Assigned
Vectors mode for /INT3-/INT1, the upper 16 bits of the
vector are supplied by the I register; bits 15-9 are supplied
from the Assigned Vector Base register, and bits 8-0 are
the assigned vector unique to each of /INT3-/INT1.

2.2.4. Program Counter

The Program Counter (PC) is used to sequence through
instructions in the currently executing program and to
generate relative addresses. The PC contains the 32-bit
address of the current instruction being fetched from
memory. In Native mode, the PC is effectively only 16 bits
long, since the upper word [PC31-PC16] of the PC is
forced to zero, and when carried from bit 15 to bit 16 (Lower
word [PC15-PC0] to Upper word [PC31-PC16]) are inhib-
ited in this mode. In Extended mode, the PC is allowed to
increment across all 32 bits.

2.2.5. R Register

The R register can be used as a general-purpose 8-bit
read/write register. The R register is not associated with
the refresh controller and its contents are changed only by
the user.

2.2.6. Stack Pointer

The Stack Pointer (SP) is used for saving information when
an interrupt or trap occurs and for supporting subroutine
calls and returns. Stack Pointer relative addressing allows
parameter passing using the SP. The SP is 16 bits wide, but
is extended by the SPz register to 32 bits wide.

2-4

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

2.2.6 Stack Pointer (Continued)

Increment/decrement of the Stack Pointer is affected by
modes of operation (Native or Extended). In Native mode,
the stack operates in modulo 216, and in Extended mode,
it operates in modulo 232. For example, SP holds 0001FFFEH,
and does the Word size Pop operation. After the operation,

SP holds 00010000H in Native mode, and 00020000H in
Extended mode. In either case, SPz can be programmed
to set Stack frame. This is done by the Load- to-Stack
pointer instructions in Long Word mode.

2.3. CPU CONTROL REGISTER SPACE

The CPU control register space consists of the 32-bit
Select Register (SR). The SR may be accessed as a whole
or the upper three bytes of the SR may be accessed
individually as YSR, XSR, and DSR. In addition, these

upper three bytes can be loaded with the same byte value.
The SR may also be PUSHed and POPed and is cleared to
zeros on Reset. For details on this register, refer to Chapter
5.3, “Select Register.”

2.4 MEMORY ADDRESS SPACE

The memory address space can be viewed as a string of
4 Gbytes numbered consecutively in ascending order.
The 8-bit byte is the basic addressable element in the Z380
MPU memory address space. However, there are other
addressable data elements: bits, 2-byte words, byte strings,
and 4-byte words.

The size of the data element being addressed depends on
the instruction being executed as well as the Word/Long
Word mode. A bit can be addressed by specifying a byte
and a bit within that byte. Bits are numbered from right to
left, with the least significant bit being 0, as illustrated in
Figure 2-2.

The address of a multiple-byte entity is the same as the
address of the byte with the lowest memory address in the
entity. Multiple-byte entities can be stored beginning with

either even or odd memory addresses. A word (either 2-
byte or 4-byte entity) is aligned if its address is even;
otherwise it is unaligned. Multiple bus transactions, which
may be required to access multiple-byte entities, can be
minimized if alignment is maintained.

The format of multiple-byte data types is also shown in
Figure 2-2. Note that when a word is stored in memory, the
least significant byte precedes the more significant byte of
the word, as in the Z80 CPU architecture. Also, the lower-
addressed byte is present on the upper byte of the external
data bus.

2-5

Z380™

USER'S MANUALZILOG

DC-8297-03

7 6 5 4 3 2 1 0

Bits within a byte:

16-bit word at address n:

Least Significant Byte

Most Significant Byte

Address n

Address n+1

32-bit word at address n:

D7-0 (Least Significant Byte)

D15-8

Address n

Address n+1

Address n+2

Address n+3D31-24 (Most Significant Byte)

D23-16

Memory addresses:

Least Significant Byte

Even address (A0=0)

Most Significant Byte

Odd address (A0=1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 2-2. Bit/Byte Ordering Conventions

2-6

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

2.5. EXTERNAL I/O ADDRESS SPACE

External I/O address space is 4 Gbytes in size and External
I/O addresses are generated by I/O instructions except
those reserved for on-chip I/O address space accesses. It

can take a variety of forms, as shown in Table 2.1. An
external I/O read or write is always one transaction, regard-
less of the bus size and the type of I/O instruction.

Table 2-1. I/O Addressing Options

Address Bus
I/O Instruction A31-A24 A23-A16 A15-A8 A7-A0

IN A, (n) 00000000 00000000 A7-A0 n
IN dst,(C) BC31-B24 BC23-B16 BC15-B8 BC7-B0
INA(W) dst,(mn) 00000000 00000000 m n

DDIR IB INA(W) dst,(lmn) 00000000 l m n
DDIR IW INA(W) dst,(klmn) k l m n
Block Input BC31-B24 BC23-B16 BC15-B8 BC7-B0

OUT (n),A 00000000 00000000 A7-A0 n
OUT (C),dst BC31-B24 BC23-B16 BC15-B8 BC7-B0
OUTA(W) (mn),dst 00000000 00000000 m n

DDIR IB OUTA(W) (lmn),dst 00000000 l m n
DDIR IW OUTA(W) (klmn),dst k l m n
Block Output BC31-B24 BC23-B16 BC15-B8 BC7-B0

2.6. ON-CHIP I/O ADDRESS SPACE

The Z380 CPU has the on-chip I/O address space to
control on-chip peripheral functions of the Superintegra-
tion™ version of the devices. A portion of its interrupt
functions are also controlled by several on-chip registers,
which occupy an on-chip I/O address space. This on-chip
I/O address space can be accessed only with the following
reserved on-chip I/O instructions which are identical to the
Z180 original I/O instructions to access Page 0 I/O ad-
dressing area.

IN0 R,(n) OTIM
IN0 (n) OTIMR
OUT0 (n),R OTDM
TSTIO n OTDMR

When one of these I/O instructions is executed, the Z380
MPU outputs the register address being accessed in a
pseudo-transaction of two BUSCLK cycles duration, with
the address signals A31-A8 at zero. In the pseudo-trans-
actions, all bus control signals are at their inactive state.

The following four registers are assigned to this address-
ing space as a part of the Z380 CPU core:

Register Name Internal I/O Address

Interrupt Enable Register 17H
Assigned Vector Base Register 18H
Trap and Break Register 19H
Chip Version ID Register 0FFH

The Chip Version ID register returns one byte data, which
indicates the version of the CPU, or the specific implemen-
tation of the Z380 CPU based Superintegration device.
Currently, the value 00H is assigned to the Z380 MPU, and
other values are reserved.

For the other three registers, refer to Chapter 6, “Interrupts
and Traps.”

Also, the Z380 MPU has registers to control chip selects,
refresh, waits, and I/O clock divide to Internal I/O address
00H to 10H. For these registers, refer to the Z380 MPU
Product specification (DC-3003-01).

2-7

Z380™

USER'S MANUALZILOG

DC-8297-03

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

3-1

Z380™

USER'S MANUALZILOG

DC-8297-03

3.1 INTRODUCTION

USER’s MANUAL

CHAPTER 3
NATIVE EXTENDED MODE, WORD/LONG
WORD MODE OF OPERATIONS
AND DECODER DIRECTIONS

The Z380™ CPU architecture allows access to 4 Gbytes
(232) of memory addressing space, and 4G locations of
I/O. It offers 16/32-bit manipulation capability while main-
taining object-code compatibility with the Z80 CPU. In
order to implement these capabilities and new instruction
sets, it has two modes of operation for address manipula-
tion (Native or Extended mode), two modes of operation for
data manipulation (Word or Long Word mode), and a
special set of new Decoder Directives.

On Reset, the Z380 CPU defaults in Native mode and Word
mode. In this condition, it behaves exactly the same as the
Z80 CPU, even though it has access to the entire 4 Gbytes
of memory for data access and 4G locations of I/O space,

access to the newly added registers which includes Ex-
tended registers and register banks, and the capability of
executing all the Z380 instructions.

As described below, the Z380 CPU can be switched
between Word mode and Long Word mode during opera-
tion through the SETC LW and RESC LW instructions, or
Decoder Directives. The Native and Extended modes are
a key exception— it defaults up in Native mode, and can
be set to Extended mode by the instruction. Only Reset can
return it to Native mode. Figure 3-1 illustrates the relation-
ship between these modes of operation.

For the instructions which work with the DDIR instructions, refer to Appendix D and E.

Word

Long Word

Native

Z380

Extended

Z80 Native Mode

Figure 3-1. Z380 ™ CPU Operation Modes

3-2

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

3.2 DECODER DIRECTIVES

The Decoder Directive is not an instruction, but rather a
directive to the instruction decoder. The instruction de-
coder may be directed to fetch an additional byte or word
of immediate data or address with the instruction, as well
as tagging the instruction for execution in either Word or
Long Word mode. Since the Z80 CPU architecture’s ad-
dressing convention in the memory is “least significant
byte first, followed by more significant bytes,” it is possible
to have such instructions to direct the instruction decoder
to fetch additional byte(s) of address information or imme-
diate data to extend the instruction.

All eight combinations of the two options are supported, as
shown below. Instructions which do not support decoder
directives are assembled by the instruction decoder as if
the decoder directive were not present.

■ DDIR W Word mode
■ DDIR IB,W Immediate byte, Word mode
■ DDIR IW,W Immediate Word, Word mode
■ DDIR IB Immediate byte
■ DDIR LW Long Word mode
■ DDIR IB,LW Immediate byte, Long Word mode
■ DDIR IW,LW Immediate Word, Long Word

mode
■ DDIR IW Immediate Word

The IB decoder directive causes the decoder to fetch an
additional byte immediately after the existing immediate
data or direct address, and in front of any trailing opcode
bytes (with instructions starting with DD-CB or FD-CB, for
example).

Likewise, the IW decoder directive causes the decoder to
fetch an additional word immediately after the existing
immediate data or direct address, and in front of any
trailing opcode bytes.

Byte ordering within the instruction follows the usual con-
vention; least significant byte first, followed by more signifi-
cant bytes. More-significant immediate data or direct
address bytes not specified in the instruction are read as
all zeros by the processor.

The W decoder directive causes the instruction decoder to
tag the instruction for execution in Word mode. This is
useful while the Long Word (LW) bit in the Select Register
(SR) is set, but 16-bit data manipulation is required for this
instruction.

The LW decoder directive causes the instruction decoder
to tag the instruction for execution in Long Word mode.
This is useful while the LW bit in the SR is cleared, but 32-
bit data manipulation is required for this instruction.

3.3 NATIVE MODE AND EXTENDED MODE

The Z380 CPU can operate in either Native or Extended
mode, as a way to manipulate addresses.

In Native mode (the Reset configuration), the Program
Counter only increments across 16 bits, and all stack Push
and Pop operations manipulate 16-bit quantities (two
bytes). Thus, Native mode is fully compatible with the Z80
CPU’s 64 Kbyte address space and programming model.
The extended portion of the Program Counter (PC31-
PC15) is forced to 0 and program address location next to
0000FFFFH is 00000000H in this mode. This means in
Native mode, program have to reside within the first 64
Kbytes of the memory addressing space.

In Extended mode, however, the PC increments across all
32 bits and all stack Push and Pop operations manipulate
32-bit quantities. Thus, Extended mode allows access to
the entire 4 Gbyte address space. In both Native and
Extended modes, the Z380 CPU drives all 32 bits of the
address onto the external address bus; only the PC incre-
ments and stack operations distinguish Native from Ex-
tended mode.

Note that regardless of Native or Extended mode, a 32-bit
address is always used for the data access. Thus, for data
reference, the complete 4 Gbytes of memory area may be
accessed. For example:

LD BC, (HL)

uses the 32-bit address value stored in HL31-HL0 (HLz
and HL) as a source location address. However, on Reset,
the HL31-HL16 portion (HLz) initializes to 00H. Unless HLz
is modified to other than 00H, operation of this instruction
is identical to the one with the Z80 CPU. Modifying the
extended portion of the register is done either by using a
32-bit load instruction (in Long Word mode, or with DDIR
LW instructions), or using a 16-bit load instruction with
SWAP instructions.

3-3

Z380™

USER'S MANUALZILOG

DC-8297-03

The Z380 CPU implements one instruction to switch to
Extended mode from Native mode; SETC XM (set Ex-
tended mode) places the Z380 CPU in Extended mode.

Once in Extended mode, only Reset can return it to Native
mode. On Reset, the Z380 is in Native mode. Refer to
Sections 4 and 5 for more examples.

3.4 WORD AND LONG WORD MODE OF OPERATION

The Z380 CPU can operate in either Word or Long Word
mode. In Word mode (the Reset configuration), all word
operations manipulate 16-bit quantities, and are compat-
ible with the Z80 CPU 16-bit operations. In the Long Word
mode, all word operations can manipulate 32-bit quanti-
ties. Note that the Native/Extended and Word/Long Word
selections are independent of one another, as Word/Long
Word pertains to data and operand address manipulation
only. The Z380 CPU implements two instructions and two
decoder directives to allow switching between these two
modes; SETC LW (Set Long Word) and RESC LW (Reset
Long Word) perform a global switch, while DDIR LW and
DDIR W are decoder directives that select a particular
mode only for the instruction that they precede.

Examples:

1. Effect of Word mode and Long Word mode

DDIR W
LD BC, (HL)

Loads BC15-BC0 from the location (HL) and
(HL+1), and BCz (BC31-BC16) remains un-
changed.

DDIR LW
LD BC, (HL)

Loads BC31-BC0 from the locations (HL) to (HL+3).

2. Immediate data load with DDIR instructions

DDIR IW,LW
LD HL,12345678H
Loads 12345678H into HL31-HL0.

DDIR IB,LW
LD HL,123456H

Loads 00123456H into HL31-HL0.
00H is appended as the Most significant byte as
HL31-HL24.

DDIR LW
LD HL,1234H

Loads 00001234H into HL31-HL0.
0000H is appended as the HL31-HL16 portion.

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

4-1

Z380™

USER'S MANUALZILOG

DC-8297-03

4.1 INSTRUCTION

USER’s MANUAL

CHAPTER 4
ADDRESSING MODES AND DATA TYPES

An instruction is a consecutive list of one or more bytes in
memory. Most instructions act upon some data; the term
operand refers to the data to be operated upon. For Z380™

CPU instructions, operands can reside in CPU registers,
memory locations, or I/O ports (internal or external). The
method used to designate the location of the operands for

an instruction are called addressing modes. The Z380
CPU supports seven addressing modes; Register, Imme-
diate, Indirect Register, Direct Address, Indexed, Program
Counter Relative Address, and Stack Pointer Relative. A
wide variety of data types can be accessed using these
addressing modes.

4.2 ADDRESSING MODE DESCRIPTIONS

The following pages contain descriptions of the address-
ing modes for the Z380 CPU. Each description explains
how the operand’s location is calculated, indicates which
address spaces can be accessed with that particular
addressing mode, and gives an example of an instruction
using that mode, illustrating the assembly language format
for the addressing modes.

4.2.1 Register (R, RX)

When this addressing mode is used, the instruction pro-
cesses data taken from one of the 8-bit registers A, B, C,
D, E, H, L, IXU, IXL, IYU, IYL, one of the 16-bit registers BC,
DE, HL, IX, IY, SP, or one of the special byte registers I or
R.

Storing data in a register allows shorter instructions and
faster execution that occur with instructions that access
memory.

Instruction
OPERATION REGISTER → OPERAND

The operand value is the contents of the register.

The operand is always in the register address space. The
register length (byte or word) is specified by the instruction
opcode. In the case of Long Word register operation, it is
specified either through the SETC LW instruction or the
DDIR LW decoder directive.

Example of R mode:
1. Load register in Word mode.

DDIR W ;Next instruction in Word mode
LD BC,HL ;Load the contents of HL into BC

BCz BC HLz HL
Before instruction
execution 1234 5678 9ABC DEF0
After instruction
execution 1234 DEF0 9ABC DEF0

2. Load register in Long Word mode.
DDIR LW ;Next instruction in Long Word mode
LD BC,HL ;Load the contents of HL into BC

BCz BC HLz HL
Before instruction
execution 1234 5678 9ABC DEF0
After instruction
execution 9ABC DEF0 9ABC DEF0

4.2.2 Immediate (IM)

When the Immediate addressing mode is used, the data
processed is in the instruction.

The Immediate addressing mode is the only mode that
does not indicate a register or memory address as the
source operand.

4-2

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

4.2.2 Immediate (IM) (Continued)

Instruction
OPERATION
OPERAND

The operand value is in the instruction

Immediate mode is often used to initialize registers. Also,
this addressing mode is affected by the DDIR Immediate
Data Directives to expand the immediate value to 24 bits
or 32 bits.

Example of IM mode:

1. Load immediate value into accumulator
LD A,55H ;Load hex 55 into the accumulator.

A
Before instruction execution 12
After instruction execution 55

4.2.3 Indirect Register (IR)

In Indirect Register addressing mode, the register speci-
fied in the instruction holds the address of the operand.

The data to be processed is in the location specified by the
BC, DE, or HL register (depending on the instruction) for
memory accesses, or C register for I/O.

Memory or
Instruction Register I/O Port
OPERATION REGISTER → Address → OPERAND

The operand value is the contents of the location whose address is in the register.

Depending on the instruction, the operand specified by IR
mode is located in either the I/O address space (I/O
instruction) or memory address space (all other instruc-
tions).

Indirect Register mode can save space and reduce ex-
ecution time when consecutive locations are referenced or
one location is repeatedly accessed. This mode can also
be used to simulate more complex addressing modes,
since addresses can be computed before data is ac-
cessed.

The address in this mode is always treated as a 32-bit
mode. After reset, the contents of the extend registers
(registers with “z” suffix) are initialized as 0's; hence, these
instructions will be executed just as for the Z80/Z180.

Example of IR mode:
1. Load accumulator from the contents of memory

pointed by (HL)
LD A, (HL) ;Load the accumulator with the data

;addressed by the contents of HL

A HLz,HL
Before instruction
execution 0F 12345678
After instruction
execution 0B 12345678

Memory location 12345678 0B

2. Load 24-bit immediate value into HL
register
DDIR IB, LW ;next instruction is in Long Word

mode, with ;an additional
immediate data

LD HL, 123456H ;load HLz, and HL with constant
123456H

 This case, the Z380 CPU appends 00H as a MSB byte.

HLz HL
Before instruction execution 0987 6543
After instruction execution 0012 3456

4-3

Z380™

USER'S MANUALZILOG

DC-8297-03

4.2.4 Direct Address (DA)

When Direct Address mode is used, the data processed is
at the location whose memory or I/O port address is in the
instruction.

Instruction Memory or
OPERATION I/O Port
ADDRESS → OPERAND

The operand value is the contents of the location whose
address is in the instruction.

Depending on the instruction, the operand specified by
DA mode is either in the I/O address space (I/O instruction)
or memory address space (all other instructions).

This mode is also used by Jump and Call instructions to
specify the address of the next instruction to be executed.
(The address serves as an immediate value that is loaded
into the program counter.)

Also, DDIR Immediate Data Directives are used to expand
the direct address to 24 or 32 bits. Operand width is
affected by LW bit status for the load and exchange
instructions.

Example of DA mode:
1. Load BC register from memory location 00005E22H in Word mode

LD BC, (5E22H) ;Load BC with the data in address
;00005E22H

BC
Before instruction execution 1234
After instruction execution 0301

Memory location 00005E22 01
00005E23 03

2. Load BC register from memory location 12345E22H in Word mode
DDIR IW ;extend direct address by one word
LD BC, (12345E22H) ;Load BC with the data in address

;12345E22H

BC
Before instruction execution 1234
After instruction execution 0301

Memory location 12345E22 01
12345E23 03

3. Load BC register from memory location 12345E22H in Long Word mode
DDIR IW,LW ;extend direct address by one word,

;and operation in Long Word
LD BC, (12345E22H) ;Load BC with the data in address

;12345E22H

BCz BC
Before instruction execution 1234 5678
After instruction execution 0705 0301

Memory location 12345E22 01
12345E23 03
12345E24 05
12345E25 07

4-4

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

4.2.5 Indexed (X)

When the Indexed addressing mode is used, the data
processed is at the location whose address is the contents
of IX or IY in use, offset by an 8-bit signed displacement in
the instruction.

The Indexed address is computed by adding the 8-bit
two’s complement signed displacement specified in the
instruction to the contents of the IX or IY register in use, also
specified by the instruction. Indexed addressing allows
random access to tables or other complex data structures
where the address of the base of the table is known, but the
particular element index must be computed by the pro-
gram.

The offset portion can be expanded to 16 or 24 bits,
instead of eight bits by using DDIR Immediate Data Direc-
tives (DDIR IB for 16-bit offset, DDIR IW for 24-bit offset).

Note that computation of the effective address is affected
by the operation mode (Native or Extended). In Native
mode, address computation is done in modulo 216, and in
Extended mode, address computation is done in modulo
232.

Address calculation: In Native mode, 0FFH encoding in
the instruction is sign extended to a 16-bit value before the
address calculation, but calculation is done in modulo 216

and does not take into account the index register’s
extended portion.

0000
+ FFFF

FFFF

Instruction REGISTER MEMORY
OPERATION REGISTER → ADDRESS →+ OPERAND
DISPLACEMENT _____________________________________ ↑

Example of X mode:
1. Load accumulator from location (IX-1) in Native mode

LD A, (IX-1) ;Load into the accumulator the
;contents of the memory location
;whose address is one less than
;the contents of IX
;Assume it is in Native mode

A IXz IX
Before instruction execution 01 0001 0000
After instruction execution 23 0001 0000

Memory location 0001FFFF 23

4-5

Z380™

USER'S MANUALZILOG

DC-8297-03

2. Load accumulator from location (IX-1) in Extended mode
SETC XM ;Set Extended mode
LD A, (IX-1) ;Load into the accumulator the

;contents of the memory location
;whose address is one less than
;the contents of IX

A IXz IX
Before instruction execution 01 0001 0000
After instruction execution 23 0001 0000

Memory location 0000FFFF 23

Address calculation: In Extended mode, 0FFH encoding in
the instruction is sign extended to a 32-bit value before the
address calculation, but calculation is done in modulo 232

and takes into account the index register’s extended
portion.

00010000
+ FFFFFFFF

0000FFFF

4.2.6 Program Counter Relative Mode (RA)

The Program Counter Relative Addressing mode is used
by certain program control instructions to specify the
address of the next instruction to be executed (specifically,
the sum of the Program Counter value and the displace-
ment value is loaded into the Program Counter). Relative
addressing allows reference forward or backward from the
current Program Counter value; it is used for program
control instructions such as Jumps and Calls that access
constants in the memory.

As a displacement, an 8-bit, 16-bit, or 24-bit value can be
used. The address to be loaded into the Program Counter
is computed by adding the two’s complement signed
displacement specified in the instruction to the current
Program Counter.

Note that computation of the effective address is affected
by the mode of operation (Native or Extended). In Native
mode, address computation is done in modulo 216, and the
PC Extend (PC31-PC16) is forced to 0 and will not affect
this portion. In Extended mode, address computation is
done is modulo 232, and will affect the contents of PC
extend if there is a carry or borrow operation.

Also, in Native mode,

Instruction PC MEMORY
OPERATION ADDRESS →+ OPERAND
DISPLACEMENT —↑

Example of RA mode:
1. Jump relative in Native mode, 8-bit displacement

JR $-2 ;Jumps to the location
;(Current PC value) – 2
;’$’ represents for current PC value
;This instruction jumps to itself.
;since after the execution of this instruction,
;PC points to the next instruction.

4-6

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

4.2.6 Program Counter Relative Mode (RA) (Continued)

PCz PC
Before instruction execution 0000 1000
After instruction execution 0000 0FFE

Address calculation: In Native mode, –2 is encoded as
0FEH in the instruction, and it is sign extended to a 16-bit
value before added to the Program Counter. Calculation is
done in modulo 216 and does not affect the Extended
portion of the Program Counter.

1000
+ FFFE

FFFE

Address calculation: Since this is a 4-byte instruction, the
PC value after fetch but before jump taking place is:

19590807
+ 00000004

1959080B

The displacement portion, –5000H, is sign extended to a
32-bit value before being added to the Program Counter.
Calculation is done in modulo 232 and affects the Extended
portion of the Program Counter.

1959080B
+ FFFFB000

1958B80B

2. Jump relative in Extended mode, 16-bit displacement

SETC XM ;Put it in Extended mode of operation
JR $-5000H ;Jumps to the location

;(Current PC value) – 5000H
;$ stands for current PC value
;This instruction jumps to itself.

PCz PC
Before instruction execution 1959 0807
After instruction execution 1958 B80B

4-7

Z380™

USER'S MANUALZILOG

DC-8297-03

4.2.7 Stack Pointer Relative Mode (SR)

For Stack Pointer Relative addressing mode, the data
processed is at the location whose address is the contents
of the Stack Pointer, offset by an 8-bit displacement in the
instruction.

The Stack Pointer Relative address is computed by adding
the 8-bit two’s complement signed displacement speci-
fied in the instruction to the contents of the SP, also
specified by the instruction. Stack Pointer Relative ad-
dressing mode is used to specify data items to be found in
the stack, such as parameters passed to procedures.

Offset portion can be expanded to 16 or 24 bits by using
DDIR immediate instructions (DDIR IB for a 16-bit offset,
DDIR IW for a 24-bit offset).

Note that computation of the effective address is affected
by the operation mode (Native or Extended). In Native
mode, address computation is done in modulo 216, mean-
ing computation is done in 16-bit and does not affect upper
half of the SP portion for calculation (wrap around within the
16-bit). In Extended mode, address computation is done
in modulo 232.

Also, the size of the data transfer is affected by the LW
mode bit. In Word mode, transfer is done in 16 bits, and in
Long Word mode, transfer is done in 32 bits.

Instruction SP
OPERATION ADDRESS ——| MEMORY
DISPLACEMENT ——+ OPERAND

Example of SR mode:
1. Load HL from location (SP – 4) in Native mode, Word mode

LD HL, (SP–4) ;Load into the HL from the
;contents of the memory location
;whose address is four less than
;the contents of SP.
;Assume it is in Native/Word mode.

HLz HL SPz SP
Before instruction execution 1234 5678 07FF 7F00
After instruction execution EFCD AB89 07FF 7F00

Memory location 07FF7EFC 89
07FF7EFD AB

Address calculation: In Native mode, FCH (–4 in Decimal)
encoding in the instruction is sign extended to a 16-bit
value before the address calculation. Calculation is done
in modulo 216 and does not take into account the Stack
Pointer’s extended portion.

7F00
+ FFFC

7EFC

4-8

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

4.2.7 Stack Pointer Relative Mode (SR) (Continued)

2. Load HL from location (SP – 4) in Extended mode, Long Word mode
SETC XM ;In Extended mode
DDIR LW ;operate next instruction in Long Word mode
LD HL, (SP–4) ;Load into the HL from the

;contents of the memory location
;whose address is four less than
;the contents of SP.

HLz HL SPz SP
Before instruction execution 1234 5678 07FF 7F00
After instruction execution EFCD AB89 07FF 7F00

Memory location 07FF7EFC 89
07FF7EFD AB
07FF7EFE CD
07FF7EFF EF

Address calculation: In Extended mode, FCH (–4 in Deci-
mal) encoding in the instruction is sign extended to a 32-
bit value before the address calculation, and calculation is
done in modulo 232.

07FF7F00
+ FFFFFFFC

07FF7EFC

3. Load HL from location (SP + 10000H) in Extended mode, Long Word mode
SETC XM ;In Extended mode,
DDIR IW,LW ;operate next instruction in Long Word mode

;with a word immediate data.
LD HL, (SP+10000) ;Load into the HL from the

;contents of the memory location
;whose address is 10000H more than
;the contents of SP.

HLz HL SPz SP
Before instruction execution 1234 5678 07FF 7F00
After instruction execution EFCD AB89 07FF 7F00

Memory location 08007F00 89
08007F01 AB
08007F02 CD
08007F03 EF

Address calculation: In Extended mode, 010000H encod-
ing in the instruction is sign extended to a 32-bit value
before the address calculation, and calculation is done in
modulo 232.

07FF7F00
+ 00010000

08007F00

4-9

Z380™

USER'S MANUALZILOG

DC-8297-03

4.3 DATA TYPES

The Z380 CPU can operate on bits, binary-coded decimal
(BCD) digits (four bits), bytes (eight bits), words (16 bits or
32 bits), byte strings, and word strings. Bits in registers can
be set, cleared, and tested.

The basic data type is a byte, which is also the basic
accessible element in the register, memory, and I/O address
space. The 8-bit load, arithmetic, logical, shift, and rotate
instructions operate on bytes in registers or memory. Bytes
can be treated as logical, signed numeric, or unsigned
numeric value.

Words are operated on in a similar manner by the word
load, arithmetic, logical, and shift and rotate instructions.

Operation on 2-byte words is also supported. Sixteen-bit
load and arithmetic instructions operate on words in
registers or memory; words can be treated as signed or
unsigned numeric values. I/O reads and writes can be
8-bit or 16-bit operations. Also, the Z380 CPU architecture
supports operation in Long Word mode to handle a 32-bit
address manipulation. For that purpose, 16-bit wide
registers originally on the Z80 have been expanded to 32
bits wide, along with the support of the arithmetic instruction
needed for a 32-bit address manipulation.

Bits are fully supported and addressed by number within
a byte (see Figure 2-2). Bits within byte registers or
memory locations can be tested, set, or cleared.

Operation on binary-coded decimal (BCD) digits are sup-
ported by Decimal Adjust Accumulator (DAA) and Rotate
Digit (RLD and RRD) instructions. BCD digits are stored in
byte registers or memory locations, two per byte. The DAA
instruction is used after a binary addition or subtraction of
BCD numbers. Rotate Digit instructions are used to shift
BCD digit strings in memory.

Strings of up to 65536 (64K) bytes of Byte data or Word
data can be manipulated by the Z380 CPU’s block move,
block search, and block I/O instructions. The block move
instructions allow strings of bytes/words in memory to be
moved from one location to another. Block search instruc-
tions provide for scanning strings of bytes/words in memory
to locate a particular value. Block I/O instructions allow
strings of bytes or words to be transferred between memory
and a peripheral device.

Arrays are supported by Indexed mode (with 8-bit, 16-bit,
or 24-bit displacement). Stack is supported by the Indexed
and the Stack Pointer Relative addressing modes, and by
special instructions such as Call, Return, Push, and Pop.

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

5-1

Z380™

USER'S MANUALZILOG

DC-8297-03

5.1 INTRODUCTION

USER’s MANUAL

CHAPTER 5
INSTRUCTION SET

The Z380™ CPU instruction set is a superset of the Z80 CPU
and the Z180 MPU; the Z380 CPU is opcode compatible
with the Z80 CPU/Z180 MPU. Thus, a Z80/Z180 program
can be executed on a Z380 CPU without modification. The
instruction set is divided into 12 groups by function:

■ 8-Bit Load/Exchange Group

■ 16/32-Bit Load, Exchange, SWAP and Push/Pop Group

■ Block Transfers, and Search Group

■ 8-Bit Arithmetic and Logic Operations

■ 16/32-Bit Arithmetic Operations

■ 8-Bit Bit Manipulation, Rotate and Shift Group

■ 16-Bit Rotates and Shifts

5.2 PROCESSOR FLAGS

The Flag register contains six bits of status information that
are set or cleared by CPU operations (Figure 5-1). Four of
these bits are testable (C, P/V, Z, and S) for use with
conditional jump, call, or return instructions. Two flags are
not testable (H and N) and are used for binary-coded
decimal (BCD) arithmetic.

The Flag register provides a link between sequentially
executed instructions, in that the result of executing one
instruction may alter the flags, and the resulting value of the
flags can be used to determine the operation of a subse-
quent instruction. The program control instructions, whose
operation depends on the state of the flags, are the Jump,
Jump Relative, subroutine Call, Call Relative, and subrou-
tine Return instructions; these instructions are referred to
as conditional instructions.

Figure 5-1. Flag Register

■ Program Control Group

■ Input and Output Operations for External I/O Space

■ Input and Output Operations for Internal I/O Space

■ CPU Control Group

■ Decoder Directives

This chapter describes the instruction set of the Z380 CPU.
Flags and condition codes are discussed in relation to the
instruction set. Then, the interpretability of instructions and
trap are discussed. The last part of this chapter is a
detailed description of each instruction, listed in alphabeti-
cal order by mnemonic. This section is intended as a
reference for Z380 CPU programmers. The entry for each
instruction contains a complete description of the instruc-
tion, including addressing modes, assembly language
mnemonics, and instruction opcode formats.

S Z X H X P/V N C

7 6 5 4 3 2 1 0

5-2

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

5.2.1 Carry Flag (C)

The Carry flag is set or cleared depending on the operation
being performed. For add instructions that generate a
carry and subtract instruction generating a borrow, the
Carry flag is set to 1. The Carry flag is cleared to 0 by an add
that does not generate a carry or a subtract that generates
no borrow. This saved carry facilitates software routines for
extended precision arithmetic. The multiply instructions
use the Carry flag to signal information about the precision
of the result. Also, the Decimal Adjust Accumulator (DAA)
instruction leaves the Carry flag set to 1 if a carry occurs
when adding BCD quantities.

For rotate instructions, the Carry flag is used as a link
between the least significant and most significant bits for
any register or memory location. During shift instructions,
the Carry flag contains the last value shifted out of any
register or memory location. For logical instructions the
Carry flag is cleared. The Carry flag can also be set and
complemented with explicit instructions.

5.2.2 Add/Subtract Flag (N)

The Add/Subtract flag is used for BCD arithmetic. Since
the algorithm for correcting BCD operations is different for
addition and subtraction, this flag is used to record when
an add or subtract was last executed, allowing a subse-
quent Decimal Adjust Accumulator instruction to perform
correctly. See the discussion of the DAA instruction for
further information.

5.2.3 Parity/Overflow Flag (P/V)

This flag is set to a particular state depending on the
operation being performed.

For signed arithmetic, this flag, when set to 1, indicates that
the result of an operation on two’s complement numbers
has exceeded the largest number, or less than the smallest
number, that can be represented using two’s complement
notation. This overflow condition can be determined by
examining the sign bits of the operands and the result.

The P/V flag is also used with logical operations and rotate
instructions to indicate the parity of the result. The of bits
set to 1 in a byte are counted. If the total is odd, this flag is
reset indicates odd parity (P = 0). If the total is even, this
flag is set indicates even parity (P = 1).

During block search and block transfer instructions, the P/
V flag monitors the state of the Byte Count register (BC).
When decrementing the byte counter results in a zero
value, the flag is cleared to 0; otherwise the flag is set to 1.

During Load Accumulator with I or R register instruction,
the P/V flag is loaded with the IEF2 flag. For details on this
topic,.refer to Chapter 6, “Interrupts and Traps.”

When a byte is inputted to a register from an I/O device
addressed by the C register, the flag is adjusted to indicate
the parity of the data.

5.2.4 Half-Carry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to 0 depending
on the carry and borrow status between bits 3 and 4 of an
8-bit arithmetic operation and between bits 11 and 12 of a
16-bit arithmetic operation. This flag is used by the Deci-
mal Adjust Accumulator instruction to correct the result of
an addition or subtraction operation on packed BCD data.

5.2.5 Zero Flag (Z)

The Zero flag (Z) is set to 1 if the result generated by the
execution of certain instruction is a zero.

For arithmetic and logical operations, the Zero flag is set to
1 if the result is zero. If the result is not zero, the Zero flag
is cleared to 0.

For block search instructions, the Zero flag is set to 1 if a
comparison is found between the value in the Accumulator
and the memory location pointed to by the contents of the
register pair HL.

When testing a bit in a register or memory location, the Zero
flag contains the complemented state of the tested bit (i.e.,
the Zero flag is set to 1 if the tested bit is a 0, and vice-
versa).

For block I/O instructions, if the result of decrements B is
zero, the Zero flag is set to 1; otherwise, it is cleared to 0.
Also, for byte inputs to registers from I/O devices ad-
dressed by the C register, the Zero flag is set to 1 to
indicate a zero byte input.

5.2.6 Sign Flag (S)

The Sign flag (S) stores the state of the most significant bit
of the result. When the Z380 CPU performs arithmetic
operation on signed numbers, binary two’s complement
notation is used to represent and process numeric infor-
mation. A positive number is identified by a 0 in the most
significant bit. A negative number is identified by a 1 in the
most significant bit.

When inputting a byte from an I/O device addressed by the
C register to a CPU register, the Sign flag indicates either
positive (S = 0) or negative (S = 1) data.

5-3

Z380™

USER'S MANUALZILOG

DC-8297-03

5.2.7 Condition Codes

The Carry, Zero, Sign, and Parity/Overflow flags are used
to control the operation of the conditional instructions. The
operation of these instructions is a function of the state of
one of the flags. Special mnemonics called condition
codes are used to specify the flag setting to be tested
during execution of a conditional instruction; the condition
codes are encoded into a 3-bit field in the instruction
opcode itself.

Table 5-1 lists the condition code mnemonic, the flag
setting it represents, and the binary encoding for each
condition code.

Table 5-1. Condition codes

Condition Codes for Jump, Call, and Return Instructions
Mnemonic Meaning Flag Setting Binary Code

NZ Not Zero* Z = 0 000
Z Zero* Z = 1 001
NC No Carry* C = 0 010
C Carry* C = 1 011
NV No Overflow V = 0 100
PO Parity Odd V = 0 100
V Overflow V = 1 101
PE Parity Even V = 1 101
NS No Sign S = 0 110
P Plus S = 0 110
S Sign S = 1 111
M Minus S = 1 111

*Abbreviated set

Condition Codes for Jump Relative and Call Relative Instructions
Mnemonic Meaning Flag Setting Binary Code

NZ Not Zero Z = 0 100
Z Zero Z = 1 101
NC No Carry C = 0 110
C Carry C = 1 111

5-4

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

5.3 SELECT REGISTER

The Select Register (SR) controls the register set selection
and the operating modes of the Z380 CPU. The reserved
bits in the SR are for future expansion; they will always read
as zeros and should be written with zeros for future

compatibility. Access to this register is done by using the
newly added LDCTL instruction. Also, some of the instruc-
tions like EXX, IM p, and DI/EI change the bit(s). The SR
was shown in Figure 5-2.

Reserved (0)

23 2122 17

IYBANK IYP Reserved (0) IXBANK IXP

20 1819 1631 2930 2528 2627 24

XSRYSR

Reserved (0)

7 56 1

MAINBANK ALT XM IM AFP

4 23 015 1314 912 1011 8

DSR

LW IEF1 0 LCK

Figure 5-2. Select Register

5.3.1. IY Bank Select (IYBANK)

This 2-bit field selects the register set to be used for the IY
and IY’ registers. This field can be set independently of the
register set selection for the other Z380 CPU registers.
Reset selects Bank 0 for IY and IY’.

5.3.2. IY or IY’ Register Select (IY’)

This bit controls and reports whether IY or IY’ is the
currently active register. IY is selected when this bit is
cleared, and IY’ is selected when this bit is set. Reset
clears this bit, selecting IY.

5.3.3. IX Bank Select (IXBANK)

This 2-bit field selects the register set to be used for the IX
and IX’ registers. This field can be set independently of the
register set selection for the other Z380 CPU registers.
Reset selects Bank 0 for IX and IX’.

5.3.4. IX or IX’ Register Select (IX’)

This bit controls and reports whether IX or IX’ is the
currently active register. IX is selected when this bit is
cleared, and IX’ is selected when this bit is set. Reset
clears this bit, selecting IX.

5.3.5. Main Bank Select (MAINBANK)

This 2-bit field selects the register set to be used for the A,
F, BC, DE, HL, A’, F’, BC’, DE’, and HL’ registers. This field
can be set independently of the register set selection for
the other Z380 CPU registers. Reset selects Bank 0 for
these registers.

5.3.6. BC/DE/HL or BC’/DE’/HL’ Register
Select (ALT)

This bit controls and reports whether BC/DE/HL or BC’/DE’/
HL’ is the currently active bank of registers. BC/DE/HL is
selected when this bit is cleared, and BC’/DE’/HL’ is
selected when this bit is set. Reset clears this bit, selecting
BC/DE/HL.

5.3.7. Extended Mode (XM)

This bit controls the Extended/Native mode selection for
the Z380 CPU. This bit is set by the SETC XM instruction.
This bit can not be reset by software, only by Reset. When
this bit is set, the Z380 CPU is in Extended mode. Reset
clears this bit, and the Z380 CPU is in Native mode.

5-5

Z380™

USER'S MANUALZILOG

DC-8297-03

5.3.8. Long Word Mode (LW)

This bit controls the Long Word/Word mode selection for
the Z380 CPU. This bit is set by the SETC LW instruction
and cleared by the RESC LW instruction. When this bit is
set, the Z380 CPU is in Long Word mode; when this bit is
cleared the Z380 CPU is in Word mode. Reset clears this
bit. Note that individual Word load and exchange instruc-
tions may be executed in either Word or Long Word mode
using the DDIR W and DDIR LW decoder directives.

5.3.9. Interrupt Enable Flag (IEF)

This bit is the master Interrupt Enable for the Z380 CPU.
This bit is set by the EI instruction and cleared by the DI
instruction, or on acknowledgment of an interrupt request.
When this bit is set, interrupts are enabled; when this bit is
cleared, interrupts are disabled. Reset clears this bit.

5.3.10. Interrupt Mode (IM)

This 2-bit field controls the interrupt mode for the /INT0
interrupt request. These bits are controlled by the IM
instructions (00 = IM 0, 01 = IM 1, 10 = IM 2, 11 = IM 3).
Reset clears both of these bits, selecting Interrupt Mode 0.

5.3.11. Lock (LCK)

This bit controls the Lock/Unlock status of the Z380 CPU.
This bit is set by the SETC LCK instruction and cleared by
the RESC LCK instruction. When this bit is set, no bus
requests will be accepted, providing exclusive access to
the bus by the Z380 CPU. When this bit is cleared, the Z380
CPU will grant bus requests in the normal fashion. Reset
clears this bit.

5.3.12. AF or AF’ Register Select (AF’)

This bit controls and reports whether AF or AF’ is the
currently active pair of registers. AF is selected when this
bit is cleared, and AF’ is selected when this bit is set. Reset
clears this bit, selecting AF.

5.4 INSTRUCTION EXECUTION AND EXCEPTIONS

Three types of exception conditions—interrupts, trap, and
Reset—can alter the normal flow of program execution.
Interrupts are asynchronous events generated by a device
external to the CPU; peripheral devices use interrupts to
request service from the CPU. Trap is a synchronous event
generated internally in the CPU by executing undefined
instructions. Reset is an asynchronous event generated by
outside circuits. It terminates all current activities and puts
the CPU into a known state. Interrupts and Traps are
discussed in detail in Chapter 6, and Reset is discussed in
detail in Chapter 7. This section examines the relationship
between instructions and the exception conditions.

5.4.1 Instruction Execution and Interrupts

When the CPU receives an interrupt request, and it is
enabled for interrupts of that class, the interrupt is normally
processed at the end of the current instruction. However,
the block transfer and search instructions are designed to
be interruptible so as to minimize the length of time it takes
the CPU to respond to an interrupt. If an interrupt request
is received during a block move, block search, or block
I/O instruction, the instruction is suspended after the
current iteration. The address of the instruction itself, rather
than the address of the following instruction, is saved on
the stack, so that the same instruction is executed again
when the interrupt handler executes an interrupt return

instruction. The contents of the repetition counter and the
registers that index into the block operands are such that,
after each iteration, when the instruction is reissued upon
returning from an interrupt, the effect is the same as if the
instruction were not interrupted. This assumes, of course,
that the interrupt handler preserves the registers.

5.4.2 Instruction Execution and Trap

The Z380 MPU generates a Trap when an undefined
opcode is encountered. The action of the CPU in response
to Trap is to jump to address 00000000H with the status
bit(s) set. This response is similar to the Z180 MPU’s action
on execution of an undefined instruction. The Trap is
enabled immediately after reset, and it is not maskable.
This feature can be used to increase software reliability or
to implement “extended” instructions. An undefined op-
code can be fetched from the instruction stream, or it can
be returned as a vector in an interrupt acknowledge
transaction in Interrupt mode 0.

Since it jumps to address 00000000H, it is necessary to
have a Trap handling routine at the beginning of the
program if processing is to proceed. Otherwise, it behaves
just like a reset for the CPU. For a detailed description, refer
to Chapter 6.

5-6

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

5.5 INSTRUCTION SET FUNCTIONAL GROUPS

An Exchange instruction is available for swapping the
contents of the accumulator with another register or with
memory, as well as between registers. Also, exchange
instructions are available which swap the contents of the
register in the primary register bank and auxiliary register
bank.

The instruction in this group does not affect the flags.

This section presents an overview of the Z380 instruction
set, arranged by functional groups. (See Section 5.5 for an
explanation of the notation used in Tables 5-2 through 5-
11).

5.5.1 8-Bit Load/Exchange Group

This group of instructions (Table 5-2) includes load instruc-
tions for transferring data between byte registers, transfer-
ring data between a byte register and memory, and load-
ing immediate data into byte register or memory. For the
supported source/destination combinations, refer to Table
5-3.

Table 5-3. 8-Bit Load Group Allowed Source/Destination Combinations
Source

Dist. A B C D E H L IXH IXL IYH IYL n (nn) (BC) (DE) (HL) (IX+d) (IY+d)

A √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
B √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
C √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
D √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

E √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
H √ √ √ √ √ √ √ √ √ √ √
L √ √ √ √ √ √ √ √ √ √ √
IXH √ √ √ √ √ √ √ √

IXL √ √ √ √ √ √ √ √
IYH √ √ √ √ √ √ √ √
IYL √ √ √ √ √ √ √ √
(BC) √

(DE) √
(HL) √ √ √ √ √ √ √ √
(nn) √
(IX+d) √ √ √ √ √ √ √ √
(IY+d) √ √ √ √ √ √ √ √

Table 5-2. 8-Bit Load Group Instructions

Instruction Name Format Note

Exchange with Accumulator EX A,r
EX A,(HL)

Exchange r and r’ EX r,r’ r=A, B, C, D, E, H or L
Load Accumulator LD A,src See Table 5-3

LD dst,A See Table 5-3
Load Immediate LD dst,n See Table 5-3

LD (HL),n See Table 5-3
Load Register (Byte) LD R,src See Table 5-3

LD R,(HL) See Table 5-3
LD dst,R See Table 5-3
LD (HL),R See Table 5-3

Note: √ are supported combinations.

5-7

Z380™

USER'S MANUALZILOG

DC-8297-03

5.5.2 16-Bit and 32-Bit Load, Exchange,
SWAP, and PUSH/POP Group

This group of load, exchange, and PUSH/POP instructions
(Table 5-4) allows one or two words of data (two bytes
equal one word) to be transferred between registers and
memory.

The exchange instructions (Table 5-5) allow for switching
between the primary and alternate register files, exchang-
ing the contents of two register files, exchanging the
contents of an addressing register with the top word on the
stack. For possible combinations of the word exchange
instructions, refer to Table 5-5. The 16-bit and 32-bit loads
include transfer between registers and memory and imme-
diate loads of registers or memory. The Push and Pop
stack instructions are also included in this group. None of
these instructions affect the CPU flags, except for EX AF,
AF’.

Table 5-6 has the supported source/destination combina-
tion for the 16-bit and 32-bit load instructions. The transfer
size, 16-bit or 32-bit, is determined by the status of LW bit
in SR, or by DDIR Decoder Directives.

PUSH/POP instructions are used to save/restore the con-
tents of a register onto the stack. It can be used to
exchange data between procedures, save the current
register file on context switching, or manipulate data on the
stack, such as return addresses. Supported sources are
listed in Table 5-7.

Swap instructions allows swapping of the contents of the
Word wide register (BC, DE, HL, IX, or IY) with its Extended
portion. These instructions are useful to manipulate the
upper word of the register to be set in Word mode. For
example, when doing data accesses, other than
00000000H-0000FFFFH address range, use this instruc-
tion to set “data frame” addresses.

This group of instructions is affected by the status of the LW
bit in SR (Select Register), and Decoder Directives which
specifies the operation mode in Word or Long Word.

Table 5-4. 16-Bit and 32-Bit Load, Exchange, PUSH/POP Group Instructions

Instruction Name Format Note

Exchange Word/Long Word Registers EX dst,src See Table 5-5
Exchange Byte/Word Registers with Alternate Bank EXX
Exchange Register Pair with Alternate Bank EX RR,RR’ RR = AF, BC, DE, or HL

Exchange Index Register with Alternate Bank EXXX
EXXY

Exchange All Registers with Alternate Bank EXALL
Load Word/Long Word Registers LD dst,src See Table 5-6

LDW dst,src See Table 5-6
POP POP dst See Table 5-7
PUSH PUSH src See Table 5-7
Swap Contents of D31-D16 and D15-D0 SWAP dst dst = BC, DE, HL, IX, or IY

Table 5-5. Supported Source and Destination
Combination for 16-Bit and 32-Bit

Exchange Instructions

Source
Destination BC DE HL IX IY

BC √ √ √ √
DE √ √ √
HL √ √
IX √
(SP) √ √ √

Note: √ are supported combinations. The exchange in-
structions which designate IY register as destination are
covered by the other combinations. These Exchange
Word instructions are affected by Long Word mode.

5-8

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

5.5.2 16-Bit and 32-Bit Load, Exchange,
SWAP and PUSH/POP Group (Continued)

Table 5-6. Supported Source and Destination Combination for 16-Bit and 32-Bit Load Instructions.

Source
Destination BC DE HL IX IY SP nn (nn) (BC) (DE) (HL) (IX+d) (IY+d) (SP+d)

BC L L L L L IL IL L L L IL IL IL
DE L L L L L IL IL L L L IL IL IL
HL L L L L L IL IL L L L IL IL IL
IX L L L L IL IL L L L IL IL
IY L L L L IL IL L L L IL IL
SP L L L IL IL
(BC) L L L L L ILW
(DE) L L L L L ILW
(HL) L L L L L ILW
(nn) IL IL IL IL IL IL
(IX+d) IL IL IL IL
(IY+d) IL IL IL IL
(SP+d) IL IL IL IL IL

Note: The column with the character(s) are the allowed
source/destination combinations. The combination with
“L” means that the instruction is affected by Long Word

mode, “I” means that the instruction is can be used with
DDIR Immediate instruction. Also, “W” means the instruc-
tion uses the mnemonic of “LDW” instead of “LD”.

Table 5-7. Supported Operand for PUSH/POP Instructions

AF BC DE HL IX IY SR nn

PUSH √ √ √ √ √ √ √ √
POP √ √ √ √ √ √ √

Note: These PUSH/POP instructions are affected by Long Word mode of operations.

Various Z380 CPU registers are dedicated to specific
functions for these instructions—the BC register for a
counter, the DEz/DE and HLz/HL registers for memory
pointers, and the accumulator for holding the byte value
being sought. The repetitive forms of these instructions are
interruptible; this is essential since the repetition count can
be as high as 65536. The instruction can be interrupted
after any interaction, in which case the address of the
instruction itself, rather than next one, is saved on the
stack. The contents of the operand pointer registers, as
well as the repetition counter, are such that the instruction
can simply be reissued after returning from the interrupt
without any visible difference in the instruction execution.

In case of Word or Long Word block transfer instructions,
the counter value held in the BC register is decremented
by two or four, depending on the LW bit status. Since
exiting from these instructions will be done when counter
value gets to 0, the count value stored in the BC registers

5.5.3 Block Transfer and Search Group

This group of instructions (Table 5-8) supports block
transfer and string search functions. Using these instruc-
tions, a block of up to 65536 bytes of byte, Word, or Long
Word data can be moved in memory, or a byte string can
be searched until a given value is found. All the operations
can proceed through the data in either direction. Further-
more, the operations can be repeated automatically while
decrementing a length counter until it reaches zero, or they
can operate on one storage unit per execution with the
length counter decremented by one and the source and
destination pointer register properly adjusted. The latter
form is useful for implementing more complex operations
in software by adding other instructions within a loop
containing the block instructions.

5-9

Z380™

USER'S MANUALZILOG

DC-8297-03

has to be an even number (D0 = 0) in Word mode transfer,
and a multiple of four in Long Word mode (D1 and D0 are
both 0). Also, in Word or Long Word Block transfer,
memory pointer values are recommended to be even
numbers so the number of the transactions will be mini-
mized.

Note that regardless of the Z380’s operation mode, Native
or Extended, memory pointer increment/decrement will be
done in modulo 232. For example, if the operation is LDI and
HL31-HL0 (HLz and HL) hold 0000FFFF, after the opera-
tion the value in the HL31-HL0 will be 0010000.

Table 5-8. Block Transfer and Search Group

Instruction Name Format

Compare and Decrement CPD
Compare, Decrement and Repeat CPDR
Compare and Increment CPI
Compare, Increment and Repeat CPIR
Load and Decrement LDD
Load , Decrement and Repeat LDDI
Load and Increment LDI
Load, Increment and Repeat LDIR
Load and Decrement in Word/Long Word LDDW
Load, Decrement and Repeat in Word/Long Word

LDDRW
Load and Increment in Word/Long Word LDIW
Load, Increment and Repeat in Word/Long Word

LDIRW

5.5.4 8-bit Arithmetic and Logical Group

This group of instructions (Table 5-9) perform 8-bit arith-
metic and logical operations. The Add, Add with Carry,
Subtract, Subtract with Carry, AND, OR, Exclusive OR, and
Compare takes one input operand from the accumulator
and the other from a register, from immediate data in the
instruction itself, or from memory. For memory addressing
modes, follows are supported—Indirect Register, Indexed,
and Direct Address—except multiplies, which returns the
16-bit result to the same register by multiplying the upper
and lower bytes of one of the register pair (BC, DE, HL, or
SP).

The Increment and Decrement instructions operate on
data in a register or in memory; all memory addressing
modes are supported. These instructions operate only on
the accumulator—Decimal Adjust, Complement, and Ne-
gate. The final instruction in this group, Extend Sign, sets
the CPU flags according to the computed result.

The EXTS instruction extends the sign bit and leaves the
result in the HL register. If it is in Long Word mode, HLz
(HL31-HL16) portion is also affected.

The TST instruction is a nondestructive AND instruction. It
ANDs "A" register and source, and changes flags accord-
ing to the result of operation. Both source and destination
values will be preserved.

Table 5-9. Supported Source/Destination for 8-Bit Arithmetic and Logic Group

 src/
Instruction Name Format dst A B C D E H L IXH IXL IYH IYL n (HL) (IX+d) (IY+x)

Add With Carry (Byte) ADC A,src src √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Add (Byte) ADD A,src src √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
AND AND [A,]src src √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Compare (Byte) CP [A,]src src √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Complement Accumulator CPL [A] dst √
Decimal Adjust Accumulator DAA dst √
Decrement (Byte) DEC dst dst √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Extend Sign (Byte) EXTS [A] dst √

Increment (Byte) INC dst dst √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Multiply (Byte) MLT src Note 1
Negate Accumulator NEG [A] dst √
OR OR [A,]src src √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Subtract with Carry (Byte) SBC A,src src √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Subtract (Byte) SUB [A,]src src √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Nondestructive Test TST dst src √ √ √ √ √ √ √ √ √
Exclusive OR XOR [A,]src src √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Note 1: dst = BC, DE, HL, or SP.

5-10

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

5.5.5 16-Bit Arithmetic Operation

This group of instructions (Table 5-10) provide 16-bit
arithmetic instructions. The Add, Add with Carry, Subtract,
Subtract with Carry, AND, OR, Exclusive OR, and Com-
pare takes one input operand from an addressing register
and the other from a 16-bit register, or from the instruction
itself; the result is returned to the addressing register. The
16-bit Increment and Decrement instructions operate on
data found in a register or in memory; the Indirect Register
or Direct Address addressing mode can be used to
specify the memory operand.

The remaining 16-bit instructions provide general arith-
metic capability using the HL register as one of the input
operands. The word Add, Subtract, Compare, and signed
and unsigned Multiply instructions take one input operand
from the HL register and the other from a 16-bit register,
from the instruction itself, or from memory using Indexed

Table 5-10. 16-Bit Arithmetic Operation

src/
Instruction Name Format dst BC DE HL SP IX IY nn (nn) (IX+d) (IY+d)

Add With Carry (Word) ADC HL,src src √ √ √ √
ADCW [HL],src src √ √ √ √ √ √ √ √

Add (Word) ADD HL,src src √ √ √ √ √ X
ADD IX,src src √ √ √ √ X
ADD IY,src src √ √ √ √ X
ADDW [HL,]src src √ √ √ √ √ √ √ √

Add to Stack Pointer ADD SP,nn src √ X
AND Word ANDW [HL,]src src √ √ √ √ √ √ √ √
Complement Accumulator CPLW [HL] dst √
Compare (Word) CPW [HL,]src src √ √ √ √ √ √ √ √
Decrement (Word) DEC[W] dst dst √ √ √ √ √ √ X
Divide Unsigned DIVUW [HL,]src src √ √ √ √ √ √ √ √
Extend Sign (Word) EXTSW [HL] dst √
Increment (Word) INC[W] dst dst √ √ √ √ √ √ X
Multiply Word Signed MULT [HL,]src src √ √ √ √ √ √ √ √
Multiply Word Unsigned MULTUW [HL,]src src √ √ √ √ √ √ √ √
Negate Accumulator NEGW [A] dst √
OR Word ORW [HL,]src src √ √ √ √ √ √ √ √
Subtract with Carry (Word) SBC HL,src src √ √ √ √ √

SBCW [HL],src src √ √ √ √ √ √ √ √
Subtract (Word) SUB HL,(nn) src √ X

SUBW [HL,]src src √ √ √ √ √ √ √ √
Subtract from Stack Pointer SUB SP,nn src √ X
Exclusive OR XORW [HL,]src src √ √ √ √ √ √ √ √

Note: that the instructions with “X” at the rightmost column is affected by
Extended mode. These operate across all the 32 bits in Modulo 232 for
address calculation.

or Direct Address addressing mode. The 32-bit result of a
multiply is returned to the HLz and HL (HL31-HL0). The
unsigned divide instruction takes a 16-bit dividend from
the HL register and a 16-bit divisor from a register, from the
instruction, or memory using the Indexed mode. The 16-bit
quotient is returned in the HL register and the 16-bit
reminder is returned to the HLz (HL31-HL16). The Extend
Sign instruction takes the contents of the HL register and
delivers the 32-bit result to the HLz and HL registers. The
Negate HL instruction negates the contents of the HL
register.

Except for Increment, Decrement, and Extend Sign, all the
instructions in this group set the CPU flags to reflect the
computed result.

5-11

Z380™

USER'S MANUALZILOG

DC-8297-03

5.5.6 8-Bit Manipulation, Rotate and Shift
Group

Instructions in this group (Table 5-11) test, set, and reset
bits within bytes, and rotate and shift byte data one bit
position. Bits to be manipulated are specified by a field
within the instruction. Rotate can optionally concatenate
the Carry flag to the byte to be manipulated. Both left and
right shifting is supported. Right shifts can either shift 0 into
bit 7 (logical shifts), or can replicate the sign in bits 6 and
7 (arithmetic shifts). All these instructions, Set Bit and
Reset Bit, set the CPU flags according to the calculated
result; the operand can be a register or a memory location

specified by the Indirect Register or Indexed addressing
mode.

The RLD and RRD instructions are provided for manipulat-
ing strings of BCD digits; these rotate 4-bit quantities in
memory specified by the Indirect Register. The low-order
four bits of the accumulator are used as a link between
rotation of successive bytes.

Table 5-11. Bit Set/Reset/Test, Rotate and Shift Group

Instruction Name Format A B C D E H L (HL) (IX+d) (IY+d)

Bit Test BIT dst √ √ √ √ √ √ √ √ √ √
Reset Bit RES dst √ √ √ √ √ √ √ √ √ √
Rotate Left RL dst √ √ √ √ √ √ √ √ √ √
Rotate Left Accumulator RLA √

Rotate Left Circular RLC dst √ √ √ √ √ √ √ √ √ √
Rotate Left Circular (Accumulator) RLCA √
Rotate Left Digit RLD √
Rotate Right RR dst √ √ √ √ √ √ √ √ √ √

Rotate Right Accumulator RRA √
Rotate Right Circular RRC dst √ √ √ √ √ √ √ √ √ √
Rotate Right Circular (Accumulator) RRCA √
Rotate Right Digit RRD √

Set Bit SET dst √ √ √ √ √ √ √ √ √ √
Shift Left Arithmetic SLA dst √ √ √ √ √ √ √ √ √ √
Shift Right Arithmetic SRA dst √ √ √ √ √ √ √ √ √ √
Shift Right Logical SRL √ √ √ √ √ √ √ √ √ √

5.5.7 16-Bit Manipulation, Rotate and Shift
Group

Instructions in this group (Table 5-12) rotate and shift word
data one bit position. Rotate can optionally concatenate
the Carry flag to the word to be manipulated. Both left and
right shifting is supported. Right shifts can either shift 0 into

bit 15 (logical shifts), or can replicate the sign in bits 14 and
15 (arithmetic shifts). The operand can be a register pair or
memory location specified by the Indirect Register or
Indexed addressing mode, as shown below.

Table 5-12. 16-Bit Rotate and Shift Group.

Destination
Instruction Name Format BC DE HL IX IY (HL) (HL) (IX+d) (IY+d)

Rotate Left Word RLW dst √ √ √ √ √ √ √ √ √
Rotate Left Circular Word RLCW dst √ √ √ √ √ √ √ √ √
Rotate Right Word RRW dst √ √ √ √ √ √ √ √ √
Rotate Right Circular Word RRCW dst √ √ √ √ √ √ √ √ √
Shift Left Arithmetic Word SLAW dst √ √ √ √ √ √ √ √ √
Shift Right Arithmetic Word SRAW dst √ √ √ √ √ √ √ √ √
Shift Right Logical Word SRLW √ √ √ √ √ √ √ √ √

5-12

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

5.5.8 Program Control Group

This group of instructions (Table 5-13) affect the Program
Counter (PC) and thereby control program flow. The CPU
registers and memory are not altered except for the Stack
Pointer and the Stack, which play a significant role in
procedures and interrupts. (An exception is Decrement
and Jump if Non-Zero [DJNZ], which uses a register as a
loop counter.) The flags are also preserved except for the
two instructions specifically designed to set and comple-
ment the Carry flag.

The Set/Reset Condition flag instructions can be used with
Conditional Jump, conditional Jump Relative, Conditional
Call, and Conditional Return instructions to control the
program flow.

The Jump and Jump Relative (JR) instructions provide a
conditional transfer of control to a new location if the
processor flags satisfy the condition specified in the in-
struction. Jump Relative, with an 8-bit offset (JR e), is a two
byte instruction that jumps any instructions within the
range –126 to +129 bytes from the location of this instruc-
tion. Most conditional jumps in programs are made to
locations only a few bytes away; the Jump Relative, with an
8-bit offset, exploits this fact to improve code compact-
ness and efficiency. Jump Relative, with a 16-bit offset (JR
[cc,]ee), is a four byte instruction that jumps any instruc-
tions within the range –32765 to +32770 bytes from the
location of this instruction, and Jump Relative, with a 24-bit
offset (JR [cc,] eee), is a five byte instruction that jumps any
instructions within the range –8388604 to +8388611 bytes
from the location of this instruction. By using these Jump
Relative instructions with 16-bit or 24-bit offsets allows to
write relocatable (or location independent) programs.

Call and Restart are used for calling subroutines; the
current contents of the PC are pushed onto the stack and
the effective address indicated by the instruction is loaded

Table 5-13. Program Control Group Instructions

Instruction Name Format nn (PC+d) (HL) (IX) (IY)

Call CALL cc,dst √
Complement Carry Flag CCF
Call Relative CALR cc,dst √
Decrement and Jump if Non-zero DJNZ dst √

Jump JP cc,dst √
JP dst √ √ √

Jump Relative JR cc,dst √
Return RET cc
Restart RST p √
Set Carry Flag SCF

into the PC. The use of a procedure address stack in this
manner allows straightforward implementation of nested
and recursive procedures. Call, Jump, and Jump Relative
can be unconditional or based on the setting of a CPU flag.

Call Relative (CALR) instructions work just like ordinary
Call instructions, but with Relative address. An 8-bit, 16-
bit, or 24-bit offset value can be used, and that allows to call
procedure within the range of –126 to +129 bytes (8-bit
offset;CALR [cc,]e), –32765 to +32770 bytes (16-bit offset;
CALR [cc,]ee), or –8388604 to +8388611 bytes (JR [cc,]
eee) are supported. These instructions are really useful to
program relocatable programs.

Jump is available with Indirect Register mode in addition
to Direct Address mode. It can be useful for implementing
complex control structures such as dispatch tables. When
using Direct Address mode for a Jump or Call, the operand
is used as an immediate value that is loaded into the PC to
specify the address of the next instruction to be executed.

The conditional Return instruction is a companion to the
call instruction; if the condition specified in the instruction
is satisfied, it loads the PC from the stack and pops the
stack.

A special instruction, Decrement and Jump if Non-Zero
(DJNZ), implements the control part of the basic Pascal
FOR loop which can be implemented in an instruction. It
supports 8-bit, 16-bit, and 24-bit displacement.

Note that Jump Relative, Call Relative, and DJNZ instruc-
tions use modulo 216 in Native mode, and 232 in Extended
mode for address calculation. So it is possible that the
Z380 CPU can jump to an unexpected address.

5-13

Z380™

USER'S MANUALZILOG

DC-8297-03

5.5.9 External Input/Output Instruction
Group

This group of instructions (Table 5-14) are used for trans-
ferring a byte, a word, or string of bytes or words between
peripheral devices and the CPU registers or memory. Byte
I/O port addresses transfer bytes on D7-D0 only. These 8-
bit peripherals in a 16-bit data bus environment must be
connected to data line D7-D0. In an 8-bit data bus environ-
ment, word I/O instructions to external I/O peripherals
should not be used; however, on-chip peripherals which is
external to the CPU core and assigned as word I/O device
can still be accessed by word I/O instructions.

The instructions for transferring a single byte (IN, OUT) can
transfer data between any 8-bit CPU register or memory
address specified in the instruction and the peripheral port
specified by the contents of the C register. The IN instruc-
tion sets the CPU flags according to the input data;
however, special instructions restricted to using the CPU
accumulator and Direct Address mode and do not affect
the CPU flags. Another variant tests an input port specified
by the contents of the C register and sets the CPU flags
without modifying CPU registers or memory.

The instructions for transferring a single word (INW, OUTW)
can transfer data between the register pair and the periph-
eral port specified by the contents of the C register. For
Word I/O, the contents of B, D, or H appear on D7-D0 and

the contents of C, E, or L appear D15-D7. These instruc-
tions do not affect the CPU flags.

Also, there are I/O instructions available which allow to
specify 16-bit absolute I/O address (with DDIR decoder
directives, a 24-bit or 32-bit address is specified) is avail-
able. These instructions do not affect the CPU flags.

The remaining instructions in this group form a powerful
and complete complement of instructions for transferring
blocks of data between I/O ports and memory. The opera-
tion of these instructions is very similar to that of the block
move instructions described earlier, with the exception
that one operand is always an I/O port whose address
remains unchanged while the address of the other oper-
and (a memory location) is incremented or decremented.In
Word mode of transfer, the counter (i.e., BC register) holds
the number of transfers, rather than number of bytes to
transfer in memory-to-memory word block transfer. Both
byte and word forms of these instructions are available.
The automatically repeating forms of these instructions are
interruptible, like memory-to-memory transfer.

The I/O addresses output on the address bus is de-
pendant on the I/O instruction, as listed in Table 2-1.

5-14

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

5.5.9 External Input/Output Instruction Group (Continued)

Table 5-14. External I/O Group Instructions.

Instruction Name Format

Input IN dst,(C) dst=A, B, C, D, E, H or L
Input Accumulator IN A,(n)
Input to Word-Wide Register INW dst,(C) dst=BC, DE or HL
Input Byte from Absolute Address INAW A,(nn)

Input Word from Absolute Address INAW HL,(nn)
Input and Decrement (Byte) IND
Input and Decrement (Word) INDW
Input, Decrement, and Repeat (Byte) INDR

Input, Decrement, and Repeat (Word) INDRW
Input and Increment (Byte) INI
Input and Increment (Word) INIW
Input, Increment, and Repeat (Byte) INIR

Input, Increment, and Repeat (Word) INIRW
Output OUT (C),src src = A, B, C, D, E, H, L, or n
Output Accumulator OUT (n),A
Output from Word-Wide Register OUTW (C), src src = BC, DE, HL, or nn

Output Byte from Absolute Address OUTAW (nn),A
Output Word from Absolute Address OUTAW (nn),HL
Output and Decrement (Byte) OUTD
Output and Decrement (Word) OUTDW

Output, Decrement, and Repeat (Byte) OTDR
Output, Decrement, and Repeat (Word) OTDRW
Output and Increment (Byte) OUTI
Output and Increment (Word) OTIW
Output, Increment, and Repeat (Byte) OTIR
Output, Increment, and Repeat (Word) OTIRW

5-15

Z380™

USER'S MANUALZILOG

DC-8297-03

5.5.10 Internal I/O Instruction Group

This group (Table 5-15) of instructions is used to access
on-chip I/O addressing space on the Z380 CPU. This
group consists of instructions for transferring a byte from/
to Internal I/O locations and the CPU registers or memory,
or a blocks of bytes from the memory to the same size of
Internal I/O locations for initialization purposes. These
instructions are originally assigned as newly added I/O
instructions on the Z180 MPU to access Page 0 I/O
addressing space. There is 256 Internal I/O locations, and
all of them are byte-wide. When one of these I/O instruc-
tions is executed, the Z380 MPU outputs the register
address being accessed in a pseudo transaction of two
BUSCLK durations cycle, with the address signals A31-A8
at 0. In the pseudo transactions, all bus control signals are
at their inactive state.

The instructions for transferring a single byte (IN0, OUT0)
can transfer data between any 8-bit CPU register and the
Internal I/O address specified in the instruction. The IN0
instruction sets the CPU flags according to the input data;
however, special instructions which do not have a destina-

tion in the instruction with Direct Address (IN0 (n)), do not
affect the CPU register, but alters flags accordingly. An-
other variant, the TSTIO instruction, does a logical AND to
the instruction operand with the internal I/O location speci-
fied by the C register and changes the CPU flags without
modifying CPU registers or memory.

The remaining instructions in this group form a powerful
and complete complement of instructions for transferring
blocks of data from memory to Internal I/O locations. The
operation of these instructions is very similar to that of the
block move instructions described earlier, with the excep-
tion that one operand is always an Internal I/O location
whose address also increments or decrements by one
automatically, Also, the address of the other operand (a
memory location) is incremented or decremented. Since
Internal I/O space is byte-wide, only byte forms of these
instructions are available. Automatically repeating forms
of these instructions are interruptible, like memory-to-
memory transfer.

Table 5-15. Internal I/O Instruction Group

Instruction Name Format

Input from Internal I/O Location IN0 dst,(n) dst=A, B, C, D, E, H or L
Input from Internal I/O Location(Nondestructive) IN0 (n)
Test I/O TSTIO n
Output to Internal I/O Location OUT0 (n),src src=A, B, C, D, E, H or L
Output to Internal I/O and Decrement OTDM
Output to Internal I/O and Increment OTIM
Output to Internal I/O, Decrement and Repeat OTDMR
Output to Internal I/O, Increment and Repeat OTIMR

Currently, the Z380 CPU core has the following registers as a part of the CPU core:

Register Name Internal I/O address

Interrupt Enable Register 16H
Assigned Vector Base Register 17H
Trap Register 18H
Chip Version ID Register 0FFH

Chip Version ID register returns one byte data, which
indicates the version of the CPU, or the specific implemen-
tation of the Z380 CPU based Superintegration device.
Currently, the value 00H is assigned to the Z380 MPU, and
other values are reserved.

For the other three registers, refer to Chapter 6, “Interrupt
and Trap.”

Also, the Z380 MPU has registers to control chip selects,
refresh, waits, and I/O clock divide to Internal I/O address
00H to 10H. For these register, refer to Z380 MPU Product
specification.

5-16

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

5.5.11 CPU Control Group

The instructions in this group (Table 5-16) act upon the
CPU control and status registers or perform other functions
that do not fit into any of the other instruction groups. These
include two instructions used for returning from an inter-
rupt service routine. Return from Nonmaskable Interrupt
(RETN) and Return from Interrupt (RETI) are used to pop
the Program Counter from the stack and manipulate the
Interrupt Enable Flag (IEF1 and IEF2), or to signal a reset
to the Z80 peripherals family.

The Disable and Enable Interrupt instructions are used to
set/reset interrupt mask. Without a mask parameters, it
disables/enables maskable interrupt globally. With mask
data, it enables/disables interrupts selectively.

HALT and SLEEP instructions stop the CPU and waits for
an event to happen, or puts the system into the power save
mode.

Bank Test instructions reports which register file, primary
or alternate bank, is in use at the time, and reflect the status

into a flag register. For example, this instruction is useful to
implement the recursive program, which uses the alter-
nate bank to save a register for the first time, and saves
registers into memory thereafter.

Mode Test instructions reports the current mode of opera-
tion, Native/Extended, Word/Long Word, Locked or not.
This instruction can be used to switch procedures de-
pending on the mode of operation.

Load Accumulator from R or I Register instructions are
used to report current interrupt mask status. Load from/to
register instructions are used to initialize the I register.

Load Control register instructions are used to read/write
the Status Register, set/reset control bit instructions and to
set/reset the control bits in the SR.

The No Operation instruction does nothing, and can be
used as a filler, for debugging purposes, or for timing
adjustment.

Table 5-16. CPU Control Group

Instruction Name Format

Bank Test BTEST
Disable Interrupt DI [mask]
Enable Interrupt EI [mask]
HALT HALT
Interrupt Mode Select IM p
Load Accumulator from I or R Register LD A,src
Load I or R Register from Accumulator LD dst,A
Load I Register from HL Register LD[W] HL,I
Load HL Register from I Register LD[W] HL,I
Load Control LDCTL dst,src
Mode Test MTEST
No Operation NOP
Return from Interrupt RETI
Return from Nonmaskable Interrupt RETN
Reset Control Bit RESC dst dst=LCK, LW
Set Control Bit SETC dst dst=LCK, LW, XM
Sleep SLP

5-17

Z380™

USER'S MANUALZILOG

DC-8297-03

5.5.12 Decoder Directives

The Decoder Directives (Table 5-17) are a special instruc-
tions to expand the Z80 instruction set to handle the Z380’s
4 Gbytes of linear memory addressing space. For details
on this instruction, refer to Chapter 3.

Table 5-17. Decoder Directive Instructions

DDIR W Word Mode
DDIR IB,W Immediate Byte, Word Mode
DDIR IW,W Immediate Word, Word Mode
DDIR IB Immediate Byte
DDIR LW Long Word Mode
DDIR IB,LW Immediate Byte, Long Word Mode
DDIR IW,LW Immediate Word, Long Word Mode
DDIR IW Immediate Word

5.6 NOTATION AND BINARY ENCODING

The rest of this chapter consists of a detailed description
of the Z380 CPU instructions, arranged in alphabetical
order by mnemonic. This section describes the notational
conventions used in the instruction descriptions and the
binary encoding for register fields within the instruction’s
operation codes (opcodes).

The description of each instruction begins on a new page.
The instruction mnemonic and name are printed in bold
letters at the top of each page to enable the reader to easily
locate a desired description. The assembly language
syntax is then given in a single generic form that covers all
the variants of the instruction, along with a list of applicable
addressing modes. This is followed by a description of the
operation performed by the instruction in “pseudo Pascal”
fashion, a detailed description, a listing of all the flags that
are affected by the instruction, and illustrations of the
opcodes for all variants of the instruction.

Symbols. The following symbols are used to describe the
instruction set.

n An 8-bit constant
nn A 16-bit constant
d An 8-bit offset. (two’s complement)
src Source of the instruction
dst Destination of the instruction
SR Select Register
R Any register. In Word operation, any register pair.

Any 8-bit register (A, B, C, D, E, H, or L) for Byte
operation.

IR Indirect register
RX Indexed register (IX or IY) in Word operation, IXH,

IXL, IYH, or IYL for Byte operation.
SP Current Stack Pointer
(C) I/O Port pointed by C register
cc Condition Code
[] Optional field
() Indirect Address Pointer or Direct Address

Assignment of a value is indicated by the symbol "←”. For
example,

dst ← dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location.

The symbol “↔” indicates that the source and destination
is swapping. For example,

dst ↔ src

indicates that the source data is swapped with the data in
the destination; after the operation, data at “src” is in the
“dst” location, and data in “dst “ is in the “src” location.

The notation “dst (b)” is used to refer to bit “b” of a given
location, “dst(m-n)” is used to refer to bit location m to n of
the destination. For example,

HL(7) specifies bit 7 of the destination.
and
HL(23-16) specifies bit location 23 to 16 of the HL
register.

Flags. The F register contains the following flags followed
by symbols.

S Sign Flag
Z Zero Flag
H Half Carry Flag
P/V Parity/Overflow Flag
N Add/Subtract Flag
C Carry Flag

5-18

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

5.6 NOTATION AND BINARY ENCODING (Continued)

Condition Codes. The following symbols describe the
condition codes.

Z Zero*
NZ Not Zero*
C Carry*
NC No Carry*
S Sign
NS No Sign
NV No Overflow
V Overflow
PE Parity Even
PO Parity Odd
P Positive
M Minus

*Abbreviated set

Field Encoding. For opcode binary format in the Tables,
use the following convention:

For example, to get the opcode format on the instruction
LD (IX+12h), C

First, find out the entry for “LD (XY+d),R”. That entry has
a opcode format of

11 y11 101 01 110 -r- ← d →

On the bottom of the each instruction, there are the field
encodings, if applicable. For the cases which call out “per
convention,” then use the following encoding:

r Reg
000 B
001 C
010 D
011 E
100 H
101 L
111 A

To form the opcode, first, look for the “y” field value for IX
register, which is 0.

Then find “r” field value for the C register, which is 001.
Replace “y” and “r” field with the value from the table,
replace “d” value with the real number. The results being:

76 543 210 HEX
11 011 101 DD
01 110 001 71
00 010 010 21

5.7 EXECUTION TIME

i in the execution time column indicates an I/O read
operation. The time required for a read operation is shown
in the Table 5-18 below.

o in the execution time column indicates an I/O write
operation. The time required for a write operation is shown
in the Table 5-18 below.

All entries in the table below assume no wait states. The
number of wait states per operation must be added to
these numbers.

Table 5-18 details the execution time for each instruction
encoding. All execution times are for instruction execution
only. Clock cycles required for fetch and decode are not
included because most of the time the clocks required for
these operations occur in parallel with execution of the
previous instruction(s).

r in the execution time column indicates a memory read
operation. The time required for a read operation is shown
in the Table 5-18 below.

w in the execution time column indicates a memory write
operation. The time required for a write operation is shown
in the Table 5-18 below.

5-19

Z380™

USER'S MANUALZILOG

DC-8297-03

Table 5-18. Execution Time

Operation Byte Word Word Long Long Long Long Long

Sequence B W B/B W/W W/B/B B/W/B B/B/W B/B/B/B
Memory Read 3-4 3-4 5-6 5-6 7-8 7-8 7-8 9-10
Memory Write 0-1 0-1 2-3 2-3 4-5 4-5 4-5 6-7
Internal I/O Read 3-4 N/A N/A N/A N/A N/A N/A N/A

Internal I/O Write 0-1 N/A N/A N/A N/A N/A N/A N/A
1X External I/O Read 4-5 4-5 N/A N/A N/A N/A N/A N/A
1X External I/O Write 1-2 1-2 N/A N/A N/A N/A N/A N/A
2X External I/O Read 9-11 9-11 N/A N/A N/A N/A N/A N/A
2X External I/O Write 1-3 1-3 N/A N/A N/A N/A N/A N/A

4X External I/O Read 17-21 17-21 N/A N/A N/A N/A N/A N/A
4X External I/O Write 1-5 1-5 N/A N/A N/A N/A N/A N/A
6X External I/O Read 25-31 25-31 N/A N/A N/A N/A N/A N/A
6X External I/O Write 1-7 1-7 N/A N/A N/A N/A N/A N/A
8X External I/O Read 33-41 33-41 N/A N/A N/A N/A N/A N/A
8X External I/O Write 1-9 1-9 N/A N/A N/A N/A N/A N/A

Note: Units are in Clocks. “N/A” is not applicable for that particular transaction.

5-20

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

ADC
ADD WITH CARRY (BYTE)

ADC A,src src = R, RX, IM, IR, X

Operation: A ← A + src + C

The source operand together with the Carry flag is added to the accumulator and the sum
is stored in the accumulator. The contents of the source is unaffected. Two’s complement
addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: ADC A,R 10001-r- 2
RX: ADC A,RX 11y11101 1000110w 2
IM: ADC A,n 11001110 —n— 2
IR: ADC A,(HL) 10001110 2+r
X: ADC A,(XY+d) 11y11101 10001110—d— 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-21

Z380™

USER'S MANUALZILOG

DC-8297-03

ADC
ADD WITH CARRY (WORD)

ADC HL,src dst = HL
src = BC, DE, HL, SP

Operation: HL(15-0) ← HL(15-0) + src(15-0) + C

The source operand together with the Carry flag is added to the HL register and the sum is
stored in the HL register. The contents of the source are unaffected. Two’s complement
addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: ADC HL,R 11101101 01rr1010 2

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

5-22

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

ADCW
ADD WITH CARRY (WORD)

ADCW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) ← HL(15-0) + src(15-0) + C

The source operand together with the Carry flag is added to the HL register and the sum is
stored in the HL register. The contents of the source are unaffected. Two’s complement
addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: ADCW [HL,]R 11101101 100011rr 2
RX: ADCW [HL,]RX 11y11101 10001111 2
IM: ADCW [HL,]nn 11101101 10001110 -n(low)- n(high)- 2
X: ADCW [HL,](XY+d) 11y11101 11001110 ——d— 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-23

Z380™

USER'S MANUALZILOG

DC-8297-03

ADD
ADD (BYTE)

ADD A,src src = R, RX, IM, IR, X

Operation: A ← A + src

The source operand is added to the accumulator and the sum is stored in the accumulator.
The contents of the source are unaffected. Two’s complement addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: ADD A,R 10000-r- 2
RX: ADD A,RX 11y11101 1000010w 2
IM: ADD A,n 11000110 ——n— 2
IR: ADD A,(HL) 10000110 2+r
X: ADD A,(XY+d) 11y11101 10000110 ——d— 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-24

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

ADD
ADD (WORD)

ADD dst,src dst = HL; src = BC, DE, HL, SP, DA
or

dst = IX; src = BC, DE, IX, SP
or

dst = IY; src = BC, DE, IY, SP

Operation: If (XM) then begin
dst(31-0) ← dst(31-0) + src(31-0)
end
else begin
dst(15-0) ← dst(15-0) + src(15-0)
end

The source operand is added to the destination and the sum is stored in the destination. The
contents of the source are unaffected. Two’s complement addition is performed. Note that
the length of the operand is controlled by the Extended/Native mode selection, which is
consistent with the manipulation of an address by the instruction.

Flags: S: Unaffected
Z: Unaffected
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Unaffected
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: ADD HL,R 00rr1001 2 X
RX: ADD XY,R 11y11101 00rr1001 2 X
DA: ADD HL,(nn) 11101101 11000110 -n(low)- n(high)- 2+r I, X

Field Encodings: rr: 00 for BC, 01 for DE, 10 for register to itself, 11 for SP
y: 0 for IX, 1 for IY

5-25

Z380™

USER'S MANUALZILOG

DC-8297-03

ADD
ADD TO STACK POINTER (WORD)

ADD SP,srcsrc = IM

Operation: if (XM) then begin
SP(31-0) ← SP(31-0) + src(31-0)
end

else begin
SP(15-0) ← SP(15-0) + src(15-0)

end

The source operand is added to the SP register and the sum is stored in the SP register. This
has the effect of allocating or allocating space on the stack. Two’s complement addition is
performed.

Flags: S: Unaffected
Z: Unaffected
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Unaffected
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
IM: ADD SP,nn 11101101 10000010 -n(low)- -n(high) 2 I, X

5-26

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

ADDW
ADD (WORD)

ADDW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) ← HL(15-0) + src(15-0)

The source operand is added to the HL register and the sum is stored in the HL register. The
contents of the source are unaffected. Two’s complement addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: ADDW [HL,]R 11101101 100001rr 2
RX: ADDW [HL,]RX 11y11101 10000111 2
IM: ADDW [HL,]nn 11101101 10000110 -n(low)- n(high)- 2
X: ADDW [HL,](XY+d) 11y11101 11000110 —d— 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-27

Z380™

USER'S MANUALZILOG

DC-8297-03

AND
AND (BYTE)

AND [A,]src src = R, RX, IM, IR, X

Operation : A ← A AND src

A logical AND operation is performed between the corresponding bits of the source operand
and the accumulator and the result is stored in the accumulator. A 1 is stored wherever the
corresponding bits in the two operands are both 1s; otherwise a 0 is stored. The contents
of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Addressing Execute
Mode Syntax Instruction Format Time Note
R: AND [A,]R 10100-r- 2
RX: AND [A,]RX 11y11101 1010010w 2
IM: AND [A,]n 11100110 ——n— 2
IR: AND [A,](HL) 10100110 2+r
X: AND [A,](XY+d) 11y11101 10100110——d— 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-28

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

ANDW
AND (WORD)

ANDW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) ← HL(15-0) AND src(15-0)

A logical AND operation is performed between the corresponding bits of the source operand
and the HL register and the result is stored in the HL register. A 1 is stored wherever the
corresponding bits in the two operands are both 1s; otherwise a 0 is stored. The contents
of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Addressing Execute
Mode Syntax Instruction Format Time Note
R: ANDW [HL,]R 11101101 101001rr 2
RX: ANDW [HL,]RX 11y11101 10100111 2
IM: ANDW [HL,]nn 1110110110100110 n(low)- n(high)- 2
X: ANDW [HL,](XY+d) 11y11101 11100110 ——d— 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-29

Z380™

USER'S MANUALZILOG

DC-8297-03

BIT
BIT TEST

BIT b,dst dst = R, IR, X

Operation: Z ← NOT dst(b)

The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if
the specified bit is 0, otherwise the Zero flag is cleared to 0. The contents of the destination
are unaffected. The bit to be tested is specified by a 3-bit field in the instruction; this field
contains the binary encoding for the bit number to be tested. The bit number b must be
between 0 and 7.

Flags: S: Unaffected
Z: Set if the specified bit is zero; cleared otherwise
H: Set
V: Unaffected
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: BIT b,R 11001011 01bbb-r- 2
IR: BIT b,(HL) 11001011 01bbb110 2+r
X: BIT b,(XY+d) 11y11101 11001011 ——d— 01bbb110 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-30

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

BTEST
BANK TEST

BTEST

Operation: S ← SR(16)
Z ← SR(24)
V ← SR(0)
C ← SR(8)

The Alternate Register bits in the Select Register (SR) are transferred to the flags. This allows
the program to determine the state of the machine.

Flags: S: Set if the alternate bank IX is in use; cleared otherwise
Z: Set if the alternate bank IY is in use; cleared otherwise
H: Unaffected
V: Set if the alternate bank AF is in use; cleared otherwise
N: Unaffected
C: Set if the alternate bank of BC, DE and HL is in use; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note

BTEST 11101101 11001111 2

5-31

Z380™

USER'S MANUALZILOG

DC-8297-03

CALL
CALL

CALL [cc,]dst dst = DA

Operation: if (cc is TRUE) then begin
if (XM) then begin

SP ← SP - 4
(SP) ← PC(7-0)
(SP+1) ← PC(15-8)
(SP+2) ← PC(23-16)
(SP+3) ← PC(31-24)
PC(31-0) ← dst(31-0)

else begin
SP ← SP - 2
(SP) ← PC(7-0)
(SP+1) ← PC(15-8)
PC(15-0) ← dst(15-0)
end

end

A conditional Call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an Unconditional
Call always transfers control to the destination address. The current contents of the Program
Counter (PC) are pushed onto the top of the stack; the PC value used is the address of the
first instruction byte following the Call instruction. The destination address is then loaded
into the PC and points to the first instruction of the called procedure. At the end of a
procedure a Return instruction (RET) can be used to return to the original program.

Each of the Zero, Carry, Sign, and Overflow Flags can be individually tested and a call
performed conditionally on the setting of the flag.

The operand is not enclosed in parentheses with the CALL instruction.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
DA: CALL CC,addr 11-cc100 -a(low)- -a(high) note I, X

CALL addr 11001101 -a(low)- -a(high) 4+w I, X

Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C,
100 for PO or NV, 101 for PE or V, 110 for P or NS, 111 for M or S

Note: 2 if CC is false, 4+w if CC is true

5-32

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

CALR
CALL RELATIVE

CALR [cc,]dst dst = RA

Operation: if (cc is true) then begin
dst ← SIGN EXTEND dst
if (XM) then begin

SP ← SP - 4
(SP) ← PC(7-0)
(SP+1) ← PC(15-8)
(SP+2) ← PC(23-16)
(SP+3) ← PC(31-24)
PC(31-0) ← PC(31-0) + dst(31-0)
end

else begin
SP ← SP - 2
(SP) ← PC(7-0)
(SP+1) ← PC(15-8)
PC(15-0) ← PC(15-0) + dst(15-0)
end

end

A conditional Call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an unconditional
call always transfers control to the destination address. The current contents of the Program
Counter (PC) are pushed onto the top of the stack; the PC value used is the address of the
first instruction byte following the Call instruction. The destination address is then loaded into
the PC and points to the first instruction of the called procedure. At the end of a procedure
a RETurn instruction is used to return to the original program. These instructions employ
either an 8-bit, 16-bit, or 24-bit signed, two’s complement displacement from the PC to
permit calls within the range of -126 to +129 bytes, –32,765 to +32,770 bytes or –8,388,604
to +8,388,611 bytes from the location of this instruction.

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a call
performed conditionally on the setting of the flag.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
RA: CALR CC,addr 11101101 11-cc100 —disp— note X

CALR addr 11101101 11001101 —disp— 4+w X
CALR CC,addr 11011101 11-cc100 -d(low)- -d(high) note X
CALR addr 11011101 11001101 -d(low)- -d(high) 4+w X
CALR CC,addr 11111101 11-cc100 -d(low)- -d(mid)- -d(high) note X
CALR addr 11111101 11001101 -d(low)- -d(mid) -d(high) 4+w X

Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
110 for P or NS, 111 for M or S

Note: 2 if CC is false, 4+w if CC is true

5-33

Z380™

USER'S MANUALZILOG

DC-8297-03

CCF
COMPLEMENT CARRY FLAG

CCF

Operation: C ← NOT C

The Carry flag is inverted.

Flags: S: Unaffected
Z: Unaffected
H: The previous state of the Carry flag
V: Unaffected
N: Cleared
C: Set if the Carry flag was clear before the operation; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note

CCF 00111111 2

5-34

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

CP
COMPARE (BYTE)

CP [A,]src src = R, RX, IM, IR, X

Operation: A – src

The source operand is compared with the accumulator and the flags are set accordingly.
The contents of the accumulator and the source are unaffected. Two’s complement
subtraction is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: CP [A,]R 10111-r- 2
RX: CP [A,]RX 11y11101 1011110w 2
IM: CP [A,]n 11111110 ——n— 2
IR: CP [A,](HL) 10111110 2+r
X: CP [A,](XY+d) 11y11101 10111110 ——d— 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-35

Z380™

USER'S MANUALZILOG

DC-8297-03

CPW
COMPARE (WORD)

CPW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) – src(15-0)

The source operand is compared with the HL register and the flags are set accordingly. The
contents of the HL register and the source are unaffected. Two’s complement subtraction
is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: CPW [HL,]R 11101101 101111rr 2
RX: CPW [HL,]RX 11y11101 10111111 2
IM: CPW [HL,]nn 11101101 10111110 -n(low)- n(high)- 2
X: CPW [HL,](XY+d) 11y11101 11111110 ——d— 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-36

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

CPD
COMPARE AND DECREMENT (BYTE)

CPD

Operation: A - (HL)
if (XM) then begin

HL(31-0) ← HL(31-0) - 1
end

else begin
HL(15-0) ← HL(15-0) - 1
end

BC(15-0) ← BC(15-0) - 1

This instruction is used for searching strings of byte data. The byte of data at the location
addressed by the HL register is compared with the contents of the accumulator and the Sign
and Zero flags are set to reflect the result of the comparison. The contents of the accumulator
and the memory bytes are unaffected. Two’s complement subtraction is performed. Next
the HL register is decremented by one, thus moving the pointer to the previous element in
the string. The BC register, used as a counter, is then decremented by one.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the memory

byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

CPD 11101101 10101001 3+r X

5-37

Z380™

USER'S MANUALZILOG

DC-8297-03

CPDR
COMPARE, DECREMENT AND REPEAT (BYTE)

CPDR

Operation: Repeat until (BC=0 OR match) begin
A - (HL)
if (XM) then begin

HL(31-0) ← HL(31-0) - 1
end

else begin
HL(15-0) ← HL(15-0) - 1
end

BC(15-0) ← BC(15-0) - 1
end

This instruction is used for searching strings of byte data. The bytes of data starting at the
location addressed by the HL register are compared with the contents of the accumulator
until either an exact match is found or the string length is exhausted becuase the BC register
has decremented to zero. The Sign and Zero flags are set to reflect the result of the
comparison. The contents of the accumulator and the memory bytes are unaffected.Two’s
complement subtraction is performed.

After each comparison, the HL register is decremented by one, thus moving the pointer to
the previous element in the string.

The BC register, used as a counter, is then decremented by one. If the result of decrementing
the BC register is not zero and no match has been found, the process is repeated. If the
contents of the BC register are zero at the start of this instruction, a string length of 65,536
is indicated.

This instruction can be interrupted after each execution of the basic operation. The PC value
at the start of this instruction is pushed onto the stack so that the instruction can be resumed.

Flags: S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating a match; cleared otherwise
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

CPDR 11101101 10111001 (3+r)n X

5-38

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

CPI
COMPARE AND INCREMENT (BYTE)

CPI

Operation: A - (HL)
if (XM) then begin

HL(31-0) ← HL(31-0) + 1
end

else begin
HL(15-0) ← HL(15-0) + 1
end

BC(15-0) ← BC(15-0) - 1

This instruction is used for searching strings of byte data. The byte of data at the location
addressed by the HL register is compared with the contents of the accumulator and the Sign
and Zero flags are set to reflect the result of the comparison. The contents of the accumulator
and the memory bytes are unaffected. Two’s complement subtraction is performed. Next the
HL register is incremented by one, thus moving the pointer to the next element in the string.
The BC register, used as a counter, is then decremented by one.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the memory
byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

CPI 11101101 10100001 3+r X

5-39

Z380™

USER'S MANUALZILOG

DC-8297-03

CPIR
COMPARE, INCREMENT AND REPEAT (BYTE)

CPIR

Operation: Repeat until (BC=0 OR match) begin
A - (HL)
if (XM) then begin

HL(31-0) ← HL(31-0) + 1
end

else begin
HL(15-0) ← HL(15-0) + 1
end

BC(15-0) ← BC(15-0) - 1
end

This instruction is used for searching strings of byte data. The bytes of data starting at the
location addressed by the HL register are compared with the contents of the accumulator
until either an exact match is found or the string length is exhausted becuase the BC register
has decremented to zero. The Sign and Zero flags are set to reflect the result of the
comparison. The contents of the accumulator and the memory bytes are unaffected.
Two’s complement subtraction is performed.

After each comparison, the HL register is incremented by one, thus moving the pointer to
the next element in the string. The BC register, used as a counter, is then decremented by
one. If the result of decrementing the BC register is not zero and no match has been found,
the process is repeated. If the contents of the BC register are zero at the start of this
instruction, a string length of 65,536 is indicated.

This instruction can be interrupted after each execution of the basic operation. The PC value
at the start of this instruction is pushed onto the stack so that the instruction can be resumed.

Flags: S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating a match; cleared otherwise
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

CPIR 11101101 10110001 (3+r)n X

5-40

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

CPL
COMPLEMENT ACCUMULATOR

CPL [A]

Operation: A ← NOT A

The contents of the accumulator are complemented (one's complement); all 1s are changed
to 0 and vice-versa.

Flags: S: Unaffected
Z: Unaffected
H: Set
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

CPL [A] 00101111 2

5-41

Z380™

USER'S MANUALZILOG

DC-8297-03

CPLW
COMPLEMENT HL REGISTER (WORD)

CPLW [HL]

Operation: HL(15-0) ← NOT HL(15-0)

The contents of the HL register are complemented (ones complement); all 1s are changed
to 0 and vice-versa.

Flags: S: Unaffected
Z: Unaffected
H: Set
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

CPLW [HL] 11011101 00101111 2

5-42

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

DAA
DECIMAL ADJUST ACCUMULATOR

DAA

Operation: A ← Decimal Adjust A

The accumulator is adjusted to form two 4-bit BCD digits following a binary, two’s
complement addition or subtraction on two BCD-encoded bytes. The table below indicates
the operation performed for addition (ADD, ADC, INC) or subtraction (SUB, SBC, DEC,
NEG).

C Hex Value H Hex Value Number C H
Before Upper Digit Before Lower Digit Added After After

Operation DAA (Bits 7-4) DAA (Bits 3-0) to Byte DAA DAA

0 0-9 0 0-9 00 0 0
0 0-8 0 A-F 06 0 1

ADD 0 0-9 1 0-3 06 0 0
ADC 0 A-F 0 0-9 60 1 0
INC 0 9-F 0 A-F 66 1 1
(N=0) 0 A-F 1 0-3 66 1 0

1 0-2 0 0-9 60 1 0
1 0-2 0 A-F 66 1 1
1 0-3 1 0-3 66 1 0

SUB
SBC 0 0-9 0 0-9 00 0 0
DEC 0 0-8 1 6-F FA 0 1
NEG 1 7-F 0 0-9 A0 1 0
(N=1) 1 6-F 1 6-F 9A 1 1

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: See table above
P: Set if the parity of the result is even; cleared otherwise
N: Not affected
C: See table above

Addressing Execute
Mode Syntax Instruction Format Time Note

DAA 00100111 3

5-43

Z380™

USER'S MANUALZILOG

DC-8297-03

DDIR
DECODER DIRECTIVE

DDIR mode mode = W or LW, IB or IW

Operation: None, decoder directive only

This is not an instruction, but rather a directive to the instruction decoder.

The instruction decoder may be directed to fetch an additional byte or word of immediate
data or address with the instruction, as well as tagging the instruction for execution in either
Word or Long Word mode. All eight combinations of the two options are supported, as shown
in the encoding below. Instructions which do not support decoder directives are assembled
by the instruction decoder as if the decoder directive were not present.

The IB decoder directive causes the decoder to fetch an additional byte immediately after
the existing immediate data or direct address, and in front of any trailing opcode bytes (with
instructions starting with DD-CB or FD-CB, for example).

Likewise, the IW decoder directive causes the decoder to fetch an additional word
immediately after the existing immediate data or direct address, and in front of any trailing
opcode bytes.

Byte ordering within the instruction follows the usual convention; least significant byte first,
followed by more significant bytes. More-significant immediate data or direct address bytes
not specified in the instruction are taken as all zeros by the processor.

The W decoder directive causes the instruction decoder to tag the instruction for execution
in Word mode. This is useful while the Long Word (LW) bit in the Select Register (SR) is set,
but 16-bit data manipulation is required for this instruction.

The LW decoder directive causes the instruction decoder to tag the instruction for execution
in Long Word mode. This is useful while the LW bit in the SR is cleared, but 32-bit data
manipulation is required for this instruction.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

DDIR mode 11w11101 110000im 0

Field Encodings: wim: 000 W Word mode
001 IB,W Immediate byte, Word mode
010 IW,W Immediate word, Word mode
011 IB Immediate byte
100 LW Long Word mode
101 IB,LW Immediate byte, Long Word mode
110 IW,LW Immediate word, Long Word mode
111 IW Immediate word

5-44

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

DEC
DECREMENT (BYTE)

DEC dst dst = R, RX, IR, X

Operation: dst ← dst – 1

The destination operand is decremented by one and the result is stored in the destination.
Two’s complement subtraction is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 80H; cleared otherwise
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: DEC R 00-r-101 note
RX: DEC RX 11y11101 0010w101 2
IR: DEC (HL) 00110101 2+r+w
X: DEC (XY+d) 11y11101 00110101 ——d— 4+r+w I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

Note: 2 for accumulator, 3 for any other register

5-45

Z380™

USER'S MANUALZILOG

DC-8297-03

DEC[W]
DECREMENT (WORD)

DEC[W] dstdst = R, RX

Operation: if (XM) then begin
dst(31-0) ← dst(31-0) - 1
end

else begin
dst(15-0) ← dst(15-0) - 1
end

The destination operand is decremented by one and the result is stored in the destination.
Two’s complement subtraction is performed. Note that the length of the operand is
controlled by the Extended/Native mode selection, which is consistent with the manipulation
of an address by the instruction.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: DEC[W] R 00rr1011 2 X
RX: DEC[W] RX 11y11101 00101011 2 X

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP
y: 0 for IX, 1 for IY

5-46

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

DI
DISABLE INTERRUPTS

DI [n]

Operation: if (n is present) then begin
for i=1 to 4 begin

if (n(i) = 1) then begin
IER(i-1) ← 0
end

end
if (n(0) = 1) then begin

SR(5) ← 0
end

end
else begin

SR(5) ← 0
end

If an argument is present, disable the selected interrupts by clearing the appropriate enable
bits in the Interrupt Enable Register, and then clear the Interrupt Enable Flag (IEF1) in the
Select Register (SR) if the least-significant bit of the argument is set, disabling maskable
interrupts. Bits 7-5 of the argument are ignored.

If no argument is present, IEF1 in the SR is set to 0, disabling maskable interrupts.

Note that during execution of this instruction the maskable interrupts are not sampled.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

DI 11110011 2
DI n 11011101 11110011 —n—— 2

5-47

Z380™

USER'S MANUALZILOG

DC-8297-03

DIVUW
DIVIDE UNSIGNED (WORD)

DIVUW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) ← HL / src
HL(31-16) ← remainder

The contents of the the HL register (dividend) are divided by the source operand (divisor)
and the quotient is stored in the lower word of the HL register; the remainder is stored in the
upper word of the HL register. The contents of the source are unaffected. Both operands are
treated as unsigned, binary integers. There are three possible outcomes of the DIVUW
instruction, depending on the division and the resulting quotient:

Case 1: If the quotient is less than 65536, then the quotient is left in the HL register, the
Overflow and Sign flags are cleared to 0, and the Zero flag is set according to the value of
the quotient.

Case 2: If the divisor is zero, the HL register is unchanged, the Zero and Overflow flags are
set to 1, and the Sign flag is cleared to 0.

Case 3: If the quotient is greater than or equal to 65536, the HL register is unchanged, the
Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.

Flags: S: Cleared
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected
V: Set if the divisor is zero or if the computed quotient is greater than or equal to 65536;

cleared otherwise
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: DIVUW [HL,]R 11101101 11001011 101110rr 20
RX: DIVUW [HL,]RX 11101101 11001011 1011110y 20
IM: DIVUW [HL,]nn 11101101 11001011 10111111 -n(low)- -n(high) 20
X: DIVUW [HL,](XY+d) 11y11101 11001011 ——d— 10111010 22+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-48

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

DJNZ
DECREMENT AND JUMP IF NON-ZERO

DJNZ dst dst = RA

Operation: B ← B-1
If (B <> 0) then begin

dst ← SIGN EXTEND dst
if (XM) then begin

PC(31-0) ← PC(31-0) + dst(31-0)
end

else begin
PC(15-0) ← PC(15-0) + dst(15-0)
end

end

The B register is decremented by one. If the result is non-zero, then the destination address
is calculated and then loaded into the Program Counter (PC). Control then passes to the
instruction whose address is pointed to by the PC. When the B register reaches zero, control
falls through to the instruction following DJNZ. This instruction provides a simple method of
loop control.

The destination address is calculated using Relative addressing. The displacement in the
instruction is added to the PC; the PC value used is the address of the instruction following
the DJNZ instruction.

These instructions employ either an 8-bit, 16-bit, or 24-bit signed, two’s complement
displacement from the PC to permit jumps within a range of -126 to +129 bytes, -32,765 to
+32,770 bytes, or -8,388,604 to +8,388,611 bytes from the location of this instruction.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
RA: DJNZ addr 00010000 —disp— note X

DJNZ addr 11011101 00010000 -d(low)- -d(high) note X
DJNZ addr 11111101 00010000 -d(low)- -d(mid)- -d(high) note X

Note: 3 if branch not taken, 4 if branch taken

5-49

Z380™

USER'S MANUALZILOG

DC-8297-03

EI
ENABLE INTERRUPTS

EI [n]

Operation: if (n is present) then begin
for i=1 to 4 begin

if (n(i) = 1) then begin
IER(i-1) ← 1
end

end
if (n(0) = 1) then begin

SR(5) ← 1
end

end
else begin

SR(5) ← 1
end

If an argument is present, enable the selected interrupts by setting the appropriate enable
bits in the Interrupt Enable Register, and then set the Interrupt Enable Flag (IEF1) in the
Select Register (SR) if the least-significant bit of the argument is set, enabling maskable
interrupts. Bits 7-5 of the argument are ignored.

If no argument is present, IEF1 in the SR is set to 1, enabling maskable interrupts.

Note that during the execution of this instruction and the following instruction, maskable
interrupts are not sampled.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

EI 11111011 2
EI n 11011101 11111011 —n—— 2

5-50

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

EX
EXCHANGE ACCUMULATOR/FLAG WITH ALTERNATE BANK

EX AF,AF’

Operation: SR(0) ← NOT SR(0)

Bit 0 of the Select Register (SR), which controls the selection of primary or alternate bank
for the accumulator and flag register, is complemented, thus effectively exchanging the
accumulator and flag registers between the two banks.

Flags: S: Value in F’
Z: Value in F’
H: Value in F’
V: Value in F’
N: Value in F’
C: Value in F’

Addressing Execute
Mode Syntax Instruction Format Time Note

EX AF,AF’ 00001000 3

5-51

Z380™

USER'S MANUALZILOG

DC-8297-03

EX
EXCHANGE ADDRESSING REGISTER WITH TOP OF STACK

EX (SP),dst dst = HL, IX, IY

Operation: if (LW) then begin
(SP+3) ↔ dst(31-24)
(SP+2) ↔ dst(23-16)
end

(SP+1) ↔ dst(15-8)
(SP) ↔ dst(7-0)

The contents of the destination register are exchanged with the top of the stack. In Long
Word mode this exchange is two words; otherwise it is one word.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: EX (SP),HL 11100011 3+r+w L

EX (SP),XY 11y11101 11100011 3+r+w L

Field Encodings: y: 0 for IX, 1 for IY

5-52

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

EX
EXCHANGE REGISTER (WORD)

EX dst,src dst = R, RX
src = R, RX

Operation: if (LW) then begin
dst(31-0) ↔ src(31-0)
end

else begin
dst(15-0) ↔ src(15-0)
end

The contents of the destination are exchanged with the contents of the source.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: EX BC,DE 11101101 00000101 3 L

EX BC,HL 11101101 00001101 3 L
EX DE,HL 11101011 3 L

RX: EX R,RX 11101101 00rry011 3 L
EX IX,IY 11101101 00101011 3 L

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-53

Z380™

USER'S MANUALZILOG

DC-8297-03

EX
EXCHANGE REGISTER WITH ALTERNATE REGISTER (BYTE)

EX dst,src src = R

Operation: dst ↔ src

The contents of the destination are exchanged with the contents of the source, where the
destination is a register in the primary bank and the source is the corresponding register in
the alternate bank

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: EX R,R’ 11001011 00110-r- 3

Field Encoding: r: per convention

5-54

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

EX
EXCHANGE REGISTER WITH ALTERNATE REGISTER (WORD)

EX dst,src src = R, RX

Operation: if (LW) then begin
dst(31-0) ↔ src(31-0)
end

else begin
dst(15-0) ↔ src(15-0)
end

The contents of the destination are exchanged with the contents of the source, where the
destination is a word register in the primary bank and the source is the corresponding word
register in the alternate bank.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: EX R,R’ 11101101 11001011 001100rr 3 L
RX: EX RX,RX’ 11101101 11001011 0011010y 3 L

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-55

Z380™

USER'S MANUALZILOG

DC-8297-03

EX
EXCHANGE WITH ACCUMULATOR

EX A,src src = R, IR

Operation: dst ↔ src

The contents of the accumulator are exchanged with the contents of the source.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: EX A,R 11101101 00-r-111 3
IR: EX A,(HL) 11101101 00110111 3+r+w

Field Encodings: r: per convention

5-56

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

EXALL
EXCHANGE ALL REGISTERS WITH ALTERNATE BANK

EXALL

Operation: SR(24) ← NOT SR(24)
SR(16) ← NOT SR(16)
SR(8) ← NOT SR(8)

Bits 8, 16, and 24 of the Select Register (SR), which control the selection of primary or
alternate bank for the BC, DE, HL, IX, and IY registers, are complemented, thus effectively
exchanging the BC, DE, HL, IX, and IY registers between the two banks.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

EXALL 11101101 11011001 3

5-57

Z380™

USER'S MANUALZILOG

DC-8297-03

EXTS
EXTEND SIGN (BYTE)

EXTS [A]

Operation: L ← A
if (A(7)=0) then begin

H ¨ 00h
if (LW) then begin

HL(31-16) ← 0000h
end

end
else begin

H ¨ FFh
if (LW) then begin

HL(31-16) ← FFFFh
end

end

The contents of the accumulator, considered as a signed, two’s complement integer, are
sign-extended to 16 bits and the result is stored in the HL register. The contents of the
accumulator are unaffected. This instruction is useful for conversion of short signed
operands into longer signed operands.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

EXTS [A] 11101101 01100101 3 L

5-58

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

EXTSW
EXTEND SIGN (WORD)

EXTSW [HL]

Operation: If (HL(15)=0) then begin
HL(31-16) ← 0000h
end

else begin
HL(31-16) ← FFFFh
end

The contents of the low word of the HL register, considered as a signed, two's complement
integer, are sign-extended to 32 bits in the HL register. This instruction is useful for
conversion of 16-bit signed operands into 32-bit signed operands.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

EXTSW [HL] 11101101 01110101 3

5-59

Z380™

USER'S MANUALZILOG

DC-8297-03

EXX
EXCHANGE REGISTERS WITH ALTERNATE BANK

EXX

Operation: SR(8) ← NOT SR(8)

Bit 8 of the Select Register (SR), which controls the selection of primary or alternate bank
for the BC, DE, and HL registers, is complemented, thus effectively exchanging the BC, DE,
and HL registers between the two banks.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

EXX 11011001 3

5-60

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

EXXX
EXCHANGE IX REGISTER WITH ALTERNATE BANK

EXXX

Operation: SR(16) ← NOT SR(16)

Bit 16 of the Select Register (SR), which controls the selection of primary or alternate bank
for the IX register, is complemented, thus effectively exchanging the IX register between the
two banks.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

EXXX 11011101 11011001 3

5-61

Z380™

USER'S MANUALZILOG

DC-8297-03

EXXY
EXCHANGE IY REGISTER WITH ALTERNATE BANK

EXXY

Operation: SR(24) ← NOT SR(24)

Bit 24 of the Select Register (SR), which controls the selection of primary or alternate bank
for the IY register, is complemented, thus effectively exchanging the IY register between the
two banks.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

EXXY 11111101 11011001 3

5-62

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

HALT
HALT

HALT

Operation: CPU Halts

The CPU operation is suspended until either an interrupt request or reset request is
received. This instruction is used to synchronize the CPU with external events, preserving
its state until an interrupt or reset request is accepted. After an interrupt is serviced, the
instruction following HALT is executed. While the CPU is halted, memory refresh cycles still
occur, and bus requests are honored. When this instruction is executed the signal /HALT
is asserted and remains asserted until an interrupt or reset request is accepted.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

HALT 01110110 2

5-63

Z380™

USER'S MANUALZILOG

DC-8297-03

IM
INTERRUPT MODE SELECT

IM p p = 0, 1, 2, 3

Operation: SR(4-3) ← p

The interrupt mode of operation is set to one of four modes. (See Chapter 6 for a description
of the various modes for responding to interrupts). The current interrupt mode can be read
from the Select Register (SR).

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

IM p 11101101 010pp110 4

Field Encodings: pp: 00 for Mode 0, 01 for Mode 3, 10 for Mode 1, 11 for Mode 2

5-64

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

IN
INPUT (BYTE)

IN dst,(C) dst = R

Operation: dst ← (C)

The byte of data from the selected peripheral is loaded into the destination register. During
the I/O transaction, the contents of the 32-bit BC register are placed on the address bus.

Flags: S: Set if the input data is negative; cleared otherwise
Z: Set if the input data is zero; cleared otherwise
H: Cleared
P: Set if the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: IN R,(C) 11101101 01-r-000 2+i

Field Encodings: r: per convention

5-65

Z380™

USER'S MANUALZILOG

DC-8297-03

INW
INPUT (WORD)

INW dst,(C) dst = R

Operation: dst(15-0) ← (C)

The word of data from the selected peripheral is loaded into the destination register. During
the I/O transaction, the contents of the 32-bit BC register are placed on the address bus.

Flags: S: Set if the input data is negative; cleared otherwise
Z: Set if the input data is zero; cleared otherwise
H: Cleared
P: Set if the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: INW R,(C) 11011101 01rrr000 2+i

Field Encodings: rrr: 000 for BC, 010 for DE, 111 for HL

5-66

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

IN
INPUT ACCUMULATOR

IN A,(n)

Operation: A ← (n)

The byte of data from the selected peripheral is loaded into the accumulator. During the
I/O transaction, the 8-bit peripheral address from the instruction is placed on the low byte
of the address bus, the contents of the accumulator are placed on address lines A15-A8,
and the high-order address lines are all zeros.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

IN A,(n) 11011011 ——n— 3+i

5-67

Z380™

USER'S MANUALZILOG

DC-8297-03

IN0
INPUT (FROM PAGE 0)

IN0 dst,(n) dst = R

Operation: dst ← (n)

The byte of data from the selected on-chip peripheral is loaded into the destination register.
No external I/O transaction will be generated as a result of this instruction, although the
 I/O address will appear on the address bus while this internal read is occurring. The
peripheral address is placed on the low byte of the address bus and zeros are placed on
all other address lines. When the second opcode byte is 30h no data is stored in a
destination; only the flags are updated.

Flags: S: Set if the input data is negative; cleared otherwise
Z: Set if the input data is zero; cleared otherwise
H: Cleared
P: Set if the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: IN0 R,(n) 11101101 00 -r- 000 ——n— 3+i
none: IN0 (n 11101101 00110000 ——n— 3+i

Field Encodings: r: per convention

5-68

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

INA
INPUT DIRECT FROM PORT ADDRESS (BYTE)

INA A,(nn)

Operation: A ← (nn)

The byte of data from the selected peripheral is loaded into the accumulator. During the
I/O transaction, the peripheral address from the instruction is placed on the address bus.
Any bytes of address not specified in the instruction are driven on the address lines as all
zeros.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

INA A,(nn) 11101101 11011011 -n(low)- -n(high) 3+i I

5-69

Z380™

USER'S MANUALZILOG

DC-8297-03

INAW
INPUT DIRECT FROM PORT ADDRESS (WORD)

INAW HL,(nn)

Operation: HL(15-0) ← (nn)

The word of data from the selected peripheral is loaded into the HL register. During the
I/O transaction, the peripheral address from the instruction is placed on the address bus.
Any bytes of address not specified in the instruction are driven on the address lines as all
zeros.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

INAW HL,(nn) 11111101 11011011 -n(low)- -n(high) 3+i I

5-70

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

INC
INCREMENT (BYTE)

INC dst dst = R, RX, IR, X

Operation: dst ← dst + 1

The destination operand is incremented by one and the sum is stored in the destination.
Two’s complement addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 7FH; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: INC R 00-r-100 note
RX: INC RX 11y11101 0010w100 2
IR: INC (HL) 00110100 2+r+w
X: INC (XY+d) 11y11101 00110100 ——d— 4+r+w I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

Note: 2 for accumulator, 3 for any other register

5-71

Z380™

USER'S MANUALZILOG

DC-8297-03

INC[W]
INCREMENT (WORD)

INC[W] dst dst = R, RX

Operation: if (XM) then begin
dst(31-0) < dst(31-0) + 1
end

else begin
dst(15-0) ← dst(15-0) + 1
end

The destination operand is incremented by one and the sum is stored in the destination.
Two’s complement addition is performed. Note that the length of the operand is controlled
by the Extended/Native mode selection, which is consistent with the manipulation of an
address by the instruction.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: INC[W] R 00rr0011 2 X
RX: INC[W] RX 11y11101 00100011 2 X

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP
y: 0 for IX, 1 for IY

5-72

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

IND
INPUT AND DECREMENT (BYTE)

IND

Operation: (HL) ← (C)
B ← B – 1
HL ← HL – 1

This instruction is used for block input of strings of data. During the I/O transaction the 32-
bit BC register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A15-A8 are not useable as part of a fixed port address.

First the byte of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the B register, used as a counter, is decremented by
one. The HL register is then decremented by one, thus moving the pointer to the next
destination for the input.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

IND 11101101 10101010 2+i+w

5-73

Z380™

USER'S MANUALZILOG

DC-8297-03

INDW
INPUT AND DECREMENT (WORD)

INDW

Operation: (HL) ← (DE)
BC(15-0) ← BC(15-0) – 1
HL ← HL – 2

This instruction is used for block input of strings of data. During the I/O transaction the 32-
bit DE register is placed on the address bus.

First the word of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the BC register, used as a counter, is decremented by
one. The HL register is then decremented by two, thus moving the pointer to the next
destination for the input.

Flags: S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

INDW 11101101 11101010 2+i+w

5-74

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

INDR
INPUT, DECREMENT AND REPEAT (BYTE)

INDR

Operation: repeat until (B=0) begin
(HL) ← (C)
B ← B – 1
HL ← HL – 1
end

This instruction is used for block input of strings of data. The string of input data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transaction the
32-bit BC register is placed on the address bus. Note that the B register contains the loop
count for this instruction so that A15-A8 are not useable as part of a fixedport address.

First the byte of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the B register, used as a counter, is decremented by
one. The HL register is then decremented by one, thus moving the pointer to the next
destination for the input. If the result of decrementing the B register is 0, the instruction is
terminated, otherwise the sequence is repeated. If the B register contains 0 at the start of
the execution of this instruction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

INDR 11101101 10111010 n X (2+i+w)

5-75

Z380™

USER'S MANUALZILOG

DC-8297-03

INDRW
INPUT, DECREMENT AND REPEAT (WORD)

INDRW

Operation: repeat until (BC=0) begin
(HL) ← (DE)
BC(15-0) ← BC(15-0) – 1
HL ← HL – 2
end

This instruction is used for block input of strings of data. The string of input data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transaction the
32-bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. First the word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
Then the BC register, used as a counter, is decremented by one. The HL register is then
decremented by two, thus moving the pointer to the next destination for the input. If the result
of decrementing the BC register is 0, the instruction is terminated, otherwise the sequence
is repeated. If the BC register contains 0 at the start of the execution of this instruction, 65536
bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

INDRW 11101101 11111010 n X (2+i+w)

5-76

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

INI
INPUT AND INCREMENT (BYTE)

INI

Operation: (HL) ← (C)
B ← B – 1
HL ← HL + 1

This instruction is used for block input of strings of data. During the I/O transaction the 32-
bit BC register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A15-A8 are not useable as part of a fixed port address.

First the byte of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the B register, used as a counter, is decremented by
one. The HL register is then incremented by one, thus moving the pointer to the next
destination for the input.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

INI 11101101 10100010 2+i+w

5-77

Z380™

USER'S MANUALZILOG

DC-8297-03

INIW
INPUT AND INCREMENT (WORD)

INIW

Operation: (HL) ← (DE)
BC(15-0) ← BC(15-0) – 1
HL ← HL + 2

This instruction is used for block input of strings of data.
During the I/O transaction the 32-bit DE register is placed on the address bus.

First the word of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the BC register, used as a counter, is decremented by
one. The HL register is then incremented by two, thus moving the pointer to the next
destination for the input.

Flags: S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

INIW 11101101 11100010 2+i+w

5-78

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

INIR
INPUT, INCREMENT AND REPEAT (BYTE)

INIR

Operation: repeat until (B=0) begin
(HL) ← (C)
B ← B – 1
HL ← HL + 1
end

This instruction is used for block input of strings of data. The string of input data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transaction the 32-bit
BC register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A(15-8) are not useable as part of a fixedport address.

First the byte of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the B register, used as a counter, is decremented by
one. The HL register is then incremented by one, thus moving the pointer to the next
destination for the input. If the result of decrementing the B register is 0, the instruction is
terminated, otherwise the sequence is repeated. If the B register contains 0 at the start of
the execution of this instruction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

INIR 11101101 10110010 n X (2+i+w)

5-79

Z380™

USER'S MANUALZILOG

DC-8297-03

INIRW
INPUT, INCREMENT AND REPEAT (WORD)

INIRW

Operation: repeat until (BC=0) begin
(HL) ← (DE)
BC(15-0) ← BC(15-0) – 1
HL ← HL + 2
end

This instruction is used for block input of strings of data. The string of input data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transaction the 32-bit
DE register is placed on the address bus.

First the word of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the BC register, used as a counter, is decremented by
one. The HL register is then incremented by two, thus moving the pointer to the next
destination for the input. If the result of decrementing the BC register is 0, the instruction is
terminated, otherwise the sequence is repeated. If the BC register contains 0 at the start of
the execution of this instruction, 65536 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

INIRW 11101101 11110010 n X (2+i+w)

5-80

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

JP
JUMP

JP [cc,]dst dst = IR, DA

Operation: if (cc is TRUE) then begin
if (XM) then begin

PC(31-0) ← dst(31-0)
end

else begin
PC(15-0) ← dst(15-0)
end

end

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an unconditional
jump always transfers control to the destination address. If the jump is taken, the Program
Counter (PC) is loaded with the destination address; otherwise the instruction following the
Jump instruction is executed.

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a jump
performed conditionally on the setting of the flag.

When using DA mode with the JP instruction, the operand is not enclosed in parentheses.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
IR: JP (HL) 11101001 2 X

JP (XY) 11y11101 11101001 2 X
DA: JP CC,addr 11-cc010 -a(low)- -a(high) 2 I, X

JP addr 11000011 -a(low)- -a(high) 2 I, X

Field Encodings: y: 0 for IX, 1 for IY
cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO/NV, 101 for PE/V, 110 for
P/NS,111 for M/S

5-81

Z380™

USER'S MANUALZILOG

DC-8297-03

JR
JUMP RELATIVE

JR [cc,]dst dst = RA

Operation: if (cc is TRUE) then begin
dst ← SIGN EXTEND dst
if (XM) then begin

PC(31-0) ← PC(31-0) + dst(31-0)
end

else begin
PC(15-0) ← PC(15-0) + dst(15-0)
end

end

A conditional Jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an unconditional
Jump always transfers control to the destination address. Either the Zero or Carry flag can
be tested for the conditional Jump. If the jump is taken, the Program Counter (PC) is loaded
with the destination address; otherwise the instruction following the Jump Relative instruc-
tion is executed.

The destination address is calculated using relative addressing. The displacement in the
instruction is added to the PC value for the instruction following the JR instruction, not the
value of the PC for the JR instruction.

These instructions employ either an 8-bit, 16-bit, or 24-bit signed, two’s complement
displacement from the PC to permit jumps within a range of –126 to +129 bytes, –32,765 to
+32,770 bytes, or –8,388,604 to +8,388,611 bytes from the location of this instruction.

Flags : S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
RA: JR CC,addr 001cc000 —disp— 2 X

JR addr 00011000 —disp— 2 X
JR CC,addr 11011101 001cc000 -d(low)- -d(high) 2 X
JR addr 11011101 00011000 -d(low)- -d(high) 2 X
JR CC,addr 11111101 001cc000 -d(low)- -d(mid)- -d(high) 2 X
JR addr 11111101 00011000 -d(low)- -d(mid)- -d(high) 2 X

Field Encodings: cc: 00 for NZ, 01 for Z, 10 for NC, 11 for C

5-82

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LD
LOAD ACCUMULATOR

LD dst,src dst = A
src = R, RX, IM, IR, DA, X

or
dst = R, RX, IR, DA, X
src = A

Operation: dst ← src

The contents of the source are loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load into Accunulator
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD A,R 01111-r- 2
RX: LD A,RX 11y11101 0111110w 2
IM: LD A,n 00111110 ——n— 2
IR: LD A,(HL) 01111110 2+r

LD A,(IR) 000a1010 2+r
DA: LD A,(nn) 00111010 -n(low)- -n(high) 3+r I
X: LD A,(XY+d) 11y11101 01111110 ——d— 4+r I

Load from Accunulator
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD Rd,A 01-r-111 2
RX: LD RX,A 11y11101 0110w111 2
IR: LD (HL),A 01110111 3+w

LD (IR),A 000a0010 3+w
DA: LD (nn),A 00110010 -n(low)- -n(high) 4+w I
X: LD (XY+d),A 11y11101 01110111 ——d— 5+w I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte
a: 0 for BC, 1 for DE

5-83

Z380™

USER'S MANUALZILOG

DC-8297-03

LD
LOAD IMMEDIATE (BYTE)

LD dst,n dst = R, RX, IR, X

Operation: dst ← n

The byte of immediate data is loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD R,n 00-r-110 ——n— 2
RX: LD RX,n 11y11101 0010w110 ——n— 2
IR: LD (HL),n 00110110 ——n— 3+w
X: LD (XY+d),n 11y11101 00110110 ——d— ——n— 5+w I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-84

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LD
LOAD IMMEDIATE (WORD)

LD dst,nn dst = R, RX

Operation: if (LW) then begin
dst(31-0) ← nn
end

else begin
dst(15-0) ← nn
end

The word of immediate data is loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD R,nn 00rr0001 -n(low)- -n(high) 2 I, L
RX: LD RX,nn 11y11101 00100001 -n(low)- -n(high) 2 I, L

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL
y: 0 for IX, 1 for IY

5-85

Z380™

USER'S MANUALZILOG

DC-8297-03

LDW
LOAD IMMEDIATE (WORD)

LDW dst,nn dst = IR

Operation: if (LW) then begin
dst(31-0) ← nn
end

else begin
dst(15-0) ← nn

end

The word of immediate data is loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
IR: LDW (IR),nn 11101101 00pp0110 -n(low)- -n(high) 3+w I, L

Field Encodings: pp: 00 for BC, 01 for DE, 11 for HL

5-86

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LD
LOAD REGISTER (BYTE)

LD dst,src dst = R
src = R, RX, IM, IR, X

or
dst = R, RX, IR, X
src = R

Operation: dst ← src

The contents of the source are loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load into Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD Rd,Rs 01-rd-rs 2
RX: LD Rd,RX 11y11101 01-ra10w 2

LD RXa,RXb 11y11101 0110a10b 2
IM: LD R,n 00-r-110 ——n— 2
IR: LD R,(HL) 01-r-110 5+w
X: LD R,(XY+d) 11y11101 01-r-110 ——d— 7+w I

Load from Register
Addressing Execute
Mode Syntax Instruction Format Time Note
RX: LD RX,Rs 11y11101 0110w-ra 2

LD RXa,RXb 11y11101 0110a10b 2
IR: LD (HL),R 01110-r- 3+w
X: LD (XY+d),R 11y11101 01110-r- ——d— 5+w I

Field Encodings: r: per convention
rd: per convention
rs: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte
ra: per convention, for A, B, C, D, E only
a: destination, 0 for high byte, 1 for low byte
b: source, 0 for high byte, 1 for low byte

5-87

Z380™

USER'S MANUALZILOG

DC-8297-03

LD[W]
LOAD REGISTER (WORD)

LD[W] dst,src dst = R
src = R, RX, IR, DA, X, SR

or
dst = R, RX, IR, DA, X, SR
src = R

Operation: if (LW) then begin
dst(31-0) ← src(31-0)
end

else begin
dst(15-0) ← src(15-0)
end

The contents of the source are loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load into Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD Rd,Rs 11rs1101 00rd0010 2 L
RX: LD R,RX 11y11101 00rr1011 2 L
IR: LD R,(IR) 11011101 00rr11ri 2+r L

LD RX,(IR) 11y11101 00ri0011 2+r L
DA: LD HL,(nn) 00101010 -n(low)- -n(high) 3+r I, L

LD R,(nn) 11101101 01ra1011 -n(low)- -n(high) 3+r I, L
LD RX,(nn) 11y11101 00101010 -n(low)- -n(high) 3+r I, L

X: LD R,(XY+d) 11y11101 11001011 ——d— 00rr0011 4+r I, L
LD IX,(IY+d) 11111101 11001011 ——d— 00100011 4+r I, L
LD IY,(IX+d) 11011101 11001011 ——d— 00100011 4+r I, L

SR: LD R,(SP+d) 11011101 11001011 ——d— 00rr0001 4+r I, L
LD RX,(SP+d) 11y11101 11001011 ——d— 00100001 4+r I, L

5-88

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LD[W]
LOAD REGISTER (WORD)

Load from Register
Addressing Execute
Mode Syntax Instruction Format Time Note
RX: LD RX,R 11y11101 00rr0111 2 L

LD IX,IY 11011101 00100111 2 L
LD IY,IX 11111101 00100111 2 L

IR: LD (IR),RR 11111101 00rr11ri 3+w L
LD (IR),RX 11y11101 00ri0001 3+w L

DA: LD (nn),HL 00100010 -n(low)- -n(high) 4+w I, L
LD (nn),R 11101101 01ra0011 -n(low)- -n(high) 4+w I, L
LD (nn),RX 11y11101 00100010 -n(low)- -n(high) 4+w I, L

X: LD (XY+d),R 11y11101 11001011 ——d— 00rr1011 5+w I, L
LD (IY+d),IX 11111101 11001011 ——d— 00101011 5+w I, L
LD (IX+d),IY 11011101 11001011 ——d— 00101011 5+w I, L

SR: LD (SP+d),R 11011101 11001011 ——d— 00rr1001 5+w I, L
LD (SP+d),XY 11y11101 11001011 ——d— 00101001 5+w I, L

Field Encodings: rs: 01 for DE, 10 for BC, 11 for HL
rd: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY
rr: 00 for BC, 01 for DE, 11 for HL
ri: 00 for BC, 01 for DE, 11 for HL
ra: 00 for BC, 01 for DE, 10 for HL

5-89

Z380™

USER'S MANUALZILOG

DC-8297-03

LD
LOAD STACK POINTER

LD dst,src dst = SP
src = R, RX, IM, DA

or
dst = DA
src = SP

Operation: if (LW) then begin
dst(31-0) ← src(31-0)
end

else begin
dst(15-0) ← src(15-0)
end

The contents of the source are loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load into Stack Pointer
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD SP,HL 11111001 2 L
RX: LD SP,RX 11y11101 11111001 2 L
IM: LD SP,nn 00110001 -n(low)- -n(high) 2 I, L
DA: LD SP,(nn) 11101101 01111011 -n(low)- -n(high) 3+r I, L

Field Encodings: y: 0 for IX, 1 for IY

Load from Stack Pointer
Addressing Execute
Mode Syntax Instruction Format Time Note
DA: LD (nn),SP 11101101 01110011 -n(low)- -n(high) 4+w I, L

5-90

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LD
LOAD FROM I OR R REGISTER (BYTE)

LD dst,src dst = A
src = I, R

Operation: dst ← src

The contents of the source are loaded into the accumulator. The contents of the source are
not affected. The Sign and Zero flags are set according to the value of the data transferred;
the Overflow flag is set according to the state of the interrupt enable. Note that if an interrupt
occurs during execution of either of these instructions the Overflow flag reflects the prior
state of the interrupt enable. Also note that the R register does not contain the refresh
address and is not modified by refresh transactions.

Flags: S: Set if the data loaded into the accumulator is negative; cleared otherwise
Z: Set if the data loaded into the accumulator is zero; cleared otherwise
H: Cleared
V: Set when loading the accumulator if interrupts are enabled; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

LD A,I 11101101 01010111 2
LD A,R 11101101 01011111 2

5-91

Z380™

USER'S MANUALZILOG

DC-8297-03

LD
LOAD INTO I OR R REGISTER (BYTE)

LD dst,src dst = I, R
src = A

Operation: dst ← src

The contents of the accumulator are loaded into the destination. Note that the R register does
not contain the refresh address and is not modified by refresh transactions.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD I,A 11101101 01000111 2

LD R,A 11101101 01001111 2

5-92

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LD[W]
LOAD I REGISTER (WORD)

LD[W] dst,src dst = HL
src = I
 OR
dst = I
src = HL

Operation: if (LW) then begin
dst(31-0) ← src(31-0)
end

else begin
dst(15-0) ← src(15-0)
end

The contents of the source are loaded into the destination

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load from I Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD[W] HL,I 11011101 01010111 2 L

Load into I Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD[W] I,HL 11011101 01000111 2 L

5-93

Z380™

USER'S MANUALZILOG

DC-8297-03

LDCTL
LOAD CONTROL REGISTER (BYTE)

LDCTL dst,src dst = DSR, XSR, YSR
src = A, IM

or
dst = A
src = DSR, XSR, YSR

or
dst = SR
src = A, IM

Operation: if (dst = SR) then begin
SR(31-24) ← src
SR(23-16) ← src
SR(15-8) ← src
end

else begin
dst ← src
end

The contents of the source are loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load into Control Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LDCTL SR,A 11011101 11001000 4

LDCTL Rd,A 11qq1101 11011000 4
IM: LDCTL SR,n 11011101 11001010 ——n— 4

LDCTL Rd,n 11qq1101 11011010 ——n— 4

Field Encodings: qq: 01 for XSR, 10 for DSR, 11 for YSR

Load from Control Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LDCTL A,Rs 11qq1101 11010000 2

Field Encodings: qq: 01 for XSR, 10 for DSR, 11 for YSR

5-94

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LDCTL
LOAD FROM CONTROL REGISTER (WORD)

LDCTL dst,src dst = HL
src = SR

Operation: if (LW) then begin
dst(31-0) ← src(31-0)
end

else begin
dst(15-0) ← src(15-0)
end

The contents of the Select Register (SR) are loaded into the HL register.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load from Control Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LDCTL HL,SR 11101101 11000000 2 L

5-95

Z380™

USER'S MANUALZILOG

DC-8297-03

LDCTL
LOAD INTO CONTROL REGISTER (WORD)

LDCTL dst,src dst = SR
src = HL

Operation: if (LW) then begin
dst(31-16) ← HL(31-16)
end

else begin
dst(31-24) ← HL(15-8)
dst(23-16) ← HL(15-8)
end

dst(15-8) ← HL(15-8)
dst(0) ← HL(0)

The contents of the HL register are loaded into the Select Register (SR). If Long Word mode
is not in effect the upper byte of the HL register is copied into the three most significant bytes
of the select register. This instruction does not modify the mode bits in the SR. There are
dedicated instructions to modify the mode bits.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load from Control Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LDCTL SR,HL 11101101 11001000 4 L

5-96

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LDD
LOAD AND DECREMENT (BYTE)

LDD

Operation: (DE) ← (HL)
DE ← DE – 1
HL ← HL – 1
BC(15-0) ← BC(15-0) – 1

This instruction is used for block transfers of strings of data. The byte of data at the location
addressed by the HL register is loaded into the location addressed by the DE register. Both
the DE and HL registers are then decremented by one, thus moving the pointers to the
preceeding elements in the string. The BC register, used as a counter, is then decremented
by one.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

LDD 11101101 10101000 3+r+w

5-97

Z380™

USER'S MANUALZILOG

DC-8297-03

LDDW
LOAD AND DECREMENT (WORD)

LDDW

Operation: if (LW) then begin
(DE) ← (HL)
(DE+1) ← (HL+1)
(DE+2) ← (HL+2)
(DE+3) ← (HL+3)
DE ← DE – 4
HL ← HL – 4
BC(15-0) ← BC(15-0) – 4
end

else begin
(DE) ← (HL)
(DE+1) ← (HL+1)
DE ← DE – 2
HL ← HL – 2
BC(15-0) ← BC(15-0) – 2
end

This instruction is used for block transfers of words of data. The word of data at the location
addressed by the HL register is loaded into the location addressed by the DE register. Both
the DE and HL registers are then decremented by two or four, thus moving the pointers to
the preceeding words in the array. The BC register, used as a byte counter, is then
decremented by two or four.

Both DE and HL should be even, to allow word transfers on the bus. BC must be even,
transferring an even number of bytes, or the operation is undefined.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

LDDW 11101101 11101000 3+r+w L

5-98

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LDDR
LOAD, DECREMENT AND REPEAT (BYTE)

LDDR

Operation: repeat until BC=0 begin
(DE) ← (HL)
DE ← DE – 1
HL ← HL – 1
BC(15-0) ← BC(15-0) – 1
end

This instruction is used for block transfers of strings of data. The bytes of data at the location
addressed by the HL register are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC register.
If the BC register contains zero when this instruction is executed, 65,536 bytes are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is
accepted,so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

LDDR 11101101 10111000 n X (3+r+w)

5-99

Z380™

USER'S MANUALZILOG

DC-8297-03

LDDRW
LOAD, DECREMENT AND REPEAT (WORD)

LDDRW

Operation: repeat until (BC=0) begin
if (LW) then begin

(DE) ← (HL)
(DE+1) ← (HL+1)
(DE+2) ← (HL+2)
(DE+3) ← (HL+3)
DE ← DE – 4
HL ← HL – 4
BC(15-0) ← BC(15-0) – 4
end

else begin
(DE) ← (HL)
(DE+1) ← (HL+1)
DE ← DE – 2
HL ← HL – 2
BC(15-0) ← BC(15-0) – 2
end

end

This instruction is used for block transfers of strings of data. The words of data at the location
addressed by the HL register are loaded into memory starting at the location addressed by
the DE register. The number of words moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 words are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is
accepted,so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

LDDRW 11101101 11111000 nX(3+r+w) L

5-100

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LDI
LOAD AND INCREMENT (BYTE)

LDI

Operation: (DE) ← (HL)
DE ← DE + 1
HL ← HL + 1
BC(15-0) ← BC(15-0) – 1

This instruction is used for block transfers of strings of data. The byte of data at the location
addressed by the HL register is loaded into the location addressed by the DE register. Both
the DE and HL registers are then incremented by one, thus moving the pointers to the next
elements in the string. The BC register, used as a counter, is then decremented by one.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

LDI 11101101 10100000 3+r+w

5-101

Z380™

USER'S MANUALZILOG

DC-8297-03

LDIW
LOAD AND INCREMENT (WORD)

LDIW

Operation: if (LW) then begin
(DE) ← (HL)
(DE+1) ← (HL+1)
(DE+2) ← (HL+2)
(DE+3) ← (HL+3)
DE ← DE + 4
HL ← HL + 4
BC(15-0) ← BC(15-0) – 4
end

else begin
(DE) ← (HL)
(DE+1) ← (HL+1)
DE ← DE + 2
HL ← HL + 2
BC(15-0) ← BC(15-0) – 2
end

This instruction is used for block transfers of words of data. The word of data at the location
addressed by the HL register is loaded into the location addressed by the DE register. Both
the DE and HL registers are then incremented by two or four, thus moving the pointers to
the succeeding words in the array. The BC register, used as a byte counter, is then
decremented by two or four.

Both DE and HL should be even, to allow word transfers on the bus. BC must be even,
transferring an even number of bytes, or the operation is undefined.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

LDIW 11101101 11100000 3+r+w L

5-102

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

LDIR
LOAD, INCREMENT AND REPEAT (BYTE)

LDIR

Operation: repeat until (BC=0) begin
(DE) ← (HL)
DE ← DE + 1
HL ← HL + 1
BC(15-0) ← BC(15-0) – 1
end

This instruction is used for block transfers of strings of data. The bytes of data at the location
addressed by the HL register are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC register.
If the BC register contains zero when this instruction is executed, 65,536 bytes are
transferred. The effect of incrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is
accepted,so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

LDIR 11101101 10110000 3+r+w

5-103

Z380™

USER'S MANUALZILOG

DC-8297-03

LDIRW
LOAD, INCREMENT AND REPEAT (WORD)

LDIRW

Operation: repeat until (BC=0) begin
if (LW) then begin

(DE) ← (HL)
(DE+1) ← (HL+1)
(DE+2) ← (HL+2)
(DE+3) ← (HL+3)
DE ← DE + 4
HL ← HL + 4
BC(15-0) ← BC(15-0) – 4
end

else begin
(DE) ← (HL)
(DE+1) ← (HL+1)
DE ← DE + 2
HL ← HL + 2
BC(15-0) ← BC(15-0) – 2
end

end

This instruction is used for block transfers of strings of data. The words of data at the location
addressed by the HL register are loaded into memory starting at the location addressed by
the DE register. The number of words moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 words are
transferred. The effect of incrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is save before the interrupt request is
accepted,so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

LDIRW 11101101 11110000 (3+r+w)n L

5-104

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

MLT
MULTIPLY UNSIGNED (BYTE)

MLT R src = R

Operation: R(15-0) ← R(7-0) x R(15-8)

The contents of the upper byte of the source register are multiplied by the contents of the
lower byte of the source register and the product is stored in the source register. Both
operands. Both operands are treated as unsigned, binary integers.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: MLT R 11101101 01rr1100 7

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

5-105

Z380™

USER'S MANUALZILOG

DC-8297-03

MTEST
MODE TEST

MTEST

Operation: S ← SR(7)
Z ← SR(6)
C ← SR(1)

The three mode control bits in the Select Register (SR) are transferred to the flags. This
allows the program to determine the state of the machine.

Flags: S: Set if Extended mode is in effect; cleared otherwise
Z: Set if Long word mode is in effect; cleared otherwise
H: Unaffected
V: Unaffected
N: Unaffected
C: Set if Lock mode is in effect; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note

MTEST 11011101 11001111 2

5-106

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

MULTW
MULTIPLY (WORD)

MULTW [HL,]src src = R, RX, IM, X

Operation: HL(31-0) ← HL(15-0) x src(15-0)

The contents of the HL register are multiplied by the source operand and the product is
stored in the HL register. The contents of the source are unaffected. Both operands are
treated as signed, two’s complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set to
indicate that the upper word of the HL register is required to represent the result; if the Carry
flag is cleared, the product can be correctly represented in 16 bits and the upper word of
the HL register merely holds sign-extension data.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is less than –32768 or greater than or equal to 32768; cleared

otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: MULTW [HL,]R 11101101 11001011 100100rr 10
RX: MULTW [HL,]RX 11101101 11001011 1001010y 10
IM: MULTW [HL,]nn 11101101 11001011 10010111 -n(low)- -n(high) 10
X: MULTW [HL,](XY+d) 11y11101 11001011 ——d— 10010010 12+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-107

Z380™

USER'S MANUALZILOG

DC-8297-03

MULTUW
MULTIPLY UNSIGNED (WORD)

MULTUW [HL,]src src = R, RX, IM, X

Operation: HL(31-0) ← HL(15-0) x src(15-0)

The contents of the HL register are multiplied by the source operand and the product is
stored in the HL register. The contents of the source are unaffected. Both operands are
treated as unsigned, binary integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set to
indicate that the upper word of the HL register is required to represent the result; if the Carry
flag is cleared, the product can be correctly represented in 16 bits and the upper word of
the HL register merely holds zero.

Flags: S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is greater than or equal to 65536; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: MULTUW [HL,]R 11101101 11001011 100110rr 11
RX: MULTUW [HL,]RX 11101101 11001011 1001110y 11
IM: MULTUW [HL,]nn 11101101 11001011 10011111 -n(low)- -n(high) 11
X: MULTUW [HL,](XY+d) 11y11101 11001011 ——d— 10011010 13+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-108

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

NEG
NEGATE ACCUMULATOR

NEG [A]

Operation: A ← -A

The contents of the accumulator are negated, that is replaced by its two’s complement
value. Note that 80h is replaced by itself, because in two’s complement representation the
negative number with the greatest magnitude has no positive counterpart; for this case, the
Overflow flag is set to 1.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the content of the accumulator was 80h before the operation; cleared otherwise
N: Set
C: Set if the content of the accumulator was not 00h before the operation; cleared if the

content of the accumulator was 00h

Addressing Execute
Mode Syntax Instruction Format Time Note

NEG [A] 11101101 01000100 2

5-109

Z380™

USER'S MANUALZILOG

DC-8297-03

NEGW
NEGATE HL REGISTER (WORD)

NEGW [HL]

Operation: HL(15-0) ← -HL(15-0)

The contents of the HL register are negated, that is replaced by its two’s complement value.
Note that 8000h is, replaced by itself, because in two’s complement representation the
negative number with the greatest magnitude has no positive counterpart; for this case, the
Overflow flag is set to 1.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the content of the HL register was 8000h before the operation; cleared otherwise
N: Set
C: Set if the content of the HL register was not 0000h before the operation; cleared if the

content of the HL register was 0000h

Addressing Execute
Mode Syntax Instruction Format Time Note

NEGW [HL] 11101101 01010100 2

5-110

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

NOP
NO OPERATION

NOP

Operation: None

No operation.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

NOP 00000000 2

5-111

Z380™

USER'S MANUALZILOG

DC-8297-03

OR
OR (BYTE)

OR [A,]src src = R, RX, IM, IR, X

Operation: A ← A OR src

A logical OR operation is performed between the corresponding bits of the source operand
and the accumulator and the result is stored in the accumulator. A 1 bit is stored wherever
either of the corresponding bits in the two operands is 1; otherwise a 0 bit is stored. The
contents of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Addressing Execute
Mode Syntax Instruction Format Time Note
R: OR [A,]R 10110-r- 2
RX: OR [A,]RX 11y11101 1011010w 2
IM: OR [A,]n 11110110 ——n— 2
IR: OR [A,](HL) 10110110 2+r
X: OR [A,](XY+d) 11y11101 10110110 ——d— 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-112

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

ORW
OR (WORD)

ORW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) ← HL(15-0) OR src(15-0)

A logical OR operation is performed between the corresponding bits of the source operand
and the HL register and the result is stored in the HL register. A 1 bit is stored wherever either
of the corresponding bits in the two operands is 1; otherwise a 0 bit is stored. The contents
of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Addressing Execute
Mode Syntax Instruction Format Time Note
R: ORW [HL,]R 11101101 101101rr 2
RX: ORW [HL,]RX 11y11101 10110111 2
IM: ORW [HL,]nn 11101101 10110110 -n(low) -n(high)- 2+r
X: ORW [HL,](XY+d) 11y11101 11110110 ——d— 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-113

Z380™

USER'S MANUALZILOG

DC-8297-03

OTDM
OUTPUT DECREMENT MEMORY

OTDM

Operation: (C) ← (HL)
C ← C – 1
B ← B – 1
HL ← HL – 1

This instruction is used for block output of strings of data to on-chip peripherals. No external
I/O transaction will be generated as a result of this instruction, although the I/O address will
appear on the address bus and the write data will appear on the data bus while this internal
write is occurring. The peripheral address is placed on the low byte of the address bus and
zeros are placed on all other address lines. The byte of data from the memory location
addressed by the HL register is loaded to the on-chip I/O port addressed by the C register.
The C register, holding the port address, is decremented by one to select the next output
port. The B register, used as a counter, is then decremented by one. The HL register is then
decremented by one, thus moving the pointer to the next source for the output.

Flags: S: Set if the result of decrementing B is negative; cleared otherwise
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Set if there is a borrow from bit 4 during the decrement of the B register; cleared

otherwise
P: Set if the result of the decrement of the B register is even; cleared otherwise
N: Set if the most significant bit of the byte transferred was a 1; cleared otherwsie
C: Set if there is a borrow from the most significant bit during the decrement of the B

register; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note

OTDM 11101101 10001011 2+r+o

5-114

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

OTDMR
OUTPUT, DECREMENT MEMORY REPEAT

OTDMR

Operation: repeat until (B=0) begin
(C) ← (HL)
C ← C – 1
B ← B – 1
HL ← HL – 1
end

This instruction is used for block output of strings of data to on-chip peripherals. No external
I/O transaction will be generated as a result of this instruction, although the I/O address will
appear on the address bus and the write data will appear on the data bus while this internal
write is occurring. The peripheral address is placed on the low byte of the address bus and
zeros are placed on all other address lines. The byte of data from the memory location
addressed by the HL register is loaded to the on-chip I/O port addressed by the C register.
The C register, holding the port address, is decremented by one to select the next output
port. The B register, used as a counter, is then decremented by one. The HL register is then
decremented by one, thus moving the pointer to the next source for the output. If the result
of decrementing the B register is 0, the instruction is terminated, otherwise the output
sequence is repeated. Note that if the B register contains 0 at the start of the execution of
this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Cleared
Z: Set
H: Cleared
P: Set
N: Set if the most significant bit of the byte transferred was a 1; cleared otherwise
C: Cleared

Addressing Execute
Mode Syntax Instruction Format Time Note

OTDMR 11101101 10011011 2+r+o

5-115

Z380™

USER'S MANUALZILOG

DC-8297-03

OTDR
OUTPUT, DECREMENT AND REPEAT (BYTE)

OTDR

Operation: repeat until (B=0) begin
B ← B – 1
(C) ← (HL)
HL ← HL – 1
end

This instruction is used for block output of strings of data. The string of output data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transaction the 32-
bit BC register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A(15-8) are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then decremented by one, thus moving the pointer to the next source for the
output. If the result of decrementing the B register is 0, the instruction is terminated,
otherwise the sequence is repeated. If the B register contains 0 at the start of the execution
of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OTDR 11101101 10111011 2+r+o

5-116

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

OTDRW
OUTPUT, DECREMENT AND REPEAT (WORD)

OTDRW

Operation: repeat until (BC=0) begin
BC(15-0) ← BC(15-0) – 1
(DE) ← (HL)
HL ← HL – 2
end

This instruction is used for block output of strings of data. The string of output data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transaction the 32-
bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then decremented by two, thus moving the pointer to the next source for the
output. If the result of decrementing the BC register is 0, the instruction is terminated,
otherwise the sequence is repeated. If the BC register contains 0 at the start of the execution
of this instruction, 65536 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OTDRW 11101101 11111011 2+r+o

5-117

Z380™

USER'S MANUALZILOG

DC-8297-03

OTIM
OUTPUT INCREMENT MEMORY

OTIM

Operation: (C) ← (HL)
C ← C + 1
B ← B – 1
HL ← HL + 1

This instruction is used for block output of strings of data to on-chip peripherals. No external
I/O transaction will be generated as a result of this instruction, although the I/O address will
appear on the address bus and the write data will appear on the data bus while this internal
write is occurring. The peripheral address is placed on the low byte of the address bus and
zeros are placed on all other address lines. The byte of data from the memory location
addressed by the HL register is loaded to the on-chip I/O port addressed by the C register.
The C register, holding the port address, is incremented by one to select the next output port.
The B register, used as a counter, is then decremented by one. The HL register is then
incremented by one, thus moving the pointer to the next source for the output.

Flags: S: Set if the result of decrementing B is negative; cleared otherwise
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Set if there is a borrow from bit 4 during the decrement of the B register; cleared

otherwise
P: Set if the result of the decrement of the B register is even; cleared otherwise
N: Set if the most significant bit of the byte transferred was a 1; cleared otherwise
C: Set if there is a borrow from the most significant bit during the decrement of the B

register; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note

OTIM 11101101 10000011 2+r+o

5-118

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

OTIMR
OUTPUT, INCREMENT MEMORY REPEAT

OTIMR

Operation: repeat until (B=0) begin
(C) ← (HL)
C ← C + 1
B ← B – 1
HL ← HL + 1
end

This instruction is used for block output of strings of data to on-chip peripherals. No external
I/O transaction will be generated as a result of this instruction, although the I/O address will
appear on the address bus and the write data will appear on the data bus while this internal
write is occurring. The peripheral address is placed on the low byte of the address bus and
zeros are placed on all other address lines. The byte of data from the memory location
addressed by the HL register is loaded to the on-chip I/O port addressed by the C register.
The C register, holding the port address, is incremented by one to select the next output port.
The B register, used as a counter, is then decremented by one. The HL register is then
incremented by one, thus moving the pointer to the next source for the output. If the result
of decrementing the B register is 0, the instruction is terminated, otherwise the output
sequence is repeated. Note that if the B register contains 0 at the start of the execution of
this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Cleared
Z: Set
H: Cleared
P: Set
N: Set if the most significant bit of the byte transferred was a 1; cleared otherwsie
C: Cleared

Addressing Execute
Mode Syntax Instruction Format Time Note

OTIMR 11101101 10010011 2+r+o

5-119

Z380™

USER'S MANUALZILOG

DC-8297-03

OTIR
OUTPUT, INCREMENT AND REPEAT (BYTE)

OTIR

Operation: repeat until (B=0) begin
B ← B – 1
(C) ← (HL)
HL ← HL + 1
end

This instruction is used for block output of strings of data. The string of output data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transaction the 32-bit
BC register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A(15-8) are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then incremented by one, thus moving the pointer to the next source for the
output. If the result of decrementing the B register is 0, the instruction is terminated,
otherwise the sequence is repeated. If the B register contains 0 at the start of the execution
of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OTIR 11101101 10110011 2+r+o

5-120

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

OTIRW
OUTPUT, INCREMENT AND REPEAT (WORD)

OTIRW

Operation: repeat until (BC=0) begin
BC(15-0) ← BC(15-0) – 1
(DE) ← (HL)
HL ← HL + 2
end

This instruction is used for block output of strings of data. The string of output data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transaction the 32-bit
DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then incremented by two, thus moving the pointer to the next source for the
output. If the result of decrementing the BC register is 0, the instruction is terminated,
otherwise the sequence is repeated. If the BC register contains 0 at the start of the execution
of this instruction, 65536 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OTIRW 11101101 11110011 2+r+o

5-121

Z380™

USER'S MANUALZILOG

DC-8297-03

OUT
OUTPUT (BYTE)

OUT (C),src src = R, IM

Operation: (C) ← src

The byte of data from the source is loaded into the selected peripheral. During the I/O
transaction, the contents of the 32-bit BC register are placed on the address bus.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: OUT (C),R 11101101 01 -r- 001 3+o
IM: OUT (C),n 11101101 01110001 —n— 3+o

Field Encodings: r: per convention

5-122

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

OUTW
OUTPUT (WORD)

OUTW (C),src src = R, IM

Operation: (C) ← src(15-0)

The word of data from the source is loaded into the selected peripheral. During the I/O
transaction, the contents of the 32-bit BC register are placed on the address bus.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: OUTW (C),R 11011101 01rrr 001 2+o
IM: OUTW (C),nn 11111101 01111001 -n(low)- -n(high) 2+o

Field Encodings: rrr: 000 for BC, 010 for DE, 111 for HL

5-123

Z380™

USER'S MANUALZILOG

DC-8297-03

OUT
OUTPUT ACCUMULATOR

OUT (n),A

Operation: (n) ← A

The byte of data from the accumulator is loaded into the selected peripheral. During the
I/O transaction, the 8-bit peripheral address from the instruction is placed on the low byte
of the address bus, the contents of the accumulator are placed on address lines A(15-8),
and the high-order address lines are all zeros.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OUT (n),A 11010011 ——n— 3+o

5-124

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

OUT0
OUTPUT (TO PAGE 0)

OUT0 (n),src src = R

Operation: (n) ← src

The byte of data from the source register is loaded into the selected on-chip peripheral. No
external I/O transaction will be generated as a result of this instruction, although the I/O
address will appear on the address bus and the write data will appear on the data bus while
this internal write is occurring. The peripheral address is placed on the low byte of the
address bus and zeros are placed on all other address lines.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: OUT0 (n),R 11101101 00-r-001 ——n— 3+o

Field Encodings: r: per convention

5-125

Z380™

USER'S MANUALZILOG

DC-8297-03

OUTA
OUTPUT DIRECT TO PORT ADDRESS (BYTE)

OUT (nn),A

Operation: (nn) ← A

The byte of data from the accumulator is loaded into the selected peripheral. During the
I/O transaction, the peripheral address from the instruction is placed on the address bus.
Any bytes of address not specified in the instruction are driven on the address lines are all
zeros.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OUTA (nn),A 11101101 11010011 -n(low)- -n(high) 2+o I

5-126

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

OUTAW
OUTPUT DIRECT TO PORT ADDRESS (WORD)

OUT (nn),HL

Operation: (nn)← HL(15-0)

The word of data from the HL register is loaded into the selected peripheral. During the
I/O transaction, the peripheral address from the instruction is placed on the address bus.
Any bytes of address not specified in the instruction are driven on the address lines are all
zeros.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OUTAW (nn),HL 11111101 11010011 -n(low)- -n(high) 2+o I

5-127

Z380™

USER'S MANUALZILOG

DC-8297-03

OUTD
OUTPUT AND DECREMENT (BYTE)

OUTD

Operation: B ← B - 1
(C) ← (HL)
HL ← HL - 1

This instruction is used for block output of strings of data. During the I/O transaction the
32-bit BC register is placed on the address bus. Note that the B register contains the loop
count for this instruction so that A15-A8 are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then decremented by one, thus moving the pointer to the next source for the
output.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OUTD 11101101 10101011 2+r+o

5-128

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

OUTDW
OUTPUT AND DECREMENT (WORD)

OUTDW

Operation: BC(15-0) ← BC(15-0) - 1
(DE) ← (HL)
HL ← HL - 2

This instruction is used for block output of strings of data. During the I/O transaction the 32-
bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then decremented by two, thus moving the pointer to the next source for the
output.

Flags: S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OUTDW 11101101 11101011 2+r+o

5-129

Z380™

USER'S MANUALZILOG

DC-8297-03

OUTI
OUTPUT AND INCREMENT (BYTE)

OUTI

Operation: B ← B - 1
(C) ← (HL)
HL ← HL + 1

This instruction is used for block output of strings of data. During the I/O transaction the 32-
bit BC register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A15-A8 are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then incremented by one, thus moving the pointer to the next source for the
output.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OUTI 11101101 10100011 2+r+o

5-130

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

OUTIW
OUTPUT AND INCREMENT (WORD)

OUTIW

Operation: BC(15-0) ← BC(15-0) –1
(DE) ← (HL)
HL ← HL + 2

This instruction is used for block output of strings of data. During the I/O transaction the 32-
bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then incremented by two, thus moving the pointer to the next source for the
output.

Flags: S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

OUTIW 11101101 11100011 2+r+o

5-131

Z380™

USER'S MANUALZILOG

DC-8297-03

POP
POP ACCUMULATOR

POP dst dst = AF

Operation: F ← (SP)
A ← (SP+1)
SP ← SP + 2
if (LW) then begin

SP ← SP + 2
end

The contents of the memory location addressed by the Stack Pointer (SP) are loaded into
the destination in ascending byte order from ascending address memory locations. For this
instruction, the Flag register is the least significant byte, followed by the Accumulator. The
SP is then incremented by two (by four in the Long Word mode). Note that in the Long Word
mode only one word is read from memory, although the SP is in fact incremented by four.

Flags: S: Loaded from (SP)
Z: Loaded from (SP)
H: Loaded from (SP)
V: Loaded from (SP)
N: Loaded from (SP)
C: Loaded from (SP)

Addressing Execute
Mode Syntax Instruction Format Time Note

POP AF 11110001 2+r L

5-132

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

POP
POP CONTROL REGISTER

POP dst dst = SR

Operation: if (LW) then begin
dst(6-0) ← (SP)
dst(15-8) ← (SP+1)
dst(23-16) ← (SP+2)
dst(31-24) ← (SP+3)
SP ← SP + 4
end

else begin
dst(6-0) ← (SP)
dst(15-8) ← (SP+1)
dst(23-16) ← (SP+1)
dst(31-24) ← (SP+1)
SP ← SP + 2
end

The contents of the memory location addressed by the Stack Pointer (SP) are loaded into
the destination in ascending byte order from ascending address memory locations. The SP
is then incremented by two (by four in the Long Word mode). Note that when not in the Long
Word mode the most significant byte read from memory is also written to the two most
significant bytes of the SR. Also note that the XM bit is unaffected by this instruction.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

POP SR 11101101 11000001 3+r L

5-133

Z380™

USER'S MANUALZILOG

DC-8297-03

POP
POP REGISTER

POP dst dst = R, RX

Operation: if (LW) then begin
dst(7-0) ← (SP)
dst(15-8) ← (SP+1)
dst(23-16) ← (SP+2)
dst(31-24) ← (SP+3)
SP ← SP + 4
end

else begin
dst(7-0) ← (SP)
dst(15-8) ← (SP+1)
SP ← SP + 2
end

The contents of the memory location addressed by the Stack Pointer (SP) are loaded into
the destination in ascending byte order from ascending address memory locations. The SP
is then incremented by two (by four in the Long Word mode).

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: POP R 11rr 0001 1+r L
RX: POP RX 11y11101 11100001 1+r L

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL
y: 0 for IX, 1 for IY

5-134

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

PUSH
PUSH ACCUMULATOR

PUSH src src = AF

Operation: if (LW) then begin
SP ← SP - 4
(SP) ← F
(SP+1) ← A
(SP+2) ← 00h
(SP+3) ← 00h
end

else begin
SP ← SP - 2
(SP) ← F
(SP+1) ← A
end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source
is loaded into the memory locations addressed by the SP in ascending byte order in
ascending address memory locations. For this instruction, the Flag register is the least
significant byte, followed by the Accumulator. The other two bytes written in the Long Word
mode are all zeros. The Flag register and Accumulator are unaffected.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

PUSH AF 11110101 3+w L

5-135

Z380™

USER'S MANUALZILOG

DC-8297-03

PUSH
PUSH CONTROL REGISTER

PUSH src src = SR

Operation: if (LW) then begin
SP ← SP - 4
(SP) ← src(7-0)
(SP+1) ← src(15-8)
(SP+2) ← src(23-16)
(SP+3) ← src(31-24)
end

else begin
SP ← SP - 2
(SP) ← src(7-0)
(SP+1) ← src(15-8)
end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source
is loaded into the memory locations addressed by the SP in ascending byte order in
ascending address memory locations. The contents of the source are unaffected.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

PUSH SR 11101101 11000101 3+w L

5-136

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

PUSH
PUSH IMMEDIATE

PUSH src src = IM

Operation: if (LW) then begin
SP ← SP - 4
(SP) ← src(7-0)
(SP+1) ← src(15-8)
(SP+2) ← src(23-16)
(SP+3) ← src(31-24)
end

else begin
SP ← SP - 2
(SP) ← src(7-0)
(SP+1) ← src(15-8)
end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source
is loaded into the memory locations addressed by the SP in ascending byte order in
ascending address memory locations.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
IM: PUSH nn 11111101 11110101 -n(low)- -n(high) 3+w I, L

5-137

Z380™

USER'S MANUALZILOG

DC-8297-03

PUSH
PUSH REGISTER

PUSH src src = R, RX

Operation: if (LW) then begin
SP ← SP - 4
(SP) ← src(7-0)
(SP+1) ← src(15-8)
(SP+2) ← src(23-16)
(SP+3) ← src(31-24)
end

else begin
SP ← SP - 2
(SP) ← src(7-0)
(SP+1) ← src(15-8)
end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source
is loaded into the memory locations addressed by the SP in ascending byte order in
ascending address memory locations. The contents of the source are unaffected.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: PUSH R 11rr0101 3+w L
RX: PUSH RX 11y11101 11100101 3+w L

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL
y: 0 for IX, 1 for IY

5-138

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RES
RESET BIT

RES b, dst dst = R, IR, X

Operation: dst(b) ← 0

The specified bit b within the destination operand is cleared to 0. The other bits in the
destination are unaffected. The bit to be reset is specified by a 3-bit field in the instruction;
this field contains the binary encoding for the bit number to be cleared. The bit number b
must be between 0 and 7.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: RES b,R 11001011 10bbb -r- 2
IR: RES b,(HL) 11001011 10bbb110 2+r
X: RES b,(XY+d) 11y11101 11001011 ——d— 10bbb110 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-139

Z380™

USER'S MANUALZILOG

DC-8297-03

RESC
RESET CONTROL BIT

RESC mode mode = LCK, LW

Operation: if (mode = LCK) then begin
SR(1) ← 0
end

else begin
SR(6) ← 0
end

When reseting Lock mode (LCK), the LCK bit (bit 1) in the Select Register (SR) is set to 0,
enabling external bus requests. Note that these requests cannot be granted until after the
instruction has been executed, and that one or more of the succeeding instructions may also
have been fetched for decoding before this instruction has been executed.

When reseting Long Word mode (LW), the LW bit (bit 6) in the SR is set to 0, selecting 16-
bit words. When using 16-bit words, all word load operations transfer 16 bits.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

RESC mode 11mm1101 11111111 4

Field Encodings: mm: 01 for LW, 10 for LCK

5-140

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RET
RETURN

RET [cc]

Operation: if (cc is TRUE) then begin
if (XM) then begin

PC(7-0) ← (SP)
PC(15-8) ← (SP+1)
PC(23-16) ← (SP+2)
PC(31-24) ← (SP+3)
SP ← SP + 4
end

else begin
PC(7-0) ← (SP)
PC(15-8) ← (SP+1)
SP ← SP + 2
end

end

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a Call instruction. For a conditional return, one of the Zero, Carry, Sign,
or Parity/Overflow flags is checked to see if its setting matches the condition code “cc”
encoded in the instruction; if the condition is not satisfied, the instruction following the Return
instruction is executed, otherwise a value is popped from the stack and loaded into the
Program Counter (PC), thereby specifying the location of the next instruction to be executed.
For an unconditional return, the return is always taken and a condition code is not specified.

This instruction is also used to return to a previously executing procedure at the end of a
procedure entered by an interrupt in the assigned vectors mode, if Z80 family peripherals
are used external to the Z380 MPU.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

RET CC 11-cc000 note X
RET 11001001 2+r X

Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C,
100 for PO/NV, 101 for PE/V, 110 for P/NS, 111 for M/S

Note: 2 if CC is false, 2+r if CC is true

5-141

Z380™

USER'S MANUALZILOG

DC-8297-03

RETB
RETURN FROM BREAKPOINT

Operation: PC (31-0) ← SPC (31-0)

This instruction is used to return to a previously executing procedure at the end of a
breakpoint. The contents of the Shadow Program Counter (SPC), which holds the address
of the next instruction of the previously executing procedure, are loaded into the Program
Counter (PC).

Note that maskable interrupts (if IEF1 is set) and non-maskable interrupt are enabled after
the instruction following RETB is executed.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

RETB 11101101 01010101 2

5-142

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RETI
RETURN FROM INTERRUPT

RETI

Operation: if (XM) then begin
PC(7-0) ← (SP)
PC(15-8) ← (SP+1)
PC(23-16) ← (SP+2)
PC(31-24) ← (SP+3)
SP ← SP + 4
end

else begin
PC(7-0) ← (SP)
PC(15-8) ← (SP+1)
SP ← SP + 2
end

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by an interrupt. The contents of the location addressed by the Stack
Pointer (SP) are popped into the Program Counter (PC), thereby specifying the location of
the next instruction to be executed. A special sequence of bus transactions is performed
when this instruction is executed in order to control Z80 family peripherals; see the
description of the external interface for more details.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

RETI 11101101 01001101 2+r X

5-143

Z380™

USER'S MANUALZILOG

DC-8297-03

RETN
RETURN FROM NONMASKABLE INTERRUPT

RETN

Operation: if (XM) then begin
PC(7-0) ← (SP)
PC(15-8) ← (SP+1)
PC(23-16) ← (SP+2)
PC(31-24) ← (SP+3)
SP ← SP + 4
end

else begin
PC(7-0) ← (SP)
PC(15-8) ← (SP+1)
SP ← SP + 2
end

IEF1 ← IEF2

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a nonmaskable interrupt. The contents of the location addressed by
the Stack Pointer (SP) are popped into the Program Counter (PC), thereby specifying the
location of the next instruction to be executed. The previous setting of the interrupt enable
bit is restored by execution of this instruction.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

RETN 11101101 01000101 2+r X

5-144

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RL
ROTATE LEFT (BYTE)

RL dst dst = R, IR, X

Operation: tmp ← dst
dst(0) ← C
C ← dst(7)
dst(n+1) ← tmp(n) for n = 0 to 6

The contents of the destination operand are concatenated with the Carry flag and together
they are rotated left one bit position. Bit 7 of the destination operand is moved to the Carry
flag and the Carry flag is moved to bit 0 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: RL R 11001011 00010-r- 2
IR: RL (HL) 11001011 00010110 2+r
X: RL (XY+d) 11y11101 11001011 ——d— 00010110 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-145

Z380™

USER'S MANUALZILOG

DC-8297-03

RLW
ROTATE LEFT (WORD)

RLW dst dst = R, RX, IR, X

Operation: tmp ← dst
dst(0) ← C
C ← dst(15)
dst(n+1) ← tmp(n) for n = 0 to 14

The contents of the destination operand are concatenated with the Carry flag and together
they are rotated left one bit position. The most significant bit of the destination operand is
moved to the Carry flag and the Carry flag is moved to bit 0 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from the most significant bit was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: RLW R 11101101 11001011 000100rr 2
RX: RLW RX 11101101 11001011 0001010y 2
IR: RLW (HL) 11101101 11001011 00010010 2+r
X: RLW (XY+d) 11y11101 11001011 ——d— 00010010 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-146

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RLA
ROTATE LEFT (ACCUMULATOR)

RLA

Operation: tmp ← A
A(0) ← C
C ← A(7)
A(n+1) ← tmp(n) for n = 0 to 6

The contents of the accumulator are concatenated with the Carry flag and together they are
rotated left one bit position. Bit 7 of the accumulator is moved to the Carry flag and the Carry
flag is moved to bit 0 of the accumulator.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note

RLA 00010111 2

5-147

Z380™

USER'S MANUALZILOG

DC-8297-03

RLC
ROTATE LEFT CIRCULAR (BYTE)

RLC dst dst = R, IR, X

Operation: tmp ← dst
C ← dst(7)
dst(0) ← tmp(7)
dst(n+1) ← tmp(n) for n = 0 to 6

The contents of the destination operand are rotated left one bit position. Bit 7 of the
destination operand is moved to the bit 0 position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: RLC R 11001011 00000-r- 2
IR: RLC (HL) 11001011 00000110 2+r
X: RLC (XY+d) 11y11101 11001011 ——d— 00000110 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-148

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RLCW
ROTATE LEFT CIRCULAR (WORD)

RLCW dst dst = R, RX, IR, X

Operation: tmp ← dst
C ← dst(15)
dst(0) ← tmp(15)
dst(n+1) ← tmp(n) for n = 0 to 14

The contents of the destination operand are rotated left one bit position. The most significant
bit of the destination operand is moved to the bit 0 position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from the most significant bit was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: RLCW R 11101101 11001011 000000rr 2
RX: RLCW RX 11101101 11001011 0000010y 2
IR: RLCW (HL) 11101101 11001011 00000010 2+r
X: RLCW (XY+d) 11y11101 11001011 ——d— 00000010 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-149

Z380™

USER'S MANUALZILOG

DC-8297-03

RLCA
ROTATE LEFT CIRCULAR (ACCUMULATOR)

RLCA

Operation: tmp ← A
C ← A(7)
A(0) ← tmp(7)
A(n+1) ← tmp(n) for n = 0 to 6

The contents of the accumulator are rotated left one bit position. Bit 7 of the accumulator is
moved to the bit 0 position and also replaces the Carry flag.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note

RLCA 00000111 2

5-150

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RLD
ROTATE LEFT DIGIT

RLD

Operation: tmp(3-0) ← A(3-0)
A(3-0) ← dst(7-4)
dst(7-4) ← dst(3-0)
dst(3-0) ← tmp(3-0)

The low digit of the accumulator is logically concatenated to the destination byte whose
memory address is in the HL register. The resulting three-digit quantity is rotated to the left
by one BCD digit (four bits). The lower digit of the source is moved to the upper digit of the
source; the upper digit of the source is moved to the lower digit of the accumulator, and the
lower digit of the accumulator is moved to the lower digit of the source. The upper digit of
the accumulator is unaffected. In multiple-digit BCD arithmetic, this instruction can be used
to shift to the left a string of BCD digits, thus multiplying it by a power of ten. The accumulator
serves to transfer digits between successive bytes of the string. This is analogous to the use
of the Carry flag in multiple-precision shifting using the RL instruction.

Flags: S: Set if the accumulator is negative after the operation; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

RLD 11101101 01101111 3+r

5-151

Z380™

USER'S MANUALZILOG

DC-8297-03

RR
ROTATE RIGHT (BYTE)

RR dst dst = R, IR, X

Operation: tmp ← dst
dst(7) ← C
C ← dst(0)
dst(n) ← tmp(n+1) for n = 0 to 6

The contents of the destination operand are concatenated with the Carry flag and together
they are rotated right one bit position. Bit 0 of the destination operand is moved to the Carry
flag and the Carry flag is moved to bit 7 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: RR R 11001011 00011-r- 2
IR: RR (HL) 11001011 00011110 2+r
X: RR (XY+d) 11y11101 11001011 ——d— 00011110 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-152

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RRW
ROTATE RIGHT (WORD)

RRW dst dst = R, RX, IR, X

Operation: tmp ← dst
C ← dst(0)
dst(15) ← C
dst(n) ← tmp(n+1) for n = 0 to 14

The contents of the destination operand are concatenated with the Carry flag and together
they are rotated right one bit position. Bit 0 of the destination operand is moved to the Carry
flag and the Carry flag is moved to the most significant bit of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: RRW R 11101101 11001011 000110rr 2
RX: RRW RX 11101101 11001011 0001110y 2
IR: RRW (HL) 11101101 11001011 00011010 2+r
X: RRW (XY+d) 11y11101 11001011 ——d— 00011010 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-153

Z380™

USER'S MANUALZILOG

DC-8297-03

RRA
ROTATE RIGHT (ACCUMULATOR)

RRA

Operation: tmp ← A
A(7) ← C
C ← A(0)
A(n) ← tmp(n+1) for n = 0 to 6

The contents of the accumulator are concatenated with the Carry flag and together they are
rotated right one bit position. Bit 0 of the accumulator is moved to the Carry flag and the Carry
flag is moved to bit 7 of the accumulator.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note

RRA 00011111 2

5-154

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RRC
ROTATE RIGHT CIRCULAR (BYTE)

RRC dst dst = R, IR, X

Operation: tmp ← dst
C ← dst(0)
dst(7) ← tmp(0)
dst(n) ← tmp(n+1) for n = 0 to 6

The contents of the destination operand are rotated right one bit position. Bit 0 of the
destination operand is moved to the bit 7 position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: RRC R 11001011 00001-r- 2
IR: RRC (HL) 11001011 00001110 2+r
X: RRC (XY+d) 11y11101 11001011 ——d— 00001110 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-155

Z380™

USER'S MANUALZILOG

DC-8297-03

RRCW
ROTATE RIGHT CIRCULAR (WORD)

RRCW dst dst = R, RX, IR, X

Operation: tmp ← dst
C ← dst(0)
dst(15) ← tmp(0)
dst(n) ← tmp(n+1) for n = 0 to 14

The contents of the destination operand are rotated right one bit position. Bit 0 of the
destination operand is moved to the most significant bit position and also replaces the Carry
flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: RRCW R 11101101 11001011 000010rr 2
RX: RRCW RX 11101101 11001011 0000110y 2
IR: RRCW (HL) 11101101 11001011 00001010 2+r
X: RRCW (XY+d) 11y11101 11001011 ——d— 00001010 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-156

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RRCA
ROTATE RIGHT CIRCULAR (ACCUMULATOR)

RRCA

Operation: tmp ← A
C ← A(0)
A(7) ← tmp(0)
A(n) ← tmp(n+1) for n = 0 to 6

The contents of the accumulator are rotated right one bit position. Bit 0 of the accumulator
is moved to the bit 7 position and also replaces the Carry flag.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note

RRCA 00001111 2

5-157

Z380™

USER'S MANUALZILOG

DC-8297-03

RRD
ROTATE RIGHT DIGIT

RRD

Operation: tmp(3-0) ← A(3-0)
A(3-0) ← dst(3-0)
dst(3-0) ← dst(7-4)
dst(7-4) ← tmp(3-0)

The low digit of the accumulator is logically concatenated to the destination byte whose
memory address is in the HL register. The resulting three-digit quantity is rotated to the right
by one BCD digit (four bits). The upper digit of the source is moved to the lower digit of the
source; the lower digit of the source is moved to the lower digit of the accumulator, and the
lower digit of the accumulator is moved to the upper digit of the source. The upper digit of
the accumulator is unaffected. In multiple-digit BCD arithmetic, this instruction can be used
to shift to the right a string of BCD digits, thus dividing it by a power of ten. The accumulator
serves to transfer digits between successive bytes of the string. This is analogous to the use
of the Carry flag in multiple-precision shifting using the RR instruction.

Flags: S: Set if the accumulator is negative after the operation; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

RRD 11101101 01100111 3+r

5-158

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

RST
RESTART

RST address

Operation: if (XM) then begin
SP ← SP - 4
(SP) ← PC(7-0)
(SP+1) ← PC(15-8)
(SP+2) ← PC(23-16)
(SP+3) ← PC(31-24)
end

else begin
SP ← SP - 2
(SP) ← PC(7-0)
(SP+1) ← PC(15-8)
end

PC ← address

The current Program Counter (PC) is pushed onto the stack and the PC is loaded with a
constant address encoded in the instruction. Execution then begins at this address. The
restart instruction allows for a call to one of eight fixed locations as shown in the table below.
The table also indicates the encoding of the address used in the instruction encoding. (The
address is in hexadecimal, the encoding in binary.)

Address t encoding
00000000h 000
00000008h 001
00000010h 010
00000018h 011
00000020h 100
00000028h 101
00000030h 110
00000038h 111

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

RST address 11-t-111 4+w X

Field Encodings: 000 for 00h, 001 for 08h, 010 for 10h, 011 for 18h,
100 for 20h, 101 for 28h, 110 for 30h, 111 for 38h

5-159

Z380™

USER'S MANUALZILOG

DC-8297-03

SBC
SUBTRACT WITH CARRY (BYTE)

SBC A,src src = R, RX, IM, IR, X

Operation: A ← A - src - C

The source operand together with the Carry flag is subtracted from the accumulator and the
difference is stored in the accumulator. The contents of the source are unaffected. Two's
complement subtraction is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SBC A,R 10011-r- 2
RX: SBC A,RX 11y11101 1001110w 2
IM: SBC A,n 11011110 ——n— 2
IR: SBC A,(HL) 10011110 2+r
X: SBC A,(XY+d) 11y11101 10011110 ——d— 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-160

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

SBC
SUBTRACT WITH CARRY (WORD)

SBC HL,src dst = HL
src = BC, DE, HL, SP

Operation: HL(15-0) ← HL(15-0) - src(15-0) - C

The source operand together with the Carry flag is subtracted from the HL register and the
difference is stored in the HL register. The contents of the source are unaffected. Two's
complement subtraction is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SBC HL,R 11101101 01rr0010 2

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

5-161

Z380™

USER'S MANUALZILOG

DC-8297-03

SBCW
SUBTRACT WITH CARRY (WORD)

SBCW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) ← HL(15-0) - src(15-0) - C

The source operand together with the Carry flag is subtracted from the HL register and the
difference is stored in the HL register. The contents of the source are unaffected. Two's
complement subtraction is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SBCW [HL,]R 11101101 100111rr 2
RX: SBCW [HL,]RX 11y11101 10011111 2
IM: SBCW [HL,]nn 11101101 10011110 -n(low) -n(high)- 2
X: SBCW [HL,](XY+d) 11y11101 11011110 ——d— 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-162

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

SCF
SET CARRY FLAG

SCF

Operation: C ← 1

The Carry flag is set to 1.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Unaffected
N: Cleared
C: Set

Addressing Execute
Mode Syntax Instruction Format Time Note

SCF 00110111 2

5-163

Z380™

USER'S MANUALZILOG

DC-8297-03

SET
SET BIT

SET b, dst dst = R, IR, X

Operation: dst(b) ← 1

The specified bit b within the destination operand is set to 1. The other bits in the destination
are unaffected. The bit to be set is specified by a 3-bit field in the instruction; this field
contains the binary encoding for the bit number to be set. The bit number b must be between
0 and 7.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SET b,R 11001011 11bbb -r- 2
IR: SET b,(HL) 11001011 11bbb110 2+r
X: SET b,(XY+d) 11y11101 11001011 ——d— 11bbb110 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-164

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

SETC
SET CONTROL BIT

SETC mode mode = LCK, LW, XM

Operation: if (mode = LCK) then begin
SR(1) ← 1
end

else if (mode = LW) then begin
SR(6) ← 1
end

else begin
SR(7) ← 1
end

When setting Lock mode (LCK), the LCK bit (bit 1) in the Select Register (SR) is set to 1,
disabling external bus requests. Note that bus requests are not disabled until after this
instruction has been executed, and that one or more of the succeeding instructions may also
have been fetched for decoding before this instruction has been executed.

When setting Long Word mode (LW), the LW bit (bit 6) in the SR is set to 1, selecting 32-bit
words. When using 32-bit words, all word load instructions transfer 32 bits.

When setting Extended mode (XM), the XM bit (bit 7) in the SR is set to 1, selecting addresses
modulo 4,294,967,296 (32 bits) as opposed to addresses modulo 65536 (16 bits) in Native
mode. In Extended mode CALL and RETurn instructions save and restore 32 bit PC values
to and from the stack, and the PC pushed to the stack in response to an interrupt is 32 bits.
In Extended mode, address manipulation instructions such as INCrement, DECrement,
ADD, and Jump Relative (JR) employ 32-bit addresses. Note that it is not possible to exit
from Extended mode except via reset.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

SETC mode 11mm1101 11110111 4

Field Encodings: mm: 01 for LW, 10 for LCK, 11 for XM

5-165

Z380™

USER'S MANUALZILOG

DC-8297-03

SLA
SHIFT LEFT ARITHMETIC (BYTE)

SLA dst dst = R, IR, X

Operation: tmp ← dst
C ← dst(7)
dst(0) ← 0
dst(n+1) ← tmp(n) for n = 0 to 6

The contents of the destination operand are shifted left one bit position. Bit 7 of the
destination operand is moved to the Carry flag and zero is shifted into bit 0 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 7 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SLA R 11001011 00100-r- 2
IR: SLA (HL) 11001011 00100110 2+r
X: SLA (XY+d) 11y11101 11001011 ——d— 00100110 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-166

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

SLAW
SHIFT LEFT ARITHMETIC (WORD)

SLAW dst dst = R, RX, IR, X

Operation: tmp ← dst
dst(0) ← 0
C ← dst(15)
dst(n+1) ← tmp(n) for n = 0 to 14

The contents of the destination operand are shifted left one bit position. The most significant
bit of the destination operand is moved to the Carry flag and zero is shifted into bit 0 of the
destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from the most significant bit was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SLAW R 11101101 11001011 001000rr 2
RX: SLAW RX 11101101 11001011 0010010y 2
IR: SLAW (HL) 11101101 11001011 00100010 2+r
X: SLAW (XY+d) 11y11101 11001011 ——d— 00100010 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-167

Z380™

USER'S MANUALZILOG

DC-8297-03

SLP
SLEEP

SLP

Operation: if (STBY not enabled) then
CPU Halts

else
Z380 enters Standby mode

With Standby mode disabled, this instruction is interpreted and executed as a HALT
instruction.

With Standby mode enabled, executing this instruction causes all device operation to stop,
thus minimizing power dissipation. The /STNBY signal is asserted to indicate this Standby
mode status. /STNBY remains asserted until an interrupt or reset request is accepted, which
causes the device to exit Standby mode. If the option is enabled, an external bus request
also causes the devcie to exit the Standby mode.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note

SLP 11101101 01110110 2

5-168

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

SRA
SHIFT RIGHT ARITHMETIC (BYTE)

SRA dst dst = R, IR, X

Operation: tmp ← dst
C ← dst(0)
dst(7) ← tmp(7)
dst(n) ← tmp(n+1) for n = 0 to 6

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and bit 7 remains unchanged.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SRA R 11001011 00101-r- 2
IR: SRA (HL) 11001011 00101110 2+r
X: SRA (XY+d) 11y11101 11001011 ——d— 00101110 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-169

Z380™

USER'S MANUALZILOG

DC-8297-03

SRAW
SHIFT RIGHT ARITHMETIC (WORD)

SRAW dst dst = R, RX, IR, X

Operation: tmp ← dst
C ← dst(0)
dst(15) ← tmp(15)
dst(n) ← tmp(n+1) for n = 0 to 14

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and the most significant bit remains
unchanged.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SRAW R 11101101 11001011 001010rr 2
RX: SRAW RX 11101101 11001011 0010110y 2
IR: SRAW (HL) 11101101 11001011 00101010 2+r
X: SRAW (XY+d) 11y11101 11001011 ——d— 00101010 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-170

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

SRL
SHIFT RIGHT LOGICAL (BYTE)

SRL dst dst = R, IR, X

Operation: tmp ← dst
C ← dst(0)
dst(7) ← 0
dst(n) ← tmp(n+1) for n = 0 to 6

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and zero is shifted into bit 7 of the destination.

Flags: S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SRL R 11001011 00111-r- 2
IR: SRL (HL) 11001011 00111110 2+r
X: SRL (XY+d) 11y11101 11001011 ——d— 00111110 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-171

Z380™

USER'S MANUALZILOG

DC-8297-03

SRLW
SHIFT RIGHT LOGICAL (WORD)

SRLW dst dst = R, RX, IR, X

Operation: tmp ← dst
C ← dst(0)
dst(15) ← 0
dst(n) ← tmp(n+1) for n = 0 to 14

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and zero is shifted into the most significant
bit of the destination.

Flags: S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SRLW R 11101101 11001011 001110rr 2
RX: SRLW RX 11101101 11001011 0011110y 2
IR: SRLW (HL) 11101101 11001011 00111010 2+r
X: SRLW (XY+d) 11y11101 11001011 ——d— 00111010 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-172

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

SUB
SUBTRACT (BYTE)

SUB A,src src = R, RX, IM, IR, X

Operation: A ← A - src

The source operand is subtracted from the accumulator and the difference is stored in the
accumulator. The contents of the source are unaffected. Two's complement subtraction is
performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SUB A,R 10010-r- 2
RX: SUB A,RX 11y11101 1001010w 2
IM: SUB A,n 11010110 ——n— 2
IR: SUB A,(HL) 10010110 2+r
X: SUB A,(XY+d) 11y11101 10010110 ——d— 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-173

Z380™

USER'S MANUALZILOG

DC-8297-03

SUB
SUBTRACT (WORD)

SUB HL,src src = DA

Operation: if (XM) then begin
HL(31-0) ← HL(31-0) - src(31-0)
end

else begin
HL(15-0) ← HL(15-0) - src(15-0)
end

The source operand is subtracted from the HL register and the difference is stored in the
HL register. The contents of the source are unaffected. Two's complement subtraction is
performed. Note that the length of the operand is controlled by the Extended/Native mode
selection, which is consistent with the manipulation of an address by the instruction.

Flags: S: Unaffected
Z: Unaffected
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Unaffected
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
DA: SUB HL,(nn) 11101101 11010110 -n(low)- -n(high) 2+r I, X

5-174

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

SUB
SUBTRACT FROM STACK POINTER (WORD)

SUB SP,src src = IM

Operation: if (XM) then begin
SP(31-0) ← SP(31-0) – src(31-0)
end

else begin
SP(15-0) ← SP(15-0) – src(15-0)
end

The source operand is subtracted from the SP register and the difference is stored in the SP
register. This has the effect of allocating or deallocating space on the stack. Two's
complement subtraction is performed.

Flags: S: Unaffected
Z: Unaffected
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Unaffected
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
IM: SUB SP,nn 11101101 10010010 -n(low)- -n(high) 2 I, X

5-175

Z380™

USER'S MANUALZILOG

DC-8297-03

SUBW
SUBTRACT (WORD)

SUBW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) ← HL(15-0) - src(15-0)

The source operand is subtracted from the HL register and the difference is stored in the
HL register. The contents of the source are unaffected. Two's complement subtraction is
performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SUBW [HL,]R 11101101 100101rr 2
RX: SUBW [HL,]RX 11y11101 10010111 2
IM: SUBW [HL,]nn 11101101 10010110 -n(low)- n(high)- 2
X: SUBW [HL,](XY+d) 11y11101 11010110 ——d— 2+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-176

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

SWAP
SWAP UPPER REGISTER WORD WITH LOWER REGISTER WORD

SWAP src src = R, RX

Operation: src(31-16) ↔ src(15-0)

The contents of the most significant word of the source are exchanged with the contents of
the least significant word of the source.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time Note
R: SWAP R 11101101 00rr1110 2
RX: SWAP RX 11y11101 00111110 2

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-177

Z380™

USER'S MANUALZILOG

DC-8297-03

TST
TEST (BYTE)

TST src src = R, IM, IR

Operation: A AND src

A logical AND operation is performed between the corresponding bits of the source operand
and the accumulator. The contents of both the accumulator and the source are unaffected;
only the flags are modified as a result of this instruction.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Addressing Execute
Mode Syntax Instruction Format Time Note
R: TST R 11101101 00-r-100 2
IM: TST n 11101101 01100100 ——n— 2
IR: TST (HL) 11101101 00110100 2+r

Field Encodings: r: per convention

5-178

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

TSTIO
TEST I/O PORT

TSTIO src src = IM

Operation: (C) AND src

A logical AND operation is performed between the corresponding bits of the source and the
contents of the I/O location. The contents of both the I/O location and the source are
unaffected; only the flags are modified as a result of this instruction. No external I/O
transaction will be generated as a result of this instruction, although the I/O address will
appear on the adress bus while the internal read is occurring. The peripheral address in the
C register is placed on the low byte of the address bus and zeros are placed on all other
address lines.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Addressing Execute
Mode Syntax Instruction Format Time Note

TSTIO n 11101101 01110100 ——n— 3+i

5-179

Z380™

USER'S MANUALZILOG

DC-8297-03

XOR
EXCLUSIVE OR (BYTE)

XOR [A,]src src = R, RX, IM, IR, X

Operation: A ← A XOR src

A logical EXCLUSIVE OR operation is performed between the corresponding bits of the
source operand and the accumulator and the result is stored in the accumulator. A 1 bit is
stored wherever the corresponding bits in the two operands are different; otherwise a 0 bit
is stored. The contents of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Addressing Execute
Mode Syntax Instruction Format Time Note
R: XOR [A,]R 10101-r- 2
RX: XOR [A,]RX 11y11101 1010110w 2
IM: XOR [A,]n 11101110 ——n— 2
IR: XOR [A,](HL) 10101110 2+r
X: XOR [A,](XY+d) 11y11101 10101110 ——d— 4+r I

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-180

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

XORW
EXCLUSIVE OR (WORD)

XORW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) ← HL(15-0) XOR src(15-0)

A logical EXCLUSIVE OR operation is performed between the corresponding bits of the
source operand and the HL register and the result is stored in the HL register. A 1 bit is stored
wherever the corresponding bits in the two operands are different; otherwise a 0 bit is stored.
The contents of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Addressing Execute
Mode Syntax Instruction Format Time Note
R: XORW [HL,]R 11101101 101011rr 2
RX: XORW [HL,]RX 11y11101 10101111 2
IM: XORW [HL,]nn 11101101 10101110 -n(low) -n(high)- 2
X: XORW [HL,](XY+d) 11y11101 11101110 ——d— 4+r I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

6-1

Z380™

USER'S MANUALZILOG

DC-8297-03

6.1 INTRODUCTION

USER’s MANUAL

CHAPTER 6
INTERRUPTS AND TRAPS

Exceptions are conditions that can alter the normal flow of
program execution. The Z380™ CPU supports three kinds
of exceptions; interrupts, traps, and resets.

Interrupts are asynchronous events generated by a device
external to the CPU; peripheral devices use interrupts to
request service from the CPU. Traps are synchronous
events generated internally in the CPU by a particular
condition that can occur during the attempted execution of
an instruction—in particular, when executing undefined
instructions. Thus, the difference between Traps and Inter-
rupts is their origin. A Trap condition is always reproduc-
ible by re-executing the program that created the Trap,
whereas an Interrupt is generally independent of the
currently executing task.

A hardware reset overrides all other conditions, including
Interrupts and Traps. It occurs when the /RESET line is
activated and causes certain CPU control registers to be
initialized. Resets are discussed in detail in Chapter 7.

The Z380 MPU’s Interrupt and Trap structure provides
compatibility with the existing Z80 and Z180 MPU’s with
the following exception—the undefined opcode Trap oc-
currence is with respect to the Z380 instruction set, and its
response is improved (vs the Z180) to make Trap handling
easier. The Z380 MPU also offers additional features to
enhance flexibility in system design.

6.2 INTERRUPTS

Of the five external Interrupt inputs provided, one is as-
signed as a Nonmaskable Interrupt, /NMI. The remaining
inputs, /INT3-/INT0, are four asynchronous maskable In-
terrupt requests.

The Nonmaskable Interrupt; (NMI) is an Interrupt that
cannot be disabled (masked) by software. Typically NMI is
reserved for high priority external events that need imme-
diate attention, such as an imminent power failure. Maskable
Interrupts are Interrupts that can be disabled (masked)
through software by cleaning the appropriate bits in the
Interrupt Enable Register (IER) and IEF1 bit in the Select
Register (SR).

All of these four maskable Interrupt inputs (/INT3-/INT0)
are external input signals to the Z380 CPU core. The four
Interrupt enable bits in the Interrupt Enable Register deter-
mine (IER; Internal I/O address: 17H) which of the re-
quested Interrupts are accepted. Each Interrupt input has
a fixed priority, with /INT0 as the highest and /INT3 as the
lowest.

The Enable Interrupt (EI) instruction is used to selectively
enable the maskable Interrupts (by setting the appropriate
bits in the IER register and IEF1 bit in the SR register) and

the Disable Interrupt instruction is used to selectively
disable interrupts (by clearing appropriate bits in the IER,
and/or clearing IEF1 bit in the SR register). When an
Interrupt source has been disabled, the CPU ignores any
request from that source. Because maskable Interrupt
requests are not retained by the CPU, the request signal on
a maskable Interrupt line must be asserted until the CPU
acknowledges the request.

When enabling Interrupts with the EI instruction, all
maskable Interrupts are automatically disabled (whether
previously enabled or not) for the duration of the execution
of the EI instruction and the instruction immediately follow-
ing.

Interrupts are always accepted between instructions. The
block move, block search, and block I/O instructions can
be interrupted after any iteration.

The Z380 CPU has four selectable modes for handling
externally generated Interrupts, using the IM instruction.
The first three modes extend the Z80 CPU Interrupt Modes
to accommodate the Z380 CPU’s additional Interrupt in-
puts in a compatible fashion. The fourth mode allows more
flexibility in interrupt handling.

6-2

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

6.2 INTERRUPTS (Continued)

In an Interrupt acknowledge transaction, address outputs
A31-A4 are driven to logic 1. One output among A3-A0 is
driven to logic 0 to indicate the maskable interrupt request
being acknowledged. If /INT0 is being acknowledged, A3-
A1 are at logic 1 and A0 is at logic 0.

For the maskable Interrupt on /INT0 input, Interrupt Modes
0 through 3 are supported. Modes 0, 1, and 2 have the
same schemes as those in the Z80 and Z180 MPU’s. Mode
3 is similar to mode 2, except that 16-bit Interrupt vectors
are expected from the I/O devices. Note that 8-bit and 16-
bit I/O devices can be intermixed in this mode by having
external pull-up resistors at the data bus signals D15-D8,
for example.

The external maskable Interrupt requests /INT3-/INT1 are
always handled in an assigned Interrupt vectors mode
regardless of the current Interrupt Mode (IM3-IM0) in
effect.

As discussed in the CPU Architecture section, the Z380
MPU can operate in either the Native or Extended mode.
In Native mode, pushing and popping of the stack to save
and retrieve interrupted PC values in Interrupt handling are
done in 16-bit sizes, and the Stack Pointer rolls over at the
64 Kbyte boundary. In Extended mode, the PC pushes and
pops are done in 32-bit sizes, and the Stack Pointer rolls
over at the 4 Gbyte memory space boundary. The Z380

MPU provides an Interrupt Register Extension, whose
contents are always output as the address bus signals
A31-A16 when fetching the starting addresses of service
routines from memory in Interrupt Modes 2, 3, and the
assigned vectors mode. In Native mode, such fetches are
automatically done in 16-bit sizes and in Extended mode,
in 32-bit sizes. These starting addresses should be even-
aligned in memory locations. That is, their least significant
bytes should have addresses with A0 = 0.

6.2.1 Interrupt Priority Ranking

The Z380 MPU assigns a fixed priority ranking to handle its
Interrupt sources, as shown in Table 6-1.

Table 6-1. Interrupt Priority Ranking

Priority Interrupt Sources

Highest Trap (undefined opcode)
/NMI
/INT0
/INT1
/INT2

Lowest /INT3

6.2.2 Interrupt Control

The Z380 MPU’s flags and registers associated with Inter-
rupt processing are listed in Table 6-2. As discussed in the
Chapter 1, “CPU Architecture,” some of these registers

reside in the on-chip I/O address space, and can be
accessed only with reserved on-chip I/O instructions.

Table 6-2. Interrupt Flags and Registers

Names Mnemonics Access Methods

Interrupt Enable Flags IEF1,IEF2 EI and DI Instructions
Interrupt Register I LD I,A and LD A,I Instructions
Interrupt Register Extension Iz LD I,HL and LD HL,I Instructions

(Accessing both Iz and I)
Interrupt Enable Register IER On-chip I/O Instructions, Address 17H

EI and DI Instruction
Assigned Vectors Base and Trap Register AVBR On-Chip I/O Instructions, Address 18H
Trap and Break Register TRPBK On-Chip I/O Instructions, Address 19H

6-3

Z380™

USER'S MANUALZILOG

DC-8297-03

6.2.2.1 IEF1, IEF2
IEF1 controls the overall enabling and disabling of all on-
chip peripheral and external maskable Interrupt requests.
If IEF1 is at logic 0, all such Interrupts are disabled. The
purpose of IEF2 is to correctly manage the occurrence of
/NMI. When /NMI is acknowledged, the state of IEF1 is
copied to IEF2 and then IEF1 is cleared to logic 0. At the

end of the /NMI interrupt service routine, execution of the
Return From Nonmaskable Interrupt instruction, RETN,
automatically copies the state of IEF2 back to IEF1. This is
a means to restore the Interrupt enable condition existing
before the occurrence of /NMI. Table 6-3 summarizes the
states of IEF1 and IEF2 resulting from various operations.

Table 6-3. Operation Effects on IEF1 and IEF2

Operation IEF1 IEF2 Comments

/RESET 0 0 Inhibits all interrupts except Trap and /NMI.
Trap 0 0 Disables interrupt nesting.
/NMI 0 IEF1 IEF1 value copied to IEF2, then IEF1 is cleared.
RETN IEF2 NC Returns from /NMI service routine.
/INT3-/INT0 0 0 Disables interrupt nesting.
RETI NC NC Returns from Interrupt service routine, Z80 I/O device.
RET NC NC Returns from service routine, or returns from Interrupt service routine for a

non-Z80 I/O device.
EI 1 1
DI 0 0
LD A,I or LD R,I NC NC IEF2 value is copied to P/V Flag.
LD HL,I or LD HL,R NC NC

(NC = No Change)

6.2.2.2 I, I Extend
The 8-bit Interrupt Register and the 16-bit Interrupt Regis-
ter Extension are cleared during reset.

6.2.2.3 Interrupt Enable Register
D7-D4 Reserved Read as 0, should write to as 0.
D3-D0 IE3-IE0 (Interrupt Request Enable Flags)

These flags individually indicate if /INT3, /INT2, /INT1, or
/INT0 is enabled. Note that these flags are conditioned with
the Enable and Disable Interrupt instructions (with argu-
ments) (See Figure 6.1).

6.2.2.4 Assigned Vectors Base Register
D7-D1 AB15-AB9 (Assigned Vectors Base). The Interrupt
Register Extension, Iz, together with AB15-AB9, define the
base address of the assigned Interrupt vectors table in
memory space (See Figure 6-2).

D0 Reserved. Read as 0, should write to as 0.

AB15

7

AB14 AB13 AB12 AB11 AB10 AB9 --

00 00 00 00

0

Reset Value

AVBR: 00000018H
R/W

Assigned Vectors
Base

Reserved
Program as 0
Read as 0

Figure 6-2. Assigned Vectors Base Register

--

7

IE1 IE0

10 00 00 00

0

Reset Value

IER: 00000017H
Read Only

Interrupt Requests
Enable

Encoded Interrupt
Requests

-- -- -- IE2IE3

Figure 6-1. Interrupt Enable Register

6-4

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

6.2.2.5 Trap and Break Register
D7-D2 Reserved. Some of these bits are reserved for
development support functions. Read as 0, should write to
as 0.

D1 TF (Trap on Instruction Fetch). TF goes active to logic
1 when an undefined opcode fetched in the instruction
stream is detected. TF can be reset under program control
by writing it with a logic 0. However, it cannot be written with
a logic 1.

D0 TV (Trap on Interrupt Vector). TV goes active to logic 1
when an undefined opcode is returned as a vector in an
Interrupt acknowledge transaction in mode 0. TV can be
reset under program control by writing it with a logic 0.
However, it cannot be written with a logic 1 (See Figure
6-3).

7

TF TV

0 00 00 00 0

0

Reset Value

TRPBK: 00000019H
R/W

Trap on
Interrupt Vector

Reserved
Program as 0
Read as 0

-- -- -- --

Trap on
Instruction Fetch

-- --

Figure 6-3. Trap and Break Register

6.3 TRAP INTERRUPT

The Z380 MPU generates a Trap when an undefined
opcode is encountered. The Trap is enabled immediately
after reset, and it is not maskable. This feature can be used
to increase software reliability or to implement “extended”
instructions. An undefined opcode can be fetched from
the instruction stream, or it can be returned as a vector in
an Interrupt acknowledge transaction in Interrupt Mode 0.
When a Trap occurs, the Z380 MPU operates as follows.

1. The TF or TV bit in the Assigned Vectors Base and Trap
Register goes active, to indicate the source of the
undefined opcode.

2. If the undefined opcode was fetched from the instruc-
tion stream, the starting address of the Trap causing
the instruction is pushed onto the stack. (Note that the
starting address of decoder directive(s) preceding an
instruction encoding is considered the starting ad-
dress of the instruction.)

If the undefined opcode was a returned Interrupt vector,
the interrupted PC value is pushed onto the stack.

3. The states of IEF1 and IEF2 are cleared.

4. The Z380 MPU commences to fetch and execute
instructions from address 00000000H.

Note that instruction execution resumes at address 0,
similar to the occurrence of a reset. Testing the TF and TV
bits in the Assigned Vectors Base and Trap Register will
distinguish the two events. Even if Trap handling is not in
place, repeated restarts from address 0 is an indicator of
possible illegal instructions at system debugging.

6-5

Z380™

USER'S MANUALZILOG

DC-8297-03

6.4 NONMASKABLE INTERRUPT

The Nonmaskable Interrupt Input /NMI is edge sensitive,
with the Z380 MPU internally latching the occurrence of its
falling edge. When the latched version of /NMI is recog-
nized, the following operations are performed.

1. The Interrupted PC (Program Counter) value is pushed
onto the stack. The size of the PC value pushed onto
the stack depends on Native (one word) or Extended
mode (two words) in effect.

2. The state of IEF1 is copied to IEF2, then IEF1 is
cleared.

3. The Z380 MPU commences to fetch and execute
instructions from address 00000066H.

6.5 INTERRUPT RESPONSE FOR MASKABLE INTERRUPT ON /INT0

The transactions caused by the Maskable Interrupt on
/INT0 are different depends on the Interrupt Mode in effect
at the time when the interrupt has been accepted, as
described below.

6.5.1 Interrupt Mode 0 Response for
Maskable Interrupt /INT0

This mode is similar to the 8080 CPU Interrupt response
mode. During the Interrupt acknowledge transaction, the
external I/O device being acknowledged is expected to
output a vector onto the upper portion of the data bus, D15-
D8. The Z380 MPU interprets the vector as an instruction
opcode. IEF1 and IEF2 are reset to logic 0, disabling all
further maskable interrupt requests. Note that unlike the
other interrupt responses, the PC is not automatically
pushed onto the stack. Typically, a Restart instruction
(RST) is used, since the Restart opcode is only one byte
long, meaning that the interrupting peripheral needs to
supply only one byte of information. For this case, it pushes
the interrupted PC (Program Counter) value onto the stack
and resumes execution at a fixed memory location. Alter-
natively, a 3-byte call to any location can be executed.

Note that a Trap occurs if an undefined opcode is supplied
by the I/O device as a vector.

6.5.2 Interrupt Mode 1 Response for
Maskable Interrupt /INT0

In Interrupt Mode 1, the Z380 CPU automatically executes
a Restart to a fixed location (00000038H) when an interrupt
occurs. An Interrupt acknowledge transaction is gener-
ated, during which the data bus contents are ignored by
the Z380 MPU. The interrupted PC value is pushed onto the
stack. The size of the PC value pushed onto the stack is
depends on Native (one word) or Extended mode (two
words) in effect. The IEF1 and IEF2 are reset to logic 0 so
as to disable further maskable interrupt requests. Instruc-
tion fetching and execution restarts at memory location
00000038H.

6.5.3 Interrupt Mode 2 Response for
Maskable Interrupt /INT0

Interrupt Mode 2 is a vectored Interrupt response mode,
wherein the interrupting device identifies the starting loca-
tion of service routine using an 8-bit vector read by the CPU
during the Interrupt acknowledge cycle.

During the Interrupt acknowledge transaction, the external
I/O device being acknowledged is expected to output a
vector onto the upper portion of the data bus, D15-D8. The
interrupted PC value is pushed onto the stack and IEF1
and IEF2 are reset to logic 0 so as to disable further
maskable interrupt requests. The size of the PC value
pushed onto the stack is depends on Native (one word) or
Extended mode (two words) in effect. The Z380 MPU then
reads an entry from a table residing in memory and loads
it into the PC to resume execution. The address of the table
entry is composed of the I Extend (Iz) contents as A31-A16,
the I Register contents as A15-A8 and the vector supplied
by the I/O device as A7-A0. Note that the table entry is
effectively the starting address of the interrupt service
routine designed for the I/O device being acknowledged,
and the table composing of starting addresses for all the
Interrupt Mode 2 service routines can be referred to as the
Interrupt Mode 2 vector table. Each table entry should be
word-sized if the Z380 MPU is in the Native mode and Long
Word-sized if in the Extended mode, in either case even-
aligned (least significant byte with address A0 = 0), mean-
ing 128 different vectors can be used in the Native mode,
and 64 different vectors can be used in Extended mode.

6.5.4 Interrupt Mode 3 Response for
Maskable Interrupt /INT0

Interrupt Mode 3 is similar to mode 2 except that a 16-bit
vector is expected to be placed on the data bus D15-D0 by
the I/O device during the Interrupt acknowledge transac-
tion. The interrupted PC is pushed onto the stack. The size
of the PC value pushed onto the stack depends on the

6-6

Z380™

USER'S MANUAL

DC-8297-03

ZILOG

6.5.4 Interrupt Mode 3 Response for
Maskable Interrupt /INT0 (Continued)

Native (one word) or Extended mode (two words) in effect.
IEF1 and IEF2 are reset to logic 0 so as to disable further
maskable Interrupt requests. The starting address of the
service routine is fetched and loaded into the PC to resume
execution, from memory location with an address com-
posed of the I Extend contents as A31-A16 and the vector
supplied by the I/O device as A15-A0. Again the starting

address of the service routine is word-sized if the Z380
MPU is in Native mode and Long Word-sized if in the
Extended mode, in either case even-aligned, meaning
32768 different vectors can be used in the Native mode,
and 16384 different vectors can be used in the Extended
mode.

6.6 ASSIGNED INTERRUPT VECTORS MODE FOR MASKABLE INTERRUPTS /INT3-/INT1

6.7 RETI INSTRUCTION

The Z80 family I/O devices are designed to monitor the
Return from Interrupt opcodes in the instruction stream
(RETI — EDH, 4DH), signifying the end of the current
Interrupt service routine. When detected, the daisy chain
within and among the device(s) resolves and the appropri-

ate Interrupt-under-service condition clears. The Z380
MPU “reproduces” the opcode fetch transactions on the
I/O bus when the RETI instruction is executed. Note that the
Z380 MPU outputs the RETI opcodes onto both portions of
the data bus (D15-D8 and D7-D0) in the transactions.

Regardless of the Interrupt Mode in effect, interrupts on
/INT3-/INT1 is always handled by the Assigned Interrupt
Mode. This mode is similar to the interrupt handling on the
Z180’s /INT1 or /INT2 line. When the Z380 MPU recognizes
one of the external maskable Interrupts /INT3-/INT1, it
generates an Interrupt acknowledge transaction which is
different than that for /INT0. The Interrupt acknowledge
transaction for /INT3-/INT1 has the I/O bus signal /INTACK
active, with /M1 /IORQ, /IORD, and /IOWR inactive. The
interrupted PC value is pushed onto the stack. The size of
the PC value pushed onto the stack is depends on the
Native (one word) or Extended mode (two words) in effect.
IEF1 and IEF2 are reset to logic 0, disabling further maskable
Interrupt requests. The starting address of an Interrupt
service routine is fetched from a table entry and loaded into
the PC to resume execution. The address of the table entry
is composed of the I Extend contents as A31-A16, the AB
bits of the Assigned Vectors Base Register as A15-A9, and

an assigned interrupt vector specific to the request being
recognized as A8-A0. The assigned vectors are defined in
Table 6-4. If the Z380 CPU is in Extended mode, all four
bytes of the data stored in the Assigned vector location will
be used as a new PC value. If the Z380 CPU is in Native
mode, only two bytes of data from the LS Byte will be used
as a new PC value.

Table 6-4. Assigned Interrupt Vectors

Assigned
Interrupt Interrupt
Source Vector

/INT1 00H
/INT2 04H
/INT3 08H

6-7

Z380™

USER'S MANUALZILOG

DC-8297-03

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

USER'S MANUALZILOG

7.1 INTRODUCTION

USER’s MANUAL

CHAPTER 7
RESET

The Z380 CPU is placed in a dormant state when the
/RESET input is asserted. All its operations are terminated,
including any interrupt, bus request, or bus transaction
that may be in progress. On the Z380 MPU, the IOCLK
goes Low on the next BUSCLK rising edge and enters into
the BUSCLK divided-by-eight mode. The address and
data buses are tri-stated, and the bus control signals are
driven to their inactive states. The effect of /RESET on the
Z380 CPU and related internal I/O registers is depicted in
Table 7-1.

The /RESET input may be asynchronous to BUSCLK,
though it is sampled internally at BUSCLK’s falling edges.
For proper initialization of the Z380 CPU, VDD must be within
operating specifications and the CLK input must be stable
for more than five cycles with /RESET held Low.

The Z380 CPU proceeds to fetch the first instruction 3.5
BUSCLK cycles after /RESET is deasserted, provided
such deassertion meets the proper setup and hold times

with reference to the falling edge of BUSCLK. On the Z380
MPU implementation, with the proper setup and hold times
being met, IOCLK’s first rising edge is 11.5 BUSCLK
cycles after the /RESET deassertion, preceded by a mini-
mum of four BUSCLK cycles when IOCLK is at Low.

Note that if /BREQ is active when /RESET is deasserted, the
Z380 MPU would relinquish the bus instead of fetching its
first instruction. IOCLK synchronization would still take
place as described before.

Requirements to reset the device, and the initial state after
reset might be different depending on the particular imple-
mentation of the Z380 CPU on the individual Superintegra-
tion version of the device. For /RESET effects and require-
ments, refer to the individual product specification.

USER'S MANUALZILOG

Table 7-1. Effect of a Reset on Z380 CPU and Related I/O Registers

Register Reset Value Comments

Program Counter 00000000 PCz, PC

Stack Pointer 00000000 SPz, SP

I 000000 Iz, I
R 00

Select Register 00000000 Register Bank 0 Selected:
AF, Main Bank, IX, IY
Native Mode
Maskable Interrupts Disabled, in Mode 0
Bus Request Lock-Off

A and F Registers Register Banks 3-0:
A, F, A’, F’ Unaffected

Register Extensions 0000 Register Bank 0:
BCz, DEz, HLz, IYz,
BCz’, DEz’, HLz’, IYz’
(All “non-extended” portions unaffected.)
Register Bank 3-1 Unaffected.

I/O Bus Control Register 0 00 IOCLK = BUSCLK/8

Interrupt Enable Register 01 /INT0 Enabled

Assigned Vector Base Register 00

Trap and Break Register 00

USER'S MANUALZILOG

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

USER'S MANUALZILOG

USER’s MANUAL

APPENDIX A
Z380™ CPU INSTRUCTION FORMATS

Four formats are used to generate the machine language
bit encoding for the Z380 CPU instructions. Also, the Z380
CPU has eight Decoder Directives which work as a special
escape sequence to the certain instructions, to expand its
capability as explained in Chapter 3.

The bit encoding of the Z380 CPU instructions are parti-
tioned into bytes. Every instructions encoding contains
one byte dedicated to specifying the type of operation to
be performed; this byte is referred to as the instruction’s
operation code, or opcode. Besides specifying a particu-
lar operation, opcode typically include bit encoding speci-
fying the operand addressing mode for the instruction and
identifying any general purpose registers used by the
instruction. Along with the opcode, instruction encoding
may include bytes that contain an address, displacement,
and/or immediate value used by the instruction, and spe-
cial bytes called “escape codes” that determine the mean-
ing of the opcode itself.

By themselves, one byte opcode would allow the encoding
of only 256 unique instructions. Therefore, special “es-
cape codes” that precede the opcode in the instruction
encoding are used to expand the number of possible
instructions. There are two types of escape codes; ad-
dressing mode and opcode. Escape codes for the Z80
original instructions are one bytes in length, and the
escape codes used to expand the Z380 instructions are
one or two bytes in length.

These instruction formats are differentiated by the opcode
escape value used. Format 1 is for instructions without an
opcode escape byte(s), Format 2 is for instructions with an
opcode escape byte. Format 3 is for instructions whose
opcode escape byte has the value 0CBH, and Format 4 is
for instructions whose escape bytes are 0ED, followed by
0CBH.

For the opcode escape byte, the Z380 CPU uses 0DDH
and 0FDH as well, which on the Z80 CPU, these are used
only as an address escape byte.

In Format 2 and 4, the opcode escape byte immediately
precedes the opcode byte itself.

In Format 3, a 1-byte displacement may be between the
opcode escape byte and opcode itself. Opcode escape
bytes are used to distinguish between two different in-
structions with the same opcode bytes, thereby allowing
more than 256 unique instructions. For example, the 01H
opcode, when alone, specifies a form of a Load Register
Word instruction; when proceeded by 0CBH escape code,
the opcode 01H specifies a Rotate Left Circular instruc-
tion.

Format 3 instructions with DDIR Immediate data Decoder
Directives, 1 to 3 bytes of displacement is between the
opcode escape byte and opcode itself.

Format 4 instructions are proceeded by 0EDH, 0CBH, and
a opcode. Optionally, with immediate word field follows.

Addressing mode escape codes are used to determine
the type of encoding for the addressing mode field within
an instruction’s opcode, and can be used in instructions
with and without opcode escape value. An addressing
mode escape byte can have the value of 0DDH or 0FDH.
The addressing mode escape byte, if present, is always
the first byte of the instruction’s machine code, and is
immediately followed by either the opcode (Format 1), or
the opcode escape byte (Format 2 and 3). For example,
the 46H opcode, when alone, specifies a Load B register
from memory location pointed by (HL) register; when
proceeded by the 0DDH escape byte, the opcode 46H
specifies a Load B register from the memory location
pointed by (IX+d).

USER'S MANUALZILOG

The four instruction formats are shown in Tables A-1
through A-4. Within each format, several different configu-
rations are possible, depending on whether the instruction
involves addressing mode escape bytes, addresses, dis-
placements, or immediate data. In Table A-1 through A-4,

the symbol “A.esc” is used to indicate the presence of an
addressing mode escape byte, “O.esc” is used to indicate
the presence of an opcode escape byte, “disp.” is an
abbreviation for displacement and “addr.” is an abbrevia-
tion for address.

Table A-1. Format 1 Instructions Encodings

Instruction Format Assembly Hexadecimal

Opcode LD A,C 79
Opcode 2-byte Address LD A,(addr) 3A addr (L) addr (H)
Opcode 1-byte Displacement DJNZ addr 10 disp
Opcode Immediate LD E,n 1E n

A.esc Opcode 2-byte Address LD IX,(addr) DD 2A addr (L) addr (H)
A.esc Opcode 1-byte Displacement LD A, (IX+d) DD 7E disp
A.esc Opcode Immediate LD IX,nn DD 21 n(L) n(H)
A.esc Opcode 1-byte Displacement Immediate LD (IY+d),n FD 36 d n

Note: “A.esc” is an addressing mode escape byte, and either 0DDH or 0FDH.

Table A-2. Format 2 Instructions Encodings

Instruction Format Assembly Hexadecimal

Opcode LD A,C 79
O.esc Opcode Immediate (1 byte) TST n ED 64 n
O.esc Opcode Immediate (2 bytes) LD (BC),nn ED 06 n(L) n(H)
O.esc Opcode Address (2 bytes) LD BC,(addr) ED 4B addr (L) addr (H)
O.esc Opcode Displacement (1 byte) CALR e ED CD e
O.esc Opcode Displacement (2 bytes) JR ee DD 18 d(L) d(H)
O.esc Opcode Displacement (3 bytes) JR eee FD 18 d(L) d(M) d(H)

Note: “O.esc” is an opcode escape byte, and either 0DDH, 0EDH or 0FDH.

Table A-3. Format 3 Instruction Encoding

CB Opcode RLC (HL) CB 06
A.esc CB 1 Byte Displacement Opcode RLC (IX+d) DD CB d 06

Note: “A.esc” is an addressing mode escape byte, and either 0DDH or 0FDH.

Table A-4. Format 4 Instruction Encoding

ED CB Opcode RRCW BC ED CB 08
ED CB Opcode Immediate MULTW nn ED CB 97 n(L) n(H)

USER'S MANUALZILOG

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

USER'S MANUALZILOG

USER’s MANUAL

APPENDIX B
Z380™ INSTRUCTIONS IN
ALPHABETIC ORDER

This Appendix contains a quick reference guide for pro-
gramming. It has the Z380 instructions sorted alphabeti-
cally.

The column “Mode” indicates whether the instruction is
affected by DDIR immediate Decoder Directives, Extended
mode or Native mode of operation, and Word or Long Word
mode of operation; “I” means the instruction can be used

with DDIR IM to expand its immediate constant, “X” means
that the operation of the instruction is affected by the XM
status bit, and “L” means that the instruction is affected by
LW status bit, or can be used with DDIR LW or DDIR W.

The Native/Extended modes, Word/Long Word modes
and Decoder Directives are discussed in Chapter 3 in this
manual.

USER'S MANUALZILOG

Source Code Mode Object Code

ADC A,(HL) 8E
ADC A,(IX+12H) I DD 8E 12
ADC A,(IY+12H) I FD 8E 12
ADC A,A 8F
ADC A,B 88
ADC A,C 89
ADC A,D 8A
ADC A,E 8B
ADC A,H 8C
ADC A,IXL DD 8D
ADC A,IXU DD 8C
ADC A,IYL FD 8D
ADC A,IYU FD 8C
ADC A,L 8D
ADC HL,BC ED 4A
ADC HL,DE ED 5A
ADC HL,HL ED 6A
ADC HL,SP ED 7A
ADCW (IX+12H) I DD CE 12
ADCW (IY+12H) I FD CE 12
ADCW 1234H ED 8E 34 12
ADCW BC ED 8C
ADCW DE ED 8D
ADCW HL ED 8F
ADCW HL,(IX+12H) I DD CE 12
ADCW HL,(IY+12H) I FD CE 12
ADCW HL,1234H ED 8E 34 12
ADCW HL,BC ED 8C
ADCW HL,DE ED 8D
ADCW HL,HL ED 8F
ADCW HL,IX DD 8F
ADCW HL,IY FD 8F
ADCW IX DD 8F
ADCW IY FD 8F
ADD A,(HL) 86
ADD A,(IX+12H) I DD 86 12
ADD A,(IY+12H) I FD 86 12
ADD A,12H C6 12
ADD A,12H CE 12
ADD A,A 87
ADD A,B 80
ADD A,C 81
ADD A,D 82
ADD A,E 83
ADD A,H 84
ADD A,IXL DD 85
ADD A,IXU DD 84
ADD A,IYL FD 85
ADD A,IYU FD 84
ADD A,L 85
ADD HL,(1234H) I X ED C6 34 12
ADD HL,BC X 09
ADD HL,DE X 19
ADD HL,HL X 29

Source Code Mode Object Code

ADD HL,SP X 39
ADD IX,BC X DD 09
ADD IX,DE X DD 19
ADD IX,IX X DD 29
ADD IX,SP X DD 39
ADD IY,BC X FD 09
ADD IY,DE X FD 19
ADD IY,IY X FD 29
ADD IY,SP X FD 39
ADD SP,1234H I X ED 82 34 12
ADDW (IX+12H) I DD C6 12
ADDW (IY+12H) I FD C6 12
ADDW 1234H ED 86 34 12
ADDW BC ED 84
ADDW DE ED 85
ADDW HL ED 87
ADDW HL,(IX+12H) I DD C6 12
ADDW HL,(IY+12H) I FD C6 12
ADDW HL,1234H ED 86 34 12
ADDW HL,BC ED 84
ADDW HL,DE ED 85
ADDW HL,HL ED 87
ADDW HL,IX DD 87
ADDW HL,IY FD 87
ADDW IX DD 87
ADDW IY FD 87
AND (HL) A6
AND (IX+12H) I DD A6 12
AND (IY+12H) I FD A6 12
AND 12H E6 12
AND A A7
AND A,(HL) A6
AND A,(IX+12H) I DD A6 12
AND A,(IY+12H) I FD A6 12
AND A,12H E6 12
AND A,A A7
AND A,B A0
AND A,C A1
AND A,D A2
AND A,E A3
AND A,H A4
AND A,IXL DD A5
AND A,IXU DD A4
AND A,IYL FD A5
AND A,IYU FD A4
AND A,L A5
AND B A0
AND C A1
AND D A2
AND E A3
AND H A4
AND IXL DD A5
AND IXU DD A4
AND IYL FD A5

USER'S MANUALZILOG

Source Code Mode Object Code

AND IYU FD A4
AND L A5
ANDW (IX+12H) I DD E6 12
ANDW (IY+12H) I FD E6 12
ANDW 1234H ED A6 34 12
ANDW BC ED A4
ANDW DE ED A5
ANDW HL ED A7
ANDW HL,(IX+12H) I DD E6 12
ANDW HL,(IY+12H) I FD E6 12
ANDW HL,1234H ED A6 34 12
ANDW HL,BC ED A4
ANDW HL,DE ED A5
ANDW HL,HL ED A7
ANDW HL,IX DD A7
ANDW HL,IY FD A7
ANDW IX DD A7
ANDW IY FD A7
BIT 0,(HL) CB 46
BIT 0,(IX+12H) I DD CB 12 46
BIT 0,(IY+12H) I FD CB 12 46
BIT 0,A CB 47
BIT 0,B CB 40
BIT 0,C CB 41
BIT 0,D CB 42
BIT 0,E CB 43
BIT 0,H CB 44
BIT 0,L CB 45
BIT 1,(HL) CB 4E
BIT 1,(IX+12H) I DD CB 12 4E
BIT 1,(IY+12H) I FD CB 12 4E
BIT 1,A CB 4F
BIT 1,B CB 48
BIT 1,C CB 49
BIT 1,D CB 4A
BIT 1,E CB 4B
BIT 1,H CB 4C
BIT 1,L CB 4D
BIT 2,(HL) CB 56
BIT 2,(IX+12H) I DD CB 12 56
BIT 2,(IY+12H) I FD CB 12 56
BIT 2,A CB 57
BIT 2,B CB 50
BIT 2,C CB 51
BIT 2,D CB 52
BIT 2,E CB 53
BIT 2,H CB 54
BIT 2,L CB 55
BIT 3,(HL) CB 5E
BIT 3,(IX+12H) I DD CB 12 5E
BIT 3,(IY+12H) I FD CB 12 5E
BIT 3,A CB 5F
BIT 3,B CB 58
BIT 3,C CB 59

Source Code Mode Object Code

BIT 3,D CB 5A
BIT 3,E CB 5B
BIT 3,H CB 5C
BIT 3,L CB 5D
BIT 4,(HL) CB 66
BIT 4,(IX+12H) I DD CB 12 66
BIT 4,(IY+12H) I FD CB 12 66
BIT 4,A CB 67
BIT 4,B CB 60
BIT 4,C CB 61
BIT 4,D CB 62
BIT 4,E CB 63
BIT 4,H CB 64
BIT 4,L CB 65
BIT 5,(HL) CB 6E
BIT 5,(IX+12H) I DD CB 12 6E
BIT 5,(IY+12H) I FD CB 12 6E
BIT 5,A CB 6F
BIT 5,B CB 68
BIT 5,C CB 69
BIT 5,D CB 6A
BIT 5,E CB 6B
BIT 5,H CB 6C
BIT 5,L CB 6D
BIT 6,(HL) CB 76
BIT 6,(IX+12H) I DD CB 12 76
BIT 6,(IY+12H) I FD CB 12 76
BIT 6,A CB 77
BIT 6,B CB 70
BIT 6,C CB 71
BIT 6,D CB 72
BIT 6,E CB 73
BIT 6,H CB 74
BIT 6,L CB 75
BIT 7,(HL) CB 7E
BIT 7,(IX+12H) I DD CB 12 7E
BIT 7,(IY+12H) I FD CB 12 7E
BIT 7,A CB 7F
BIT 7,B CB 78
BIT 7,C CB 79
BIT 7,D CB 7A
BIT 7,E CB 7B
BIT 7,H CB 7C
BIT 7,L CB 7D
BTEST ED CF
CALL 1234H I X CD 34 12
CALL C,1234H I X DC 34 12
CALL M,1234H I X FC 34 12
CALL NC,1234H I X D4 34 12
CALL NZ,1234H I X C4 34 12
CALL P,1234H I X F4 34 12
CALL PE,1234H I X EC 34 12
CALL V, 1234H I X EC 34 12
CALL PO,1234H I X E4 34 12

USER'S MANUALZILOG

Source Code Mode Object Code

CALL NV, 1234H I X E4 34 12
CALL Z,1234H I X CC 34 12
CALR 123456H X FD CD 56 34 12
CALR 1234H X DD CD 34 12
CALR 12H X ED CD 12
CALR C,123456H X FD DC 56 34 12
CALR C,1234H X DD DC 34 12
CALR C,12H X ED DC 12
CALR M,123456H X FD FC
CALR M,1234H X DD FC 34 12
CALR M,12H X ED FC 12
CALR NC,123456H X FD D4 56 34 12
CALR NC,1234H X DD D4 34 12
CALR NC,12H X ED D4 12
CALR NZ,123456H X FD C4 56 34 12
CALR NZ,1234H X DD C4 34 12
CALR NZ,12H X ED C4 12
CALR P,123456H X FD F4 56 34 12
CALR P,1234H X DD F4 34 12
CALR P,12H X ED F4 12
CALR PE,123456H X FD EC 56 34 12
CALR PE,1234H X DD EC 34 12
CALR PE,12H X ED EC 12
CALR PO,123456H X FD E4 56 34 12
CALR PO,1234H X DD E4 34 12
CALR PO,12H X ED E4 12
CALR Z,123456H X FD CC 56 34 12
CALR Z,1234H X DD CC 34 12
CALR Z,12H X ED CC 12
CCF 3F
CP (HL) BE
CP (IX+12H) I DD BE 12
CP (IY+12H) I FD BE 12
CP 12H FE 12
CP A BF
CP A,(HL) BE
CP A,(IX+12H) I DD BE 12
CP A,(IY+12H) I FD BE 12
CP A,12H FE 12
CP A,A BF
CP A,B B8
CP A,C B9
CP A,D BA
CP A,E BB
CP A,H BC
CP A,IXL DD BD
CP A,IXU DD BC
CP A,IYL FD BD
CP A,IYU FD BC
CP A,L BD
CP B B8
CP C B9
CP D BA
CP E BB

Source Code Mode Object Code

CP H BC
CPW HL,IX DD BF
CPW IX DD BF
CP IXL DD BD
CP IXU DD BC
CP IYL FD BD
CP IYU FD BC
CP L BD
CPD X ED A9
CPDR X ED B9
CPI X ED A1
CPIR X ED B1
CPL A 2F
CPL 2F
CPLW HL DD 2F
CPLW DD 2F
CPW (IX+12H) I DD FE 12
CPW (IY+12H) I FD FE 12
CPW 1234H ED BE 34 12
CPW BC ED BC
CPW DE ED BD
CPW HL ED BF
CPW HL,(IX+12H) I DD FE 12
CPW HL,(IY+12H) I FD FE 12
CPW HL,1234H ED BE 34 12
CPW HL,BC ED BC
CPW HL,DE ED BD
CPW HL,HL ED BF
CPW HL,IY FD BF
CPW IY FD BF
DAA 27
DDIR IB DD C3
DDIR IB,LW FD C1
DDIR IB,W DD C1
DDIR IW FD C3
DDIR IW,LW FD C2
DDIR IW,W DD C2
DDIR LW FD C0
DDIR W DD C0
DEC (HL) 35
DEC (IX+12H) I DD 35 12
DEC (IY+12H) I FD 35 12
DEC A 3D
DEC B 05
DEC BC X 0B
DEC C 0D
DEC D 15
DEC DE X 1B
DEC E 1D
DEC H 25
DEC HL X 2B
DEC IX X DD 2B
DEC IXL DD 2D
DEC IXU DD 25

USER'S MANUALZILOG

Source Code Mode Object Code

DEC IY X FD 2B
DEC IYL FD 2D
DEC IYU FD 25
DEC L 2D
DEC SP X 3B
DECW BC X 0B
DECW DE X 1B
DECW HL X 2B
DECW IX X DD 2B
DECW IY X FD 2B
DECW SP X 3B
DI 1FH DD F3 1F
DI F3
DIVUW (IX+12H) I DD CB 12 BA
DIVUW (IY+12H) I FD CB 12 BA
DIVUW 1234H ED CB BF
DIVUW BC ED CB B8
DIVUW DE ED CB B9
DIVUW HL ED CB BB
DIVUW HL,(IX+12H) I DD CB 12 BA
DIVUW HL,(IY+12H) I FD CB 12 BA
DIVUW HL,1234H ED CB BF
DIVUW HL,BC ED CB B8
DIVUW HL,DE ED CB B9
DIVUW HL,HL ED CB BB
DIVUW HL,IX ED CB BC
DIVUW HL,IY ED CB BD
DIVUW IX ED CB BC
DIVUW IY ED CB BD
DJNZ 123456H X FD 10 56 34 12
DJNZ 1234H X DD 10 34 12
DJNZ 12H X 10 12
EI 1FH DD FB 1F
EI FB
escape CB
escape DD
escape ED
escape FD
escape ED CB
escape DD CB
escape FD CB
EX (SP),HL L E3
EX (SP),IX L DD E3
EX (SP),IY L FD E3
EX A,(HL) ED 37
EX A,A ED 3F
EX A,A’ CB 37
EX A,B ED 07
EX A,C ED 0F
EX A,D ED 17
EX A,E ED 1F
EX A,H ED 27
EX A,L ED 2F
EX AF,AF' 08
EX B,B’ CB 30

Source Code Mode Object Code

EX BC,BC’ L ED CB 30
EX BC,DE L ED 05
EX BC,HL L ED 0D
EX BC,IX L ED 03
EX BC,IY L ED 0B
EX C,C’ CB 31
EX D,D’ CB 32
EX DE,DE’ L ED CB 31
EX DE,HL L EB
EX DE,IX L ED 13
EX DE,IY L ED 1B
EX E,E’ CB 33
EX H,H’ CB 34
EX HL,HL’ L ED CB 33
EX HL,IX L ED 33
EX HL,IY L ED 3B
EX IX,IX’ ED CB 34
EX IX,IY L ED 2B
EX IY,IY’ L ED CB 35
EX L,L’ CB 35
EXALL ED D9
EXTS A L ED 65
EXTS L ED 65
EXTSW HL ED 75
EXTSW ED 75
EXX D9
EXXX DD D9
EXXY FD D9
HALT 76
IM 0 ED 46
IM 1 ED 56
IM 2 ED 5E
IM 3 ED 4E
IN A,(12H) DB 12
IN A,(C) ED 78
IN B,(C) ED 40
IN C,(C) ED 48
IN D,(C) ED 50
IN E,(C) ED 58
IN H,(C) ED 60
IN L,(C) ED 68
IN0 (12H) ED 30 12
IN0 A,(12H) ED 38 12
IN0 B,(12H) ED 00 12
IN0 C,(12H) ED 08 12
IN0 D,(12H) ED 10 12
IN0 E,(12H) ED 18 12
IN0 H,(12H) ED 20 12
IN0 L,(12H) ED 28 12
INA A,(1234H) I ED DB 34 12
INAW HL,(1234H) I FD DB 34 12
INC (HL) 34
INC (IX+12H) I DD 34 12
INC (IY+12H) I FD 34 12
INC A 3C

USER'S MANUALZILOG

Source Code Mode Object Code

INC B 04
INC BC X 03
INC C 0C
INC D 14
INC DE X 13
INC E 1C
INC H 24
INC HL X 23
INC IX X DD 23
INC IXL DD 2C
INC IXU DD 24
INC IY X FD 23
INC IYL FD 2C
INC IYU FD 24
INC L 2C
INC SP X 33
INCW BC X 03
INCW DE X 13
INCW HL X 23
INCW IX X DD 23
INCW IY X FD 23
INCW SP X 33
IND ED AA
INDR ED BA
INDRW ED FA
INDW ED EA
INI ED A2
INIR ED B2
INIRW ED F2
INIW ED E2
INW BC,(C) DD 40
INW DE,(C) DD 50
INW HL,(C) DD 78
JP (HL) X E9
JP (IX) X DD E9
JP (IY) X FD E9
JP 1234H I X C3 34 12
JP C,1234H I X DA 34 12
JP M,1234H I X FA 34 12
JP NC,1234H I X D2 34 12
JP NZ,1234H I X C2 34 12
JP NS,1234H I X F2 34 12
JP NV,1234H I X E2 34 12
JP P,1234H I X F2 34 12
JP PE,1234H I X EA 34 12
JP PO,1234H I X E2 34 12
JP S,1234H I X FA 34 12
JP V,1234H I X E2 34 12
JP Z,1234H I X CA 34 12
JR 123456H X FD 18 56 34 12
JR 1234H X DD 18 34 12
JR 12H X 18 12
JR C,123456H X FD 38 56 34 12
JR C,1234H X DD 38 34 12

Source Code Mode Object Code

JR C,12H X 38 12
JR NC,123456H X FD 30 56 34 12
JR NC,1234H X DD 30 34 12
JR NC,12H X 30 12
JR NZ,123456H X FD 20 56 34 12
JR NZ,1234H X DD 20 34 12
JR NZ,12H X 20 12
JR NZ,12H X 20 12
JR Z,123456H X FD 28 56 34 12
JR Z,1234H X DD 28 34 12
JR Z,12H X 28 12
LD (1234H),A I 32 34 12
LD (1234H),BC I L ED 43 34 12
LD (1234H),DE I L ED 53 34 12
LD (1234H),HL I L 22 34 12
LD (1234H),HL I L ED 63 34 12
LD (1234H),IX I L DD 22 34 12
LD (1234H),IY I L FD 22 34 12
LD (1234H),SP I L ED 73 34 12
LD (BC),A 02
LD (BC),BC L FD 0C
LD (BC),DE L FD 1C
LD (BC),HL L FD 3C
LD (BC),IX L DD 01
LD (BC),IY L FD 01
LD (DE),A 12
LD (DE),BC L FD 0D
LD (DE),DE L FD 1D
LD (DE),HL L FD 3D
LD (DE),IX L DD 11
LD (DE),IY L FD 11
LD (HL),12H 36 12
LD (HL),A 77
LD (HL),B 70
LD (HL),BC L FD 0F
LD (HL),C 71
LD (HL),D 72
LD (HL),DE L FD 1F
LD (HL),E 73
LD (HL),H 74
LD (HL),HL L FD 3F
LD (HL),IX L DD 31
LD (HL),IY L FD 31
LD (HL),L 75
LD (IX+12H),34H I DD 36 12 34
LD (IX+12H),A I DD 77 12
LD (IX+12H),B I DD 70 12
LD (IX+12H),BC I L DD CB 12 0B
LD (IX+12H),C I DD 71 12
LD (IX+12H),D I DD 72 12
LD (IX+12H),E I DD 73 12
LD (IX+12H),DE I L DD CB 12 1B
LD (IX+12H),H I DD 74 12
LD (IX+12H),HL I L DD CB 12 3B

USER'S MANUALZILOG

Source Code Mode Object Code

LD (IX+12H),IY I L DD CB 12 2B
LD (IX+12H),L I DD 75 12
LD (IY+12H),34H I FD 36 34 12
LD (IY+12H),A I FD 77 12
LD (IY+12H),B I FD 70 12
LD (IY+12H),BC I L FD CB 12 0B
LD (IY+12H),C I FD 71 12
LD (IY+12H),D I FD 72 12
LD (IY+12H),DE I FD CB 12 1B
LD (IY+12H),E I L FD 73 12
LD (IY+12H),H I FD 74 12
LD (IY+12H),HL I L FD CB 12 3B
LD (IY+12H),IX I L FD CB 12 2B
LD (IY+12H),L I FD 75 12
LD (SP+12H),BC I L DD CB 12 09
LD (SP+12H),DE I L DD CB 12 19
LD (SP+12H),HL I L DD CB 12 39
LD (SP+12H),IX I L DD CB 12 29
LD (SP+12H),IY I L FD CB 12 29
LD A,(1234H) I 3A 34 12
LD A,(BC) 0A
LD A,(DE) 1A
LD A,(HL) 7E
LD A,(IX+12H) I DD 7E 12
LD A,(IY+12H) I FD 7E 12
LD A,12H 3E 12
LD A,A 7F
LD A,B 78
LD A,C 79
LD A,D 7A
LD A,E 7B
LD A,H 7C
LD A,I ED 57
LD A,IXL DD 7D
LD A,IXU DD 7C
LD A,IYL FD 7D
LD A,IYU FD 7C
LD A,L 7D
LD A,R ED 5F
LD B,(HL) 46
LD B,(IX+12H) I DD 46 12
LD B,(IY+12H) I FD 46 12
LD B,12H 06 12
LD B,A 47
LD B,B 40
LD B,C 41
LD B,D 42
LD B,E 43
LD B,H 44
LD B,IXL DD 45
LD B,IXU DD 44
LD B,IYL FD 45
LD B,IYU FD 44
LD B,L 45

Source Code Mode Object Code

LD BC,(1234H) I L ED 4B 34 12
LD BC,(BC) L DD 0C
LD BC,(DE) L DD 0D
LD BC,(HL) L DD 0F
LD BC,(IX+12H) I L DD CB 12 03
LD BC,(IY+12H) I L FD CB 12 03
LD BC,(SP+12H) I L DD CB 12 01
LD BC,1234H I L 01 34 12
LD BC,BC L ED 02
LD BC,DE L DD 02
LD BC,HL L FD 02
LD BC,IX L DD 0B
LD BC,IY L FD 0B
LD C,(HL) 4E
LD C,(IX+12H) I DD 4E 12
LD C,(IY+12H) I FD 4E 12
LD C,12H 0E 12
LD C,A 4F
LD C,B 48
LD C,C 49
LD C,D 4A
LD C,E 4B
LD C,H 4C
LD C,IXL DD 4D
LD C,IXU DD 4C
LD C,IYL FD 4D
LD C,IYU FD 4C
LD C,L 4D
LD D,(HL) 56
LD D,(IX+12H) I DD 56 12
LD D,(IY+12H) I FD 56 12
LD D,12H 16 12
LD D,A 57
LD D,B 50
LD D,C 51
LD D,D 52
LD D,E 53
LD D,H 54
LD D,IXL DD 55
LD D,IXU DD 54
LD D,IYL FD 55
LD D,IYU FD 54
LD D,L 55
LD DE,(1234H) I L ED 5B 34 12
LD DE,(BC) L DD 1C
LD DE,(DE) L DD 1D
LD DE,(HL) L DD 1F
LD DE,(IX+12H) I L DD CB 12 13
LD DE,(IY+12H) I L FD CB 12 13
LD DE,(SP+12H) I L DD CB 12 11
LD DE,1234H I L 11 34 12
LD DE,BC L ED 12
LD DE,DE L DD 12
LD DE,HL L FD 12

USER'S MANUALZILOG

Source Code Mode Object Code

LD DE,IX L DD 1B
LD DE,IY L FD 1B
LD E,(HL) 5E
LD E,(IX+12H) I DD 5E 12
LD E,(IY+12H) I FD 5E 12
LD E,12H 1E 12
LD E,A 5F
LD E,B 58
LD E,C 59
LD E,D 5A
LD E,E 5B
LD E,H 5C
LD E,L 5D
LD E,IXL DD 5D
LD E,IYU FD 5C
LD E,IYL DD 5D
LD E,IYU FD 5D
LD H,(HL) 66
LD H,(IX+12H) I DD 66 12
LD H,(IY+12H) I FD 66 12
LD H,12H 26 12
LD H,A 67
LD H,B 60
LD H,C 61
LD H,D 62
LD H,E 63
LD H,H 64
LD H,L 65
LD HL,(1234H) I L 2A 34 12
LD HL,(1234H) I L ED 6B 34 12
LD HL,(BC) L DD 3C
LD HL,(DE) L DD 3D
LD HL,(HL) L DD 3F
LD HL,(IX+12H) I L `DD CB 12 33
LD HL,(IY+12H) I L FD CB 12 33
LD HL,(SP+12H) I L DD CB 12 31
LD HL,1234H I L 21 34 12
LD HL,BC L ED 32
LD HL,DE L DD 32
LD HL,HL L FD 32
LD HL,I L DD 57
LD HL,IX L DD 3B
LD HL,IY L FD 3B
LD I,A ED 47
LD I,HL L DD 47
LD IX,(1234H) I L DD 2A 34 12
LD IX,(BC) L DD 03
LD IX,(DE) L DD 13
LD IX,(HL) L DD 33
LD IX,(IY+12H) I L FD CB 12 23
LD IX,(SP+12H) I L DD CB 12 21
LD IX,1234H I L DD 21 34 12
LD IX,BC L DD 07
LD IX,DE L DD 17

Source Code Mode Object Code

LD IX,HL L DD 37
LD IX,IY L DD 27
LD IXL,12H DD 2E 12
LD IXL,A DD 6F
LD IXL,B DD 68
LD IXL,C DD 69
LD IXL,D DD 6A
LD IXL,E DD 6B
LD IXL,IXL DD 6D
LD IXL,IXU DD 6C
LD IXU,12H DD 26 12
LD IXU,A DD 67
LD IXU,B DD 60
LD IXU,C DD 61
LD IXU,D DD 62
LD IXU,E DD 63
LD IXU,IXL DD 65
LD IXU,IXU DD 64
LD IY,(1234H) I L FD 2A 34 12
LD IY,(BC) L FD 03
LD IY,(DE) L FD 13
LD IY,(HL) L FD 33
LD IY,(IX+12H) I L DD CB 12 23
LD IY,(SP+12H) I L FD CB 12 21
LD IY,1234H I L FD 21 34 12
LD IY,BC L FD 07
LD IY,DE L FD 17
LD IY,HL L FD 37
LD IY,IX L FD 27
LD IYL,12H FD 2E 12
LD IYL,A FD 6F
LD IYL,B FD 68
LD IYL,C FD 69
LD IYL,D FD 6A
LD IYL,E FD 6B
LD IYL,IYL FD 6D
LD IYL,IYU FD 6C
LD IYU,12H FD 26 12
LD IYU,A FD 67
LD IYU,B FD 60
LD IYU,C FD 61
LD IYU,D FD 62
LD IYU,E FD 63
LD IYU,IYL FD 65
LD IYU,IYU FD 64
LD L,(HL) 6E
LD L,(IX+12H) I DD 6E 12
LD L,(IY+12H) I FD 6E 12
LD L,12H 2E 12
LD L,A 6F
LD L,B 68
LD L,C 69
LD L,D 6A
LD L,E 6B

USER'S MANUALZILOG

Source Code Mode Object Code

LD L,H 6C
LD L,L 6D
LD R,A ED 4F
LD SP,(1234H) I L ED 7B 34 12
LD SP,1234H I L 31 34 12
LD SP,HL L F9
LD SP,IX L DD F9
LD SP,IY L FD F9
LDCTL A,DSR ED D0
LDCTL A,XSR DD D0
LDCTL A,YSR FD D0
LDCTL DSR,01H ED DA 01
LDCTL DSR,A ED D8
LDCTL HL,SR L ED C0
LDCTL SR,01H DD CA 01
LDCTL SR,A DD C8
LDCTL SR,HL L ED C8
LDCTL XSR,01H DD DA 01
LDCTL XSR,A DD D8
LDCTL YSR,01H FD DA 01
LDCTL YSR,A FD D8
LDD ED A8
LDDR ED B8
LDDRW L ED F8
LDDW L ED E8
LDI ED A0
LDIR ED B0
LDIRW L ED F0
LDIW L ED E0
LDW (BC),1234H I L ED 06 34 12
LDW (DE),1234H I L ED 16 34 12
LDW (HL),1234H I L ED 36 34 12
LDW HL,I L DD 57
LDW I,HL L DD 47
MLT BC ED 4C
MLT DE ED 5C
MLT HL ED 6C
MLT SP ED 7C
MTEST DD CF
MULTUW (IX+12H) I DD CB 12 9A
MULTUW (IY+12H) I FD CB 12 9A
MULTUW 1234H ED CB 9F
MULTUW BC ED CB 98
MULTUW DE ED CB 99
MULTUW HL ED CB 9B
MULTUW HL,(IX+12H) I DD CB 12 9A
MULTUW HL,(IY+12H) I FD CB 12 9A
MULTUW HL,1234H ED CB 9F
MULTUW HL,BC ED CB 98
MULTUW HL,DE ED CB 99
MULTUW HL,HL ED CB 9B
MULTUW HL,IX ED CB 9C
MULTUW HL,IY ED CB 9D
MULTUW IX ED CB 9C
MULTUW IY ED CB 9D

Source Code Mode Object Code

MULTW (IX+12H) I DD CB 12 92
MULTW (IY+12H) I FD CB 12 92
MULTW 1234H ED CB 97 34 12
MULTW BC ED CB 90
MULTW DE ED CB 91
MULTW HL ED CB 93
MULTW HL,(IX+12H) I DD CB 12 92
MULTW HL,(IY+12H) I FD CB 12 92
MULTW HL,1234H ED CB 97 34 12
MULTW HL,BC ED CB 90
MULTW HL,DE ED CB 91
MULTW HL,HL ED CB 93
MULTW HL,IX ED CB 94
MULTW HL,IY ED CB 95
MULTW IX ED CB 94
MULTW IY ED CB 95
NEG A ED 44
NEG ED 44
NEGW HL ED 54
NEGW ED 54
NOP 00
OR (HL) B6
OR (IX+12H) I DD B6 12
OR (IY+12H) I FD B6 12
OR 12H F6 12
OR A B7
OR A,(HL) B6
OR A,(IX+12H) I DD B6 12
OR A,(IY+12H) I FD B6 12
OR A,12H F6 12
OR A,A B7
OR A,B B0
OR A,C B1
OR A,D B2
OR A,E B3
OR A,H B4
OR A,IXL DD B5
OR A,IXU DD B4
OR A,IYL FD B5
OR A,IYU FD B4
OR A,L B5
OR B B0
OR C B1
OR D B2
OR E B3
OR H B4
OR IXL DD B5
OR IXU DD B4
OR IYL FD B5
OR IYU FD B4
OR L B5
ORW (IX+12H) I DD F6 12
ORW (IY+12H) I FD F6 12
ORW 1234H ED B6 34 12
ORW BC ED B4

USER'S MANUALZILOG

Source Code Mode Object Code

ORW DE ED B5
ORW HL ED B7
ORW HL,(IX+12H) I DD F6 12
ORW HL,(IY+12H) I FD F6 12
ORW HL,1234H ED B6 34 12
ORW HL,BC ED B4
ORW HL,DE ED B5
ORW HL,HL ED B7
ORW HL,IX DD B7
ORW HL,IY FD B7
ORW IX DD B7
ORW IY FD B7
OTDM ED 8B
OTDMR ED 9B
OTDR ED BB
OTDRW ED FB
OTIM ED 83
OTIMR ED 93
OTIR ED B3
OTIRW ED F3
OUT (12H),A D3 12
OUT (C),12H ED 71 12
OUT (C),A ED 79
OUT (C),B ED 41
OUT (C),C ED 49
OUT (C),D ED 51
OUT (C),E ED 59
OUT (C),H ED 61
OUT (C),L ED 69
OUT0 (12H),A ED 39 12
OUT0 (12H),B ED 01 12
OUT0 (12H),C ED 09 12
OUT0 (12H),D ED 11 12
OUT0 (12H),E ED 19 12
OUT0 (12H),H ED 21 12
OUT0 (12H),L ED 29 12
OUTA (1234H),A I ED D3 34 12
OUTAW (1234H),HL I FD D3 34 12
OUTD ED AB
OUTDW ED EB
OUTI ED A3
OUTIW ED E3
OUTW (C),1234H FD 79 34 12
OUTW (C),BC DD 41
OUTW (C),DE DD 51
OUTW (C),HL DD 79
POP AF L F1
POP BC L C1
POP DE L D1
POP HL L E1
POP IX L DD E1
POP IY L FD E1
POP SR L ED C1
PUSH 1234H I L FD F5 34 12

Source Code Mode Object Code

PUSH AF L F5
PUSH BC L C5
PUSH DE L D5
PUSH HL L E5
PUSH IX L DD E5
PUSH IY L FD E5
PUSH SR L ED C5
RES 0,(HL) CB 86
RES 0,(IX+12H) I DD CB 12 86
RES 0,(IY+12H) I FD CB 12 86
RES 0,A CB 87
RES 0,B CB 80
RES 0,C CB 81
RES 0,D CB 82
RES 0,E CB 83
RES 0,H CB 84
RES 0,L CB 85
RES 1,(HL) CB 8E
RES 1,(IX+12H) I DD CB 12 8E
RES 1,(IY+12H) I FD CB 12 8E
RES 1,A CB 8F
RES 1,B CB 88
RES 1,C CB 89
RES 1,D CB 8A
RES 1,E CB 8B
RES 1,H CB 8C
RES 1,L CB 8D
RES 2,(HL) CB 96
RES 2,(IX+12H) I DD CB 12 96
RES 2,(IY+12H) I FD CB 12 96
RES 2,A CB 97
RES 2,B CB 90
RES 2,C CB 91
RES 2,D CB 92
RES 2,E CB 93
RES 2,H CB 94
RES 2,L CB 95
RES 3,(HL) CB 9E
RES 3,(IX+12H) I DD CB 12 9E
RES 3,(IY+12H) I FD CB 12 9E
RES 3,A CB 9F
RES 3,B CB 98
RES 3,C CB 99
RES 3,D CB 9A
RES 3,E CB 9B
RES 3,H CB 9C
RES 3,L CB 9D
RES 4,(HL) CB A6
RES 4,(IX+12H) I DD CB 12 A6
RES 4,(IY+12H) I FD CB 12 A6
RES 4,A CB A7
RES 4,B CB A0
RES 4,C CB A1
RES 4,D CB A2

USER'S MANUALZILOG

Source Code Mode Object Code

RES 4,E CB A3
RES 4,H CB A4
RES 4,L CB A5
RES 5,(HL) CB AE
RES 5,(IX+12H) I DD CB 12 AE
RES 5,(IY+12H) I FD CB 12 AE
RES 5,A CB AF
RES 5,B CB A8
RES 5,C CB A9
RES 5,D CB AA
RES 5,E CB AB
RES 5,H CB AC
RES 5,L CB AD
RES 6,(HL) CB B6
RES 6,(IX+12H) I DD CB 12 B6
RES 6,(IY+12H) I FD CB 12 B6
RES 6,A CB B7
RES 6,B CB B0
RES 6,C CB B1
RES 6,D CB B2
RES 6,E CB B3
RES 6,H CB B4
RES 6,L CB B5
RES 7,(HL) CB BE
RES 7,(IX+12H) I DD CB 12 BE
RES 7,(IY+12H) I FD CB 12 BE
RES 7,A CB BF
RES 7,B CB B8
RES 7,C CB B9
RES 7,D CB BA
RES 7,E CB BB
RES 7,H CB BC
RES 7,L CB BD
RESC LCK ED FF
RESC LW DD FF
reserved ED 55
RET C X D8
RET M X F8
RET NC X D0
RET NS X F0
RET NV X E0
RET NZ X C0
RET P X F0
RET PE X E8
RET PO X E0
RET S X F8
RET V X E8
RET Z X C8
RET X C9
RETI X ED 4D
RETN X ED 45
RL (HL) CB 16
RL (IX+12H) I DD CB 12 16
RL (IY+12H) I FD CB 12 16

Source Code Mode Object Code

RL A CB 17
RL B CB 10
RL C CB 11
RL D CB 12
RL E CB 13
RL H CB 14
RL L CB 15
RLA 17
RLC (HL) CB 06
RLC (IX+12H) I DD CB 12 06
RLC (IY+12H) I FD CB 12 06
RLC A CB 07
RLC B CB 00
RLC C CB 01
RLC D CB 02
RLC E CB 03
RLC H CB 04
RLC L CB 05
RLCA 07
RLCW (HL) ED CB 02
RLCW (IX+12H) I DD CB 12 02
RLCW (IY+12H) I FD CB 12 02
RLCW BC ED CB 00
RLCW DE ED CB 01
RLCW HL ED CB 03
RLCW IX ED CB 04
RLCW IY ED CB 05
RLD ED 6F
RLW (HL) ED CB 12
RLW (IX+12H) I DD CB 12 12
RLW (IY+12H) I FD CB 12 12
RLW BC ED CB 10
RLW DE ED CB 11
RLW HL ED CB 13
RLW IX ED CB 14
RLW IY ED CB 15
RR (HL) CB 1E
RR (IX+12H) I DD CB 12 1E
RR (IY+12H) I FD CB 12 1E
RR A CB 1F
RR B CB 18
RR C CB 19
RR D CB 1A
RR E CB 1B
RR H CB 1C
RR L CB 1D
RRA 1F
RRC (HL) CB 0E
RRC (IX+12H) I DD CB 12 0E
RRC (IY+12H) I FD CB 12 0E
RRC A CB 0F
RRC B CB 08
RRC C CB 09
RRC D CB 0A
RRC E CB 0B

USER'S MANUALZILOG

Source Code Mode Object Code

RRC H CB 0C
RRC L CB 0D
RRCA 0F
RRCW (HL) ED CB 0A
RRCW (IX+12H) I DD CB 12 0A
RRCW (IY+12H) I FD CB 12 0A
RRCW BC ED CB 08
RRCW DE ED CB 09
RRCW HL ED CB 0B
RRCW IX ED CB 0C
RRCW IY ED CB 0D
RRD ED 67
RRW (HL) ED CB 1A
RRW (IX+12H) I DD CB 12 1A
RRW (IY+12H) I FD CB 12 1A
RRW BC ED CB 18
RRW DE ED CB 19
RRW HL ED CB 1B
RRW IX ED CB 1C
RRW IY ED CB 1D
RST 00H X C7
RST 08H X CF
RST 10H X D7
RST 18H X DF
RST 20H X E7
RST 28H X EF
RST 30H X F7
RST 38H X FF
SBC A,(HL) 9E
SBC A,(IX+12H) I DD 9E 12
SBC A,(IY+12H) I FD 9E 12
SBC A,12H DE 12
SBC A,A 9F
SBC A,B 98
SBC A,C 99
SBC A,D 9A
SBC A,E 9B
SBC A,H 9C
SBC A,IXL DD 9D
SBC A,IXU DD 9C
SBC A,IYL FD 9D
SBC A,IYU FD 9C
SBC A,L 9D
SBC HL,BC ED 42
SBC HL,DE ED 52
SBC HL,HL ED 62
SBC HL,SP ED 72
SBCW (IX+12H) I DD DE 12
SBCW (IY+12H) I FD DE 12
SBCW 1234H ED 9E 34 12
SBCW BC ED 9C
SBCW DE ED 9D
SBCW HL ED 9F
SBCW HL,(IX+12H) DD DE 12

Source Code Mode Object Code

SBCW HL,(IY+12H) FD DE 12
SBCW HL,1234H ED 9E 34 12
SBCW HL,BC ED 9C
SBCW HL,DE ED 9D
SBCW HL,HL ED 9F
SBCW HL,IX DD 9F
SBCW HL,IY FD 9F
SBCW IX DD 9F
SBCW IY FD 9F
SCF 37
SET 0,(HL) CB C6
SET 0,(IX+12H) I DD CB 12 C6
SET 0,(IY+12H) I FD CB 12 C6
SET 0,A CB C7
SET 0,B CB C0
SET 0,C CB C1
SET 0,D CB C2
SET 0,E CB C3
SET 0,H CB C4
SET 0,L CB C5
SET 1,(HL) CB CE
SET 1,(IX+12H) I DD CB 12 CE
SET 1,(IY+12H) I FD CB 12 CE
SET 1,A CB CF
SET 1,B CB C8
SET 1,C CB C9
SET 1,D CB CA
SET 1,E CB CB
SET 1,H CB CC
SET 1,L CB CD
SET 2,(HL) CB D6
SET 2,(IX+12H) I DD CB 12 D6
SET 2,(IY+12H) I FD CB 12 D6
SET 2,A CB D7
SET 2,B CB D0
SET 2,C CB D1
SET 2,D CB D2
SET 2,E CB D3
SET 2,H CB D4
SET 2,L CB D5
SET 3,(HL) CB DE
SET 3,(IX+12H) I DD CB 12 DE
SET 3,(IY+12H) I FD CB 12 DE
SET 3,A CB DF
SET 3,B CB D8
SET 3,C CB D9
SET 3,D CB DA
SET 3,E CB DB
SET 3,H CB DC
SET 3,L CB DD
SET 4,(HL) CB E6
SET 4,(IX+12H) I DD CB 12 E6
SET 4,(IY+12H) I FD CB 12 E6
SET 4,A CB E7

USER'S MANUALZILOG

Source Code Mode Object Code

SET 4,B CB E0
SET 4,C CB E1
SET 4,D CB E2
SET 4,E CB E3
SET 4,H CB E4
SET 4,L CB E5
SET 5,(HL) CB EE
SET 5,(IX+12H) I DD CB 12 EE
SET 5,(IY+12H) I FD CB 12 EE
SET 5,A CB EF
SET 5,B CB E8
SET 5,C CB E9
SET 5,D CB EA
SET 5,E CB EB
SET 5,H CB EC
SET 5,L CB ED
SET 6,(HL) CB F6
SET 6,(IX+12H) I DD CB 12 F6
SET 6,(IY+12H) I FD CB 12 F6
SET 6,A CB F7
SET 6,B CB F0
SET 6,C CB F1
SET 6,D CB F2
SET 6,E CB F3
SET 6,H CB F4
SET 6,L CB F5
SET 7,(HL) CB FE
SET 7,(IX+12H) I DD CB 12 FE
SET 7,(IY+12H) I FD CB 12 FE
SET 7,A CB FF
SET 7,B CB F8
SET 7,C CB F9
SET 7,D CB FA
SET 7,E CB FB
SET 7,H CB FC
SET 7,L CB FD
SETC LCK ED F7
SETC LW DD F7
SETC XM FD F7
SLA (HL) CB 26
SLA (IX+12H) I DD CB 12 26
SLA (IY+12H) I FD CB 12 26
SLA A CB 27
SLA B CB 20
SLA C CB 21
SLA D CB 22
SLA E CB 23
SLA H CB 24
SLA L CB 25
SLAW (HL) ED CB 22
SLAW (IX+12H) I DD CB 12 22
SLAW (IY+12H) I FD CB 12 22
SLAW BC ED CB 20
SLAW DE ED CB 21

Source Code Mode Object Code

SLAW HL ED CB 23
SLAW IX ED CB 24
SLAW IY ED CB 25
SLP ED 76
SRA (HL) CB 2E
SRA (IX+12H) I DD CB 12 2E
SRA (IY+12H) I FD CB 12 2E
SRA A CB 2F
SRA B CB 28
SRA C CB 29
SRA D CB 2A
SRA E CB 2B
SRA H CB 2C
SRA L CB 2D
SRAW (HL) ED CB 2A
SRAW (IX+12H) I DD CB 12 2A
SRAW (IY+12H) I FD CB 12 2A
SRAW BC ED CB 28
SRAW DE ED CB 29
SRAW HL ED CB 2B
SRAW IX ED CB 2C
SRAW IY ED CB 2D
SRL (HL) CB 3E
SRL (IX+12H) I DD CB 12 3E
SRL (IY+12H) I FD CB 12 3E
SRL A CB 3F
SRL B CB 38
SRL C CB 39
SRL D CB 3A
SRL E CB 3B
SRL H CB 3C
SRL L CB 3D
SRLW (HL) ED CB 3A
SRLW (IX+12H) I DD CB 12 3A
SRLW (IY+12H) I FD CB 12 3A
SRLW BC ED CB 38
SRLW DE ED CB 39
SRLW HL ED CB 3B
SRLW IX ED CB 3C
SRLW IY ED CB 3D
SUB A,(HL) 96
SUB A,12H D6 12
SUB A,A 97
SUB A,(IX+12H) I DD 96 12
SUB A,(IY+12H) I FD 96 12
SUB 12H D6 12
SUB A,B 90
SUB A,C 91
SUB A,D 92
SUB A,E 93
SUB A,H 94
SUB A,IXL DD 95
SUB A,IXU DD 94
SUB A,IYL FD 95

USER'S MANUALZILOG

Source Code Mode Object Code

SUB A,IYU FD 94
SUB A,L 95 SUB
HL,(1234H) I X ED D6 34 12
SUB SP,1234H I X ED 92 34 12
SUBW (IX+12H) DD D6 12
SUBW (IY+12H) FD D6 12
SUBW 1234H ED 96 34 12
SUBW BC ED 94
SUBW DE ED 95
SUBW HL ED 97
SUBW HL,(IX+12H) I DD D6 12
SUBW HL,(IY+12H) I FD D6 12
SUBW HL,1234H ED 96 34 12
SUBW HL,BC ED 94
SUBW HL,DE ED 95
SUBW HL,HL ED 97
SUBW HL,IX DD 97
SUBW HL,IY FD 97
SUBW IX DD 97
SUBW IY FD 97
SWAP BC ED 0E
SWAP DE ED 1E
SWAP HL ED 3E
SWAP IX DD 3E
SWAP IY FD 3E
TST (HL) ED 34
TST 12H ED 64 12
TST A ED 3C
TST B ED 04
TST C ED 0C
TST D ED 14
TST E ED 1C
TST H ED 24
TST L ED 2C
TSTIO 12H ED 74 12
XOR (HL) AE
XOR (IX+12H) I DD AE 12
XOR (IY+12H) I FD AE 12
XOR 12H EE 12
XOR A AF
XOR A,(HL) AE
XOR A,(IX+12H) I DD AE 12
XOR A,(IY+12H) I FD AE 12
XOR A,12H EE 12
XOR A,A AF
XOR A,B A8
XOR A,C A9
XOR A,D AA
XOR A,E AB
XOR A,H AC
XOR A,IXL DD AD
XOR A,IXU DD AC

Source Code Mode Object Code

XOR A,IYL FD AD
XOR A,IYU FD AC
XOR A,L AD
XOR B A8
XOR C A9
XOR D AA
XOR E AB
XOR H AC
XOR IXL DD AD
XOR IXU DD AC
XOR IYL FD AD
XOR IYU FD AC
XOR L AD
XORW (IX+12H) I DD EE 12
XORW (IY+12H) I FD EE 12
XORW 1234H ED AE 34 12
XORW BC ED AC
XORW DE ED AD
XORW HL ED AF
XORW HL,(IX+12H) I DD EE 12
XORW HL,(IY+12H) I FD EE 12
XORW HL,1234H ED AE 34 12
XORW HL,BC ED AC
XORW HL,DE ED AD
XORW HL,HL ED AF
XORW HL,IX DD AF
XORW HL,IY FD AF
XORW IX DD AF
XORW IY FD AF

USER'S MANUALZILOG

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

USER'S MANUALZILOG

USER’s MANUAL

APPENDIX C
Z380™ INSTRUCTION IN NUMERIC ORDER

The following Appendix has the Z380 instructions sorted
by numeric order.

The column “Mode” indicates whether the instruction is
affected by DDIR immediate Decoder Directives, Extended
mode or Native mode of operation, and Word or Long Word
Mode of operation; “I” means the instruction can be used
with DDIR IM to expand its immediate constant, “X” means

that the operation of the instruction is affected by the XM
status bit, and “L” means that the instruction is affected by
LW status bit, or can be used with DDIR LW or DDIR W. The
Native/Extended modes, Word/Long Word modes and
Decoder Directives are discussed in Chapter 3 in this
manual.

USER'S MANUALZILOG

Object Code Source Code Mode

00 NOP
01 34 12 LD BC,1234H I L
02 LD (BC),A
03 INC BC X
03 INCW BC X
04 INC B
05 DEC B
06 12 LD B,12H
07 RLCA
08 EX AF,AF'
09 ADD HL,BC X
0A LD A,(BC)
0B DEC BC X
0B DECW BC X
0C INC C
0D DEC C
0E 12 LD C,12H
0F RRCA
10 12 DJNZ 12H X
11 34 12 LD DE,1234H I L
12 LD (DE),A
13 INC DE X
13 INCW DE X
14 INC D
15 DEC D
16 12 LD D,12H
17 RLA
18 12 JR 12H X
19 ADD HL,DE X
1A LD A,(DE)
1B DEC DE X
1B DECW DE X
1C INC E
1D DEC E
1E 12 LD E,12H
1F RRA
20 12 JR NZ,12H X
21 34 12 LD HL,1234H I L
22 34 12 LD (1234H),HL I L
23 INC HL X
23 INCW HL X
24 INC H
25 DEC H
26 12 LD H,12H
27 DAA
28 12 JR Z,12H X
29 ADD HL,HL X
2A 34 12 LD HL,(1234H) I L
2B DEC HL X
2B DECW HL X
2C INC L
2D DEC L
2E 12 LD L,12H
2F CPL A

Object Code Source Code Mode

2F CPL
30 12 JR NC,12H X
31 34 12 LD SP,1234H I L
32 34 12 LD (1234H),A I
33 INC SP X
33 INCW SP X
34 INC (HL)
35 DEC (HL)
36 12 LD (HL),12H
37 SCF
38 12 JR C,12H X
39 ADD HL,SP X
3A 34 12 LD A,(1234H) I
3B DEC SP X
3B DECW SP X
3C INC A
3D DEC A
3E 12 LD A,12H
3F CCF
40 LD B,B
41 LD B,C
42 LD B,D
43 LD B,E
44 LD B,H
45 LD B,L
46 LD B,(HL)
47 LD B,A
48 LD C,B
49 LD C,C
4A LD C,D
4B LD C,E
4C LD C,H
4D LD C,L
4E LD C,(HL)
4F LD C,A
50 LD D,B
51 LD D,C
52 LD D,D
53 LD D,E
54 LD D,H
55 LD D,L
56 LD D,(HL)
57 LD D,A
58 LD E,B
59 LD E,C
5A LD E,D
5B LD E,E
5C LD E,H
5D LD E,L
5E LD E,(HL)
5F LD E,A
60 LD H,B
61 LD H,C
62 LD H,D

USER'S MANUALZILOG

Object Code Source Code Mode

63 LD H,E
64 LD H,H
65 LD H,L
66 LD H,(HL)
67 LD H,A
68 LD L,B
69 LD L,C
6A LD L,D
6B LD L,E
6C LD L,H
6D LD L,L
6E LD L,(HL)
6F LD L,A
70 LD (HL),B
71 LD (HL),C
72 LD (HL),D
73 LD (HL),E
74 LD (HL),H
75 LD (HL),L
76 HALT
77 LD (HL),A
78 LD A,B
79 LD A,C
7A LD A,D
7B LD A,E
7C LD A,H
7D LD A,L
7E LD A,(HL)
7F LD A,A
80 ADD A,B
81 ADD A,C
82 ADD A,D
83 ADD A,E
84 ADD A,H
85 ADD A,L
86 ADD A,(HL)
87 ADD A,A
88 ADC A,B
89 ADC A,C
8A ADC A,D
8B ADC A,E
8C ADC A,H
8D ADC A,L
8E ADC A,(HL)
8F ADC A,A
90 SUB A,B
91 SUB A,C
92 SUB A,D
93 SUB A,E
94 SUB A,H
95 SUB A,L
96 SUB A,(HL)
97 SUB A,A
98 SBC A,B

Object Code Source Code Mode

99 SBC A,C
9A SBC A,D
9B SBC A,E
9C SBC A,H
9D SBC A,L
9E SBC A,(HL)
9F SBC A,A
A0 AND A,B
A0 AND B
A1 AND A,C
A1 AND C
A2 AND A,D
A2 AND D
A3 AND A,E
A3 AND E
A4 AND A,H
A4 AND H
A5 AND A,L
A5 AND L
A6 AND (HL)
A6 AND A,(HL)
A7 AND A
A7 AND A,A
A8 XOR A,B
A8 XOR B
A9 XOR A,C
A9 XOR C
AA XOR A,D
AA XOR D
AB XOR A,E
AB XOR E
AC XOR A,H
AC XOR H
AD XOR A,L
AD XOR L
AE XOR (HL)
AE XOR A,(HL)
AF XOR A
AF XOR A,A
B0 OR A,B
B0 OR B
B1 OR A,C
B1 OR C
B2 OR A,D
B2 OR D
B3 OR A,E
B3 OR E
B4 OR A,H
B4 OR H
B5 OR A,L
B5 OR L
B6 OR (HL)
B6 OR A,(HL)
B7 OR A

USER'S MANUALZILOG

Object Code Source Code Mode

B7 OR A,A
B8 CP A,B
B8 CP B
B9 CP A,C
B9 CP C
BA CP A,D
BA CP D
BB CP A,E
BB CP E
BC CP A,H
BC CP H
BD CP A,L
BD CP L
BE CP (HL)
BE CP A,(HL)
BF CP A
BF CP A,A
C0 RET NZ X
C1 POP BC L
C2 34 12 JP NZ,1234H I X
C3 34 12 JP 1234H I X
C4 34 12 CALL NZ,1234H I X
C5 PUSH BC L
C6 12 ADD A,12H
C7 RST 00H X
C8 RET Z X
C9 RET X
CA 34 12 JP Z,1234H I X
CB 00 RLC B
CB 01 RLC C
CB 02 RLC D
CB 03 RLC E
CB 04 RLC H
CB 05 RLC L
CB 06 RLC (HL)
CB 07 RLC A
CB 08 RRC B
CB 09 RRC C
CB 0A RRC D
CB 0B RRC E
CB 0C RRC H
CB 0D RRC L
CB 0E RRC (HL)
CB 0F RRC A
CB 10 RL B
CB 11 RL C
CB 12 RL D
CB 13 RL E
CB 14 RL H
CB 15 RL L
CB 16 RL (HL)
CB 17 RL A
CB 18 RR B
CB 19 RR C

Object Code Source Code Mode

CB 1A RR D
CB 1B RR E
CB 1C RR H
CB 1D RR L
CB 1E RR (HL)
CB 1F RR A
CB 20 SLA B
CB 21 SLA C
CB 22 SLA D
CB 23 SLA E
CB 24 SLA H
CB 25 SLA L
CB 26 SLA (HL)
CB 27 SLA A
CB 28 SRA B
CB 29 SRA C
CB 2A SRA D
CB 2B SRA E
CB 2C SRA H
CB 2D SRA L
CB 2E SRA (HL)
CB 2F SRA A
CB 30 EX B,B’
CB 31 EX C,C’
CB 32 EX D,D’
CB 33 EX E,E’
CB 34 EX H,H’
CB 35 EX L,L’
CB 37 EX A,A’
CB 38 SRL B
CB 39 SRL C
CB 3A SRL D
CB 3B SRL E
CB 3C SRL H
CB 3D SRL L
CB 3E SRL (HL)
CB 3F SRL A
CB 40 BIT 0,B
CB 41 BIT 0,C
CB 42 BIT 0,D
CB 43 BIT 0,E
CB 44 BIT 0,H
CB 45 BIT 0,L
CB 46 BIT 0,(HL)
CB 47 BIT 0,A
CB 48 BIT 1,B
CB 49 BIT 1,C
CB 4A BIT 1,D
CB 4B BIT 1,E
CB 4C BIT 1,H
CB 4D BIT 1,L
CB 4E BIT 1,(HL)
CB 4F BIT 1,A
CB 50 BIT 2,B

USER'S MANUALZILOG

Object Code Source Code Mode

CB 51 BIT 2,C
CB 52 BIT 2,D
CB 53 BIT 2,E
CB 54 BIT 2,H
CB 55 BIT 2,L
CB 56 BIT 2,(HL)
CB 57 BIT 2,A
CB 58 BIT 3,B
CB 59 BIT 3,C
CB 5A BIT 3,D
CB 5B BIT 3,E
CB 5C BIT 3,H
CB 5D BIT 3,L
CB 5E BIT 3,(HL)
CB 5F BIT 3,A
CB 60 BIT 4,B
CB 61 BIT 4,C
CB 62 BIT 4,D
CB 63 BIT 4,E
CB 64 BIT 4,H
CB 65 BIT 4,L
CB 66 BIT 4,(HL)
CB 67 BIT 4,A
CB 68 BIT 5,B
CB 69 BIT 5,C
CB 6A BIT 5,D
CB 6B BIT 5,E
CB 6C BIT 5,H
CB 6D BIT 5,L
CB 6E BIT 5,(HL)
CB 6F BIT 5,A
CB 70 BIT 6,B
CB 71 BIT 6,C
CB 72 BIT 6,D
CB 73 BIT 6,E
CB 74 BIT 6,H
CB 75 BIT 6,L
CB 76 BIT 6,(HL)
CB 77 BIT 6,A
CB 78 BIT 7,B
CB 79 BIT 7,C
CB 7A BIT 7,D
CB 7B BIT 7,E
CB 7C BIT 7,H
CB 7D BIT 7,L
CB 7E BIT 7,(HL)
CB 7F BIT 7,A
CB 80 RES 0,B
CB 81 RES 0,C
CB 82 RES 0,D
CB 83 RES 0,E
CB 84 RES 0,H
CB 85 RES 0,L
CB 86 RES 0,(HL)

Object Code Source Code Mode

CB 87 RES 0,A
CB 88 RES 1,B
CB 89 RES 1,C
CB 8A RES 1,D
CB 8B RES 1,E
CB 8C RES 1,H
CB 8D RES 1,L
CB 8E RES 1,(HL)
CB 8F RES 1,A
CB 90 RES 2,B
CB 91 RES 2,C
CB 92 RES 2,D
CB 93 RES 2,E
CB 94 RES 2,H
CB 95 RES 2,L
CB 96 RES 2,(HL)
CB 97 RES 2,A
CB 98 RES 3,B
CB 99 RES 3,C
CB 9A RES 3,D
CB 9B RES 3,E
CB 9C RES 3,H
CB 9D RES 3,L
CB 9E RES 3,(HL)
CB 9F RES 3,A
CB A0 RES 4,B
CB A1 RES 4,C
CB A2 RES 4,D
CB A3 RES 4,E
CB A4 RES 4,H
CB A5 RES 4,L
CB A6 RES 4,(HL)
CB A7 RES 4,A
CB A8 RES 5,B
CB A9 RES 5,C
CB AA RES 5,D
CB AB RES 5,E
CB AC RES 5,H
CB AD RES 5,L
CB AE RES 5,(HL)
CB AF RES 5,A
CB B0 RES 6,B
CB B1 RES 6,C
CB B2 RES 6,D
CB B3 RES 6,E
CB B4 RES 6,H
CB B5 RES 6,L
CB B6 RES 6,(HL)
CB B7 RES 6,A
CB B8 RES 7,B
CB B9 RES 7,C
CB BA RES 7,D
CB BB RES 7,E
CB BC RES 7,H

USER'S MANUALZILOG

Object Code Source Code Mode

CB BD RES 7,L
CB BE RES 7,(HL)
CB BF RES 7,A
CB C0 SET 0,B
CB C1 SET 0,C
CB C2 SET 0,D
CB C3 SET 0,E
CB C4 SET 0,H
CB C5 SET 0,L
CB C6 SET 0,(HL)
CB C7 SET 0,A
CB C8 SET 1,B
CB C9 SET 1,C
CB CA SET 1,D
CB CB SET 1,E
CB CC SET 1,H
CB CD SET 1,L
CB CE SET 1,(HL)
CB CF SET 1,A
CB D0 SET 2,B
CB D1 SET 2,C
CB D2 SET 2,D
CB D3 SET 2,E
CB D4 SET 2,H
CB D5 SET 2,L
CB D6 SET 2,(HL)
CB D7 SET 2,A
CB D8 SET 3,B
CB D9 SET 3,C
CB DA SET 3,D
CB DB SET 3,E
CB DC SET 3,H
CB DD SET 3,L
CB DE SET 3,(HL)
CB DF SET 3,A
CB E0 SET 4,B
CB E1 SET 4,C
CB E2 SET 4,D
CB E3 SET 4,E
CB E4 SET 4,H
CB E5 SET 4,L
CB E6 SET 4,(HL)
CB E7 SET 4,A
CB E8 SET 5,B
CB E9 SET 5,C
CB EA SET 5,D
CB EB SET 5,E
CB EC SET 5,H
CB ED SET 5,L
CB EE SET 5,(HL)
CB EF SET 5,A
CB F0 SET 6,B
CB F1 SET 6,C
CB F2 SET 6,D

Object Code Source Code Mode

CB F3 SET 6,E
CB F4 SET 6,H
CB F5 SET 6,L
CB F6 SET 6,(HL)
CB F7 SET 6,A
CB F8 SET 7,B
CB F9 SET 7,C
CB FA SET 7,D
CB FB SET 7,E
CB FC SET 7,H
CB FD SET 7,L
CB FE SET 7,(HL)
CB FF SET 7,A
CC 34 12 CALL Z,1234H I X
CD 34 12 CALL 1234H I X
CE 12 ADD A,12H
CF RST 08H X
D0 RET NC X
D1 POP DE L
D2 34 12 JP NC,1234H I X
D3 12 OUT (12H),A
D4 34 12 CALL NC,1234H I X
D5 PUSH DE L
D6 12 SUB 12H
D6 12 SUB A,12H
D7 RST 10H X
D8 RET C X
D9 EXX
DA 34 12 JP C,1234H I X
DB 12 IN A,(12H)
DC 34 12 CALL C,1234H I X
DD 01 LD (BC),IX L
DD 02 LD BC,DE L
DD 03 LD IX,(BC) L
DD 07 LD IX,BC L
DD 09 ADD IX,BC X
DD 0B LD BC,IX L
DD 0C LD BC,(BC) L
DD 0D LD BC,(DE) L
DD 0F LD BC,(HL) L
DD 10 34 12 DJNZ 1234H X
DD 11 LD (DE),IX L
DD 12 LD DE,DE L
DD 13 LD IX,(DE) L
DD 17 LD IX,DE L
DD 18 34 12 JR 1234H X
DD 19 ADD IX,DE X
DD 1B LD DE,IX L
DD 1C LD DE,(BC) L
DD 1D LD DE,(DE) L
DD 1F LD DE,(HL) L
DD 20 34 12 JR NZ,1234H X
DD 21 34 12 LD IX,1234H I L
DD 22 34 12 LD (1234H),IX I L

USER'S MANUALZILOG

Object Code Source Code Mode

DD 23 INC IX X
DD 23 INCW IX X
DD 24 INC IXU
DD 25 DEC IXU
DD 26 12 LD IXU,12H
DD 27 LD IX,IY L
DD 28 34 12 JR Z,1234H X
DD 29 ADD IX,IX X
DD 2A 34 12 LD IX,(1234H) I L
DD 2B DEC IX X
DD 2B DECW IX X
DD 2C INC IXL
DD 2D DEC IXL
DD 2E 12 LD IXL,12H
DD 2F CPLW HL
DD 2F CPLW
DD 30 34 12 JR NC,1234H X
DD 31 LD (HL),IX L
DD 32 LD HL,DE L
DD 33 LD IX,(HL) L
DD 34 12 INC (IX+12H) I
DD 35 12 DEC (IX+12H) I
DD 36 12 34 LD (IX+12H),34H I
DD 37 LD IX,HL L
DD 38 34 12 JR C,1234H X
DD 39 ADD IX,SP X
DD 3B LD HL,IX L
DD 3C LD HL,(BC) L
DD 3D LD HL,(DE) L
DD 3E SWAP IX
DD 3F LD HL,(HL) L
DD 40 INW BC,(C)
DD 41 OUTW (C),BC
DD 44 LD B,IXU
DD 45 LD B,IXL
DD 46 12 LD B,(IX+12H) I
DD 47 LD I,HL L
DD 47 LDW I,HL L
DD 4C LD C,IXU
DD 4D LD C,IXL
DD 4E 12 LD C,(IX+12H) I
DD 50 INW DE,(C)
DD 51 OUTW (C),DE
DD 54 LD D,IXU
DD 55 LD D,IXL
DD 56 12 LD D,(IX+12H) I
DD 57 LD HL,I L
DD 57 LDW HL,I L
DD 5D LD E,IXL
DD 5D LD E,IYL
DD 5E 12 LD E,(IX+12H) I
DD 60 LD IXU,B
DD 61 LD IXU,C
DD 62 LD IXU,D

Object Code Source Code Mode

DD 63 LD IXU,E
DD 64 LD IXU,IXU
DD 65 LD IXU,IXL
DD 66 12 LD H,(IX+12H) I
DD 67 LD IXU,A
DD 68 LD IXL,B
DD 69 LD IXL,C
DD 6A LD IXL,D
DD 6B LD IXL,E
DD 6C LD IXL,IXU
DD 6D LD IXL,IXL
DD 6E 12 LD L,(IX+12H) I
DD 6F LD IXL,A
DD 70 12 LD (IX+12H),B I
DD 71 12 LD (IX+12H),C I
DD 72 12 LD (IX+12H),D I
DD 73 12 LD (IX+12H),E I
DD 74 12 LD (IX+12H),H I
DD 75 12 LD (IX+12H),L I
DD 77 12 LD (IX+12H),A I
DD 78 INW HL,(C)
DD 79 OUTW (C),HL
DD 7C LD A,IXU
DD 7D LD A,IXL
DD 7E 12 LD A,(IX+12H) I
DD 84 ADD A,IXU
DD 85 ADD A,IXL
DD 86 12 ADD A,(IX+12H) I
DD 87 ADDW HL,IX
DD 87 ADDW IX
DD 8C ADC A,IXU
DD 8D ADC A,IXL
DD 8E 12 ADC A,(IX+12H) I
DD 8F ADCW HL,IX
DD 8F ADCW IX
DD 94 SUB A,IXU
DD 95 SUB A,IXL
DD 96 12 SUB A,(IX+12H) I
DD 97 SUBW HL,IX
DD 97 SUBW IX
DD 9C SBC A,IXU
DD 9D SBC A,IXL
DD 9E 12 SBC A,(IX+12H) I
DD 9F SBCW HL,IX
DD 9F SBCW IX
DD A4 AND A,IXU
DD A4 AND IXU
DD A5 AND A,IXL
DD A5 AND IXL
DD A6 12 AND (IX+12H) I
DD A6 12 AND A,(IX+12H) I
DD A7 ANDW HL,IX
DD A7 ANDW IX
DD AC XOR A,IXU

USER'S MANUALZILOG

Object Code Source Code Mode

DD AC XOR IXU
DD AD XOR A,IXL
DD AD XOR IXL
DD AE 12 XOR (IX+12H) I
DD AE 12 XOR A,(IX+12H) I
DD AF XORW HL,IX
DD AF XORW IX
DD B4 OR A,IXU
DD B4 OR IXU
DD B5 OR A,IXL
DD B5 OR IXL
DD B6 12 OR (IX+12H) I
DD B6 12 OR A,(IX+12H) I
DD B7 ORW HL,IX
DD B7 ORW IX
DD BC CP A,IXU
DD BC CP IXU
DD BD CP A,IXL
DD BD CP IXL
DD BE 12 CP (IX+12H) I
DD BE 12 CP A,(IX+12H) I
DD BF CPW HL,IX
DD BF CPW IX
DD C0 DDIR W
DD C1 DDIR IB,W
DD C2 DDIR IW,W
DD C3 DDIR IB
DD C4 34 12 CALR NZ,1234H X
DD C6 12 ADDW (IX+12H) I
DD C6 12 ADDW HL,(IX+12H) I
DD C8 LDCTL SR,A
DD CA 01 LDCTL SR,01H
DD CB 12 01 LD BC,(SP+12H) I L
DD CB 12 02 RLCW (IX+12H) I
DD CB 12 03 LD BC,(IX+12H) I L
DD CB 12 06 RLC (IX+12H) I
DD CB 12 09 LD (SP+12H),BC I L
DD CB 12 0A RRCW (IX+12H) I
DD CB 12 0B LD (IX+12H),BC I L
DD CB 12 0E RRC (IX+12H) I
DD CB 12 11 LD DE,(SP+12H) I L
DD CB 12 12 RLW (IX+12H) I
DD CB 12 13 LD DE,(IX+12H) I L
DD CB 12 16 RL (IX+12H) I
DD CB 12 19 LD (SP+12H),DE I L
DD CB 12 1A RRW (IX+12H) I
DD CB 12 1B LD (IX+12H),DE I L
DD CB 12 1E RR (IX+12H) I
DD CB 12 21 LD IX,(SP+12H) I L
DD CB 12 22 SLAW (IX+12H) I
DD CB 12 23 LD IY,(IX+12H) I L
DD CB 12 26 SLA (IX+12H) I
DD CB 12 29 LD (SP+12H),IX I L
DD CB 12 2A SRAW (IX+12H) I

Object Code Source Code Mode

DD CB 12 2B LD (IX+12H),IY I L
DD CB 12 2E SRA (IX+12H) I
DD CB 12 31 LD HL,(SP+12H) I L
DD CB 12 33 LD HL,(IX+12H) I L
DD CB 12 39 LD (SP+12H),HL I L
DD CB 12 3A SRLW (IX+12H) I
DD CB 12 3B LD (IX+12H),HL I L
DD CB 12 3E SRL (IX+12H) I
DD CB 12 46 BIT 0,(IX+12H) I
DD CB 12 4E BIT 1,(IX+12H) I
DD CB 12 56 BIT 2,(IX+12H) I
DD CB 12 5E BIT 3,(IX+12H) I
DD CB 12 66 BIT 4,(IX+12H) I
DD CB 12 6E BIT 5,(IX+12H) I
DD CB 12 76 BIT 6,(IX+12H) I
DD CB 12 7E BIT 7,(IX+12H) I
DD CB 12 86 RES 0,(IX+12H) I
DD CB 12 8E RES 1,(IX+12H) I
DD CB 12 92 MULTW (IX+12H) I
DD CB 12 92 MULTW HL,(IX+12H) I
DD CB 12 96 RES 2,(IX+12H) I
DD CB 12 9A MULTUW (IX+12H) I
DD CB 12 9A MULTUW HL,(IX+12H) I
DD CB 12 9E RES 3,(IX+12H) I
DD CB 12 A6 RES 4,(IX+12H) I
DD CB 12 AE RES 5,(IX+12H) I
DD CB 12 B6 RES 6,(IX+12H) I
DD CB 12 BA DIVUW (IX+12H) I
DD CB 12 BA DIVUW HL,(IX+12H) I
DD CB 12 BE RES 7,(IX+12H) I
DD CB 12 C6 SET 0,(IX+12H) I
DD CB 12 CE SET 1,(IX+12H) I
DD CB 12 D6 SET 2,(IX+12H) I
DD CB 12 DE SET 3,(IX+12H) I
DD CB 12 E6 SET 4,(IX+12H) I
DD CB 12 EE SET 5,(IX+12H) I
DD CB 12 F6 SET 6,(IX+12H) I
DD CB 12 FE SET 7,(IX+12H) I
DD CC 34 12 CALR Z,1234H X
DD CD 34 12 CALR 1234H X
DD CE 12 ADCW (IX+12H) I
DD CE 12 ADCW HL,(IX+12H) I
DD CF MTEST
DD D0 LDCTL A,XSR
DD D4 34 12 CALR NC,1234H X
DD D6 12 SUBW (IX+12H)
DD D6 12 SUBW HL,(IX+12H) I
DD D8 LDCTL XSR,A
DD D9 EXXX
DD DA 01 LDCTL XSR,01H
DD DC 34 12 CALR C,1234H X
DD DE 12 SBCW (IX+12H) I
DD DE 12 SBCW HL,(IX+12H)
DD E1 POP IX L

USER'S MANUALZILOG

Object Code Source Code Mode

DD E3 EX (SP),IX L
DD E4 34 12 CALR PO,1234H X
DD E5 PUSH IX L
DD E6 12 ANDW (IX+12H) I
DD E6 12 ANDW HL,(IX+12H) I
DD E9 JP (IX) X
DD EC 34 12 CALR PE,1234H X
DD EE 12 XORW (IX+12H) I
DD EE 12 XORW HL,(IX+12H) I
DD F3 1F DI 1FH
DD F4 34 12 CALR P,1234H X
DD F6 12 ORW (IX+12H) I
DD F6 12 ORW HL,(IX+12H) I
DD F7 SETC LW
DD F9 LD SP,IX L
DD FB 1F EI 1FH
DD FC 34 12 CALR M,1234H X
DD FE 12 CPW (IX+12H) I
DD FE 12 CPW HL,(IX+12H) I
DD FF RESC LW
DE 12 SBC A,12H
DF RST 18H X
E0 RET NV X
E0 RET PO X
E1 POP HL L
E2 34 12 JP NV,1234H I X
E2 34 12 JP PO,1234H I X
E3 EX (SP),HL L
E4 34 12 CALL NV, 1234H I X
E4 34 12 CALL PO,1234H I X
E5 PUSH HL L
E6 12 AND 12H
E6 12 AND A,12H
E7 RST 20H X
E8 RET PE X
E8 RET V X
E9 JP (HL) X
EA 34 12 JP PE,1234H I X
EA 34 12 JP V,1234H I X
EB EX DE,HL L
EC 34 12 CALL V, 1234H I X
EC 34 12 CALL PE,1234H I X
ED 00 12 IN0 B,(12H)
ED 01 12 OUT0 (12H),B
ED 02 LD BC,BC L
ED 03 EX BC,IX L
ED 04 TST B
ED 05 EX BC,DE L
ED 06 34 12 LDW (BC),1234H I L
ED 07 EX A,B
ED 08 12 IN0 C,(12H)
ED 09 12 OUT0 (12H),C
ED 0B EX BC,IY L
ED 0C TST C
ED 0D EX BC,HL L
ED 0E SWAP BC

Object Code Source Code Mode

ED 0F EX A,C
ED 10 12 IN0 D,(12H)
ED 11 12 OUT0 (12H),D
ED 12 LD DE,BC L
ED 13 EX DE,IX L
ED 14 TST D
ED 16 34 12 LDW (DE),1234H I L
ED 17 EX A,D
ED 18 12 IN0 E,(12H)
ED 19 12 OUT0 (12H),E
ED 1B EX DE,IY L
ED 1C TST E
ED 1E SWAP DE
ED 1F EX A,E
ED 20 12 IN0 H,(12H)
ED 21 12 OUT0 (12H),H
ED 24 TST H
ED 27 EX A,H
ED 28 12 IN0 L,(12H)
ED 29 12 OUT0 (12H),L
ED 2B EX IX,IY L
ED 2C TST L
ED 2F EX A,L
ED 30 12 IN0 (12H)
ED 32 LD HL,BC L
ED 33 EX HL,IX L
ED 34 TST (HL)
ED 36 34 12 LDW (HL),1234H I L
ED 37 EX A,(HL)
ED 38 12 IN0 A,(12H)
ED 39 12 OUT0 (12H),A
ED 3B EX HL,IY L
ED 3C TST A
ED 3E SWAP HL
ED 3F EX A,A
ED 40 IN B,(C)
ED 41 OUT (C),B
ED 42 SBC HL,BC
ED 43 34 12 LD (1234H),BC I L
ED 44 NEG A
ED 44 NEG
ED 45 RETN X
ED 46 IM 0
ED 47 LD I,A
ED 48 IN C,(C)
ED 49 OUT (C),C
ED 4A ADC HL,BC
ED 4B 34 12 LD BC,(1234H) I L
ED 4C MLT BC
ED 4D RETI X
ED 4E IM 3
ED 4F LD R,A
ED 50 IN D,(C)
ED 51 OUT (C),D

USER'S MANUALZILOG

Object Code Source Code Mode

ED 52 SBC HL,DE
ED 53 34 12 LD (1234H),DE I L
ED 54 NEGW HL
ED 54 NEGW
ED 55 reserved
ED 56 IM 1
ED 57 LD A,I
ED 58 IN E,(C)
ED 59 OUT (C),E
ED 5A ADC HL,DE
ED 5B 34 12 LD DE,(1234H) I L
ED 5C MLT DE
ED 5E IM 2
ED 5F LD A,R
ED 60 IN H,(C)
ED 61 OUT (C),H
ED 62 SBC HL,HL
ED 63 34 12 LD (1234H),HL I L
ED 64 12 TST 12H
ED 65 EXTS A L
ED 65 EXTS L
ED 67 RRD
ED 68 IN L,(C)
ED 69 OUT (C),L
ED 6A ADC HL,HL
ED 6B 34 12 LD HL,(1234H) I L
ED 6C MLT HL
ED 6F RLD
ED 71 12 OUT (C),12H
ED 72 SBC HL,SP
ED 73 34 12 LD (1234H),SP I L
ED 74 12 TSTIO 12H
ED 75 EXTSW HL
ED 75 EXTSW
ED 76 SLP
ED 78 IN A,(C)
ED 79 OUT (C),A
ED 7A ADC HL,SP
ED 7B 34 12 LD SP,(1234H) I L
ED 7C MLT SP
ED 82 34 12 ADD SP,1234H I X
ED 83 OTIM
ED 84 ADDW BC
ED 84 ADDW HL,BC
ED 85 ADDW DE
ED 85 ADDW HL,DE
ED 86 34 12 ADDW 1234H
ED 86 34 12 ADDW HL,1234H
ED 87 ADDW HL
ED 87 ADDW HL,HL
ED 8B OTDM
ED 8C ADCW BC
ED 8C ADCW HL,BC
ED 8D ADCW DE

Object Code Source Code Mode

ED 8D ADCW HL,DE
ED 8E 34 12 ADCW 1234H
ED 8E 34 12 ADCW HL,1234H
ED 8F ADCW HL
ED 8F ADCW HL,HL
ED 92 34 12 SUB SP,1234H I X
ED 93 OTIMR
ED 94 SUBW BC
ED 94 SUBW HL,BC
ED 95 SUBW DE
ED 95 SUBW HL,DE
ED 96 34 12 SUBW 1234H
ED 96 34 12 SUBW HL,1234H
ED 97 SUBW HL
ED 97 SUBW HL,HL
ED 9B OTDMR
ED 9C SBCW BC
ED 9C SBCW HL,BC
ED 9D SBCW DE
ED 9D SBCW HL,DE
ED 9E 34 12 SBCW 1234H
ED 9E 34 12 SBCW HL,1234H
ED 9F SBCW HL
ED 9F SBCW HL,HL
ED A0 LDI
ED A1 CPI X
ED A2 INI
ED A3 OUTI
ED A4 ANDW BC
ED A4 ANDW HL,BC
ED A5 ANDW DE
ED A5 ANDW HL,DE
ED A6 34 12 ANDW 1234H
ED A6 34 12 ANDW HL,1234H
ED A7 ANDW HL
ED A7 ANDW HL,HL
ED A8 LDD
ED A9 CPD X
ED AA IND
ED AB OUTD
ED AC XORW BC
ED AC XORW HL,BC
ED AD XORW DE
ED AD XORW HL,DE
ED AE 34 12 XORW 1234H
ED AE 34 12 XORW HL,1234H
ED AF XORW HL
ED AF XORW HL,HL
ED B0 LDIR
ED B1 CPIR X
ED B2 INIR
ED B3 OTIR
ED B4 ORW BC
ED B4 ORW HL,BC

USER'S MANUALZILOG

Object Code Source Code Mode

ED B5 ORW DE
ED B5 ORW HL,DE
ED B6 34 12 ORW 1234H
ED B6 34 12 ORW HL,1234H
ED B7 ORW HL
ED B7 ORW HL,HL
ED B8 LDDR
ED B9 CPDR X
ED BA INDR
ED BB OTDR
ED BC CPW BC
ED BC CPW HL,BC
ED BD CPW DE
ED BD CPW HL,DE
ED BE 34 12 CPW 1234H
ED BE 34 12 CPW HL,1234H
ED BF CPW HL
ED BF CPW HL,HL
ED C0 LDCTL HL,SR L
ED C1 POP SR L
ED C4 12 CALR NZ,12H X
ED C5 PUSH SR L
ED C6 34 12 ADD HL,(1234H) I X
ED C8 LDCTL SR,HL L
ED CB 00 RLCW BC
ED CB 01 RLCW DE
ED CB 02 RLCW (HL)
ED CB 03 RLCW HL
ED CB 04 RLCW IX
ED CB 05 RLCW IY
ED CB 08 RRCW BC
ED CB 09 RRCW DE
ED CB 0A RRCW (HL)
ED CB 0B RRCW HL
ED CB 0C RRCW IX
ED CB 0D RRCW IY
ED CB 10 RLW BC
ED CB 11 RLW DE
ED CB 12 RLW (HL)
ED CB 13 RLW HL
ED CB 14 RLW IX
ED CB 15 RLW IY
ED CB 18 RRW BC
ED CB 19 RRW DE
ED CB 1A RRW (HL)
ED CB 1B RRW HL
ED CB 1C RRW IX
ED CB 1D RRW IY
ED CB 20 SLAW BC
ED CB 21 SLAW DE
ED CB 22 SLAW (HL)
ED CB 23 SLAW HL
ED CB 24 SLAW IX
ED CB 25 SLAW IY

Object Code Source Code Mode

ED CB 28 SRAW BC
ED CB 29 SRAW DE
ED CB 2A SRAW (HL)
ED CB 2B SRAW HL
ED CB 2C SRAW IX
ED CB 2D SRAW IY
ED CB 30 EX BC,BC’ L
ED CB 31 EX DE,DE’ L
ED CB 33 EX HL,HL’ L
ED CB 34 EX IX,IX’
ED CB 35 EX IY,IY’ L
ED CB 38 SRLW BC
ED CB 39 SRLW DE
ED CB 3A SRLW (HL)
ED CB 3B SRLW HL
ED CB 3C SRLW IX
ED CB 3D SRLW IY
ED CB 90 MULTW BC
ED CB 90 MULTW HL,BC
ED CB 91 MULTW DE
ED CB 91 MULTW HL,DE
ED CB 93 MULTW HL
ED CB 93 MULTW HL,HL
ED CB 94 MULTW HL,IX
ED CB 94 MULTW IX
ED CB 95 MULTW HL,IY
ED CB 95 MULTW IY
ED CB 97 34 12 MULTW 1234H
ED CB 97 34 12 MULTW HL,1234H
ED CB 98 MULTUW BC
ED CB 98 MULTUW HL,BC
ED CB 99 MULTUW DE
ED CB 99 MULTUW HL,DE
ED CB 9B MULTUW HL
ED CB 9B MULTUW HL,HL
ED CB 9C MULTUW HL,IX
ED CB 9C MULTUW IX
ED CB 9D MULTUW HL,IY
ED CB 9D MULTUW IY
ED CB 9F MULTUW 1234H
ED CB 9F MULTUW HL,1234H
ED CB B8 DIVUW BC
ED CB B8 DIVUW HL,BC
ED CB B9 DIVUW DE
ED CB B9 DIVUW HL,DE
ED CB BB DIVUW HL
ED CB BB DIVUW HL,HL

USER'S MANUALZILOG

Object Code Source Code Mode

ED CB BC DIVUW HL,IX
ED CB BC DIVUW IX
ED CB BD DIVUW HL,IY
ED CB BD DIVUW IY
ED CB BF DIVUW 1234H
ED CB BF DIVUW HL,1234H
ED CC 12 CALR Z,12H X
ED CD 12 CALR 12H X
ED CF BTEST
ED D0 LDCTL A,DSR
ED D3 34 12 OUTA (1234H),A I
ED D4 12 CALR NC,12H X
ED D6 34 12 SUB HL,(1234H) I X
ED D8 LDCTL DSR,A
ED D9 EXALL
ED DA 01 LDCTL DSR,01H
ED DB 34 12 INA A,(1234H) I
ED DC 12 CALR C,12H X
ED E0 LDIW L
ED E2 INIW
ED E3 OUTIW
ED E4 12 CALR PO,12H X
ED E8 LDDW L
ED EA INDW
ED EB OUTDW
ED EC 12 CALR PE,12H X
ED F0 LDIRW L
ED F2 INIRW
ED F3 OTIRW
ED F4 12 CALR P,12H X
ED F7 SETC LCK
ED F8 LDDRW L
ED FA INDRW
ED FB OTDRW
ED FC 12 CALR M,12H X
ED FF RESC LCK
EE 12 XOR 12H
EE 12 XOR A,12H
EF RST 28H X
F0 RET NS X
F0 RET P X
F1 POP AF L
F2 34 12 JP NS,1234H I X
F2 34 12 JP P,1234H I X
F3 DI
F4 34 12 CALL NS P,1234H I X
F5 PUSH AF L
F6 12 OR 12H
F6 12 OR A,12H
F7 RST 30H X
F8 RET M X
F8 RET S X
F9 LD SP,HL L
FA 34 12 JP M,1234H I X

Object Code Source Code Mode

FA 34 12 JP S,1234H I X
FB EI
FC 34 12 CALL S, M,1234H I X
FD 01 LD (BC),IY L
FD 02 LD BC,HL L
FD 03 LD IY,(BC) L
FD 07 LD IY,BC L
FD 09 ADD IY,BC X
FD 0B LD BC,IY L
FD 0C LD (BC),BC L
FD 0D LD (DE),BC L
FD 0F LD (HL),BC L
FD 10 56 34 12 DJNZ 123456H X
FD 11 LD (DE),IY L
FD 12 LD DE,HL L
FD 13 LD IY,(DE) L
FD 17 LD IY,DE L
FD 18 56 34 12 JR 123456H X
FD 19 ADD IY,DE X
FD 1B LD DE,IY L
FD 1C LD (BC),DE L
FD 1D LD (DE),DE L
FD 1F LD (HL),DE L
FD 20 56 34 12 JR NZ,123456H X
FD 21 34 12 LD IY,1234H I L
FD 22 34 12 LD (1234H),IY I L
FD 23 INC IY X
FD 23 INCW IY X
FD 24 INC IYU
FD 25 DEC IYU
FD 27 LD IY,IX L
FD 28 56 34 12 JR Z,123456H X
FD 29 ADD IY,IY X
FD 2A 34 12 LD IY,(1234H) I L
FD 2B DEC IY X
FD 2B DECW IY X
FD 2C INC IYL
FD 2D DEC IYL
FD 2E 12 LD IYL,12H
FD 30 56 34 12 JR NC,123456H X
FD 31 LD (HL),IY L
FD 32 LD HL,HL L
FD 33 LD IY,(HL) L
FD 34 12 INC (IY+12H) I
FD 35 12 DEC (IY+12H) I
FD 36 34 12 LD (IY+12H),34H I
FD 36 12 LD IYU,12H
FD 37 LD IY,HL L
FD 38 56 34 12 JR C,123456H X
FD 39 ADD IY,SP X
FD 3B LD HL,IY L
FD 3C LD (BC),HL L
FD 3D LD (DE),HL L
FD 3E SWAP IY

USER'S MANUALZILOG

Object Code Source Code Mode

FD 3F LD (HL),HL L
FD 44 LD B,IYU
FD 45 LD B,IYL
FD 46 12 LD B,(IY+12H) I
FD 4C LD C,IYU
FD 4D LD C,IYL
FD 4E 12 LD C,(IY+12H) I
FD 54 LD D,IYU
FD 55 LD D,IYL
FD 56 12 LD D,(IY+12H) I
FD 5C LD E,IYU
FD 5D LD E,IYL
FD 5E 12 LD E,(IY+12H) I
FD 60 LD IYU,B
FD 61 LD IYU,C
FD 62 LD IYU,D
FD 63 LD IYU,E
FD 64 LD IYU,IYU
FD 65 LD IYU,IYL
FD 66 12 LD H,(IY+12H) I
FD 67 LD IYU,A
FD 68 LD IYL,B
FD 69 LD IYL,C
FD 6A LD IYL,D
FD 6B LD IYL,E
FD 6C LD IYL,IYU
FD 6D LD IYL,IYL
FD 6E 12 LD L,(IY+12H) I
FD 6F LD IYL,A
FD 70 12 LD (IY+12H),B I
FD 71 12 LD (IY+12H),C I
FD 72 12 LD (IY+12H),D I
FD 73 12 LD (IY+12H),E I L
FD 74 12 LD (IY+12H),H I
FD 75 12 LD (IY+12H),L I
FD 77 12 LD (IY+12H),A I
FD 79 34 12 OUTW (C),1234H
FD 7C LD A,IYU
FD 7D LD A,IYL
FD 7E 12 LD A,(IY+12H) I
FD 84 ADD A,IYU
FD 85 ADD A,IYL
FD 86 12 ADD A,(IY+12H) I
FD 87 ADDW HL,IY
FD 87 ADDW IY
FD 8C ADC A,IYU
FD 8D ADC A,IYL
FD 8E 12 ADC A,(IY+12H) I
FD 8F ADCW HL,IY
FD 8F ADCW IY
FD 94 SUB A,IYU
FD 95 SUB A,IYL
FD 96 12 SUB A,(IY+12H) I
FD 97 SUBW HL,IY

Object Code Source Code Mode

FD 97 SUBW IY
FD 9C SBC A,IYU
FD 9D SBC A,IYL
FD 9E 12 SBC A,(IY+12H) I
FD 9F SBCW HL,IY
FD 9F SBCW IY
FD A4 AND A,IYU
FD A4 AND IYU
FD A5 AND A,IYL
FD A5 AND IYL
FD A6 12 AND (IY+12H) I
FD A6 12 AND A,(IY+12H) I
FD A7 ANDW HL,IY
FD A7 ANDW IY
FD AC XOR A,IYU
FD AC XOR IYU
FD AD XOR A,IYL
FD AD XOR IYL
FD AE 12 XOR (IY+12H) I
FD AE 12 XOR A,(IY+12H) I
FD AF XORW HL,IY
FD AF XORW IY
FD B4 OR A,IYU
FD B4 OR IYU
FD B5 OR A,IYL
FD B5 OR IYL
FD B6 12 OR (IY+12H) I
FD B6 12 OR A,(IY+12H) I
FD B7 ORW HL,IY
FD B7 ORW IY
FD BC CP A,IYU
FD BC CP IYU
FD BD CP A,IYL
FD BD CP IYL
FD BE 12 CP (IY+12H) I
FD BE 12 CP A,(IY+12H) I
FD BF CPW HL,IY
FD BF CPW IY
FD C0 DDIR LW
FD C1 DDIR IB,LW
FD C2 DDIR IW,LW
FD C3 DDIR IW
FD C4 56 34 12 CALR NZ,123456H X
FD C6 12 ADDW (IY+12H) I
FD C6 12 ADDW HL,(IY+12H) I
FD CB 12 02 RLCW (IY+12H) I
FD CB 12 03 LD BC,(IY+12H) I L
FD CB 12 06 RLC (IY+12H) I
FD CB 12 0A RRCW (IY+12H) I
FD CB 12 0B LD (IY+12H),BC I L
FD CB 12 0E RRC (IY+12H) I
FD CB 12 12 RLW (IY+12H) I
FD CB 12 13 LD DE,(IY+12H) I L
FD CB 12 16 RL (IY+12H) I

USER'S MANUALZILOG

Object Code Source Code Mode

FD CB 12 1A RRW (IY+12H) I
FD CB 12 1B LD (IY+12H),DE I
FD CB 12 1E RR (IY+12H) I
FD CB 12 21 LD IY,(SP+12H) I L
FD CB 12 22 SLAW (IY+12H) I
FD CB 12 23 LD IX,(IY+12H) I L
FD CB 12 26 SLA (IY+12H) I
FD CB 12 29 LD (SP+12H),IY I L
FD CB 12 2A SRAW (IY+12H) I
FD CB 12 2B LD (IY+12H),IX I L
FD CB 12 2E SRA (IY+12H) I
FD CB 12 33 LD HL,(IY+12H) I L
FD CB 12 3A SRLW (IY+12H) I
FD CB 12 3B LD (IY+12H),HL I L
FD CB 12 3E SRL (IY+12H) I
FD CB 12 46 BIT 0,(IY+12H) I
FD CB 12 4E BIT 1,(IY+12H) I
FD CB 12 56 BIT 2,(IY+12H) I
FD CB 12 5E BIT 3,(IY+12H) I
FD CB 12 66 BIT 4,(IY+12H) I
FD CB 12 6E BIT 5,(IY+12H) I
FD CB 12 76 BIT 6,(IY+12H) I
FD CB 12 7E BIT 7,(IY+12H) I
FD CB 12 86 RES 0,(IY+12H) I
FD CB 12 8E RES 1,(IY+12H) I
FD CB 12 92 MULTW (IY+12H) I
FD CB 12 92 MULTW HL,(IY+12H) I
FD CB 12 96 RES 2,(IY+12H) I
FD CB 12 9A MULTUW (IY+12H) I
FD CB 12 9A MULTUW HL,(IY+12H) I
FD CB 12 9E RES 3,(IY+12H) I
FD CB 12 A6 RES 4,(IY+12H) I
FD CB 12 AE RES 5,(IY+12H) I
FD CB 12 B6 RES 6,(IY+12H) I
FD CB 12 BA DIVUW (IY+12H) I
FD CB 12 BA DIVUW HL,(IY+12H) I
FD CB 12 BE RES 7,(IY+12H) I
FD CB 12 C6 SET 0,(IY+12H) I
FD CB 12 CE SET 1,(IY+12H) I
FD CB 12 D6 SET 2,(IY+12H) I
FD CB 12 DE SET 3,(IY+12H) I
FD CB 12 E6 SET 4,(IY+12H) I
FD CB 12 EE SET 5,(IY+12H) I
FD CB 12 F6 SET 6,(IY+12H) I
FD CB 12 FE SET 7,(IY+12H) I
FD CC 56 34 12 CALR Z,123456H X
FD CD 56 34 12 CALR 123456H X
FD CE 12 ADCW (IY+12H) I
FD CE 12 ADCW HL,(IY+12H) I
FD D0 LDCTL A,YSR
FD D3 34 12 OUTAW (1234H),HL I
FD D4 56 34 12 CALR NC,123456H X
FD D6 12 SUBW (IY+12H)
FD D6 12 SUBW HL,(IY+12H) I

Object Code Source Code Mode

FD D8 LDCTL YSR,A
FD D9 EXXY
FD DA 01 LDCTL YSR,01H
FD DB 34 12 INAW HL,(1234H) I
FD DC 56 34 12 CALR C,123456H X
FD DE 12 SBCW (IY+12H) I
FD DE 12 SBCW HL,(IY+12H)
FD E1 POP IY L
FD E3 EX (SP),IY L
FD E4 56 34 12 CALR PO,123456H X
FD E5 PUSH IY L
FD E6 12 ANDW (IY+12H) I
FD E6 12 ANDW HL,(IY+12H) I
FD E9 JP (IY) X
FD EC 56 34 12 CALR PE,123456H X
FD EE 12 XORW (IY+12H) I
FD EE 12 XORW HL,(IY+12H) I
FD F4 56 34 12 CALR P,123456H X
FD F5 34 12 PUSH 1234H I L
FD F6 12 ORW (IY+12H) I
FD F6 12 ORW HL,(IY+12H) I
FD F7 SETC XM
FD F9 LD SP,IY L
FD FC CALR M,123456H X
FD FE 12 CPW (IY+12H) I
FD FE 12 CPW HL,(IY+12H) I
FE 12 CP 12H
FE 12 CP A,12H
FF RST 38H X

USER'S MANUALZILOG

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

USER'S MANUALZILOG

USER’s MANUAL

This Appendix has two sets of tables. Each table is a
subset of the Table in the Appendix B. The Table D-1 has
the instructions which works differently in the Native and

Extended mode of operation, and the Table D-2 has the
instructions which works differently in Word/Long Word
mode of operation.

APPENDIX D
INSTRUCTIONS AFFECTED BY NORMAL/
EXTENDED MODE, AND LONG WORD MODE

USER'S MANUALZILOG

Table D-1. Instructions operating differently in
Native or Extended mode of operation.

Source Code Object Code

ADD HL,BC 09
ADD HL,DE 19
ADD HL,HL 29
ADD HL,SP 39
ADD IX,BC DD 09
ADD IX,DE DD 19
ADD IX,IX DD 29
ADD IX,SP DD 39
ADD IY,BC FD 09
ADD IY,DE FD 19
ADD IY,IY FD 29
ADD IY,SP FD 39
CALR 123456H FD CD 56 34 12
CALR 1234H DD CD 34 12
CALR 12H ED CD 12
CALR C,123456H FD DC 56 34 12
CALR C,1234H DD DC 34 12
CALR C,12H ED DC 12
CALR M,123456H FD FC
CALR M,1234H DD FC 34 12
CALR M,12H ED FC 12
CALR NC,123456H FD D4 56 34 12
CALR NC,1234H DD D4 34 12
CALR NC,12H ED D4 12
CALR NZ,123456H FD C4 56 34 12
CALR NZ,1234H DD C4 34 12
CALR NZ,12H ED C4 12
CALR P,123456H FD F4 56 34 12
CALR P,1234H DD F4 34 12
CALR P,12H ED F4 12
CALR PE,123456H FD EC 56 34 12
CALR PE,1234H DD EC 34 12
CALR PE,12H ED EC 12
CALR PO,123456H FD E4 56 34 12
CALR PO,1234H DD E4 34 12
CALR PO,12H ED E4 12
CALR Z,123456H FD CC 56 34 12
CALR Z,1234H DD CC 34 12
CALR Z,12H ED CC 12
CPD ED A9
CPDR ED B9
CPI ED A1
CPIR ED B1
DEC BC 0B
DEC DE 1B
DEC HL 2B
DEC IX DD 2B
DEC IY FD 2B
DEC SP 3B
DECW BC 0B

Source Code Object Code

DECW DE 1B
DECW HL 2B
DECW IX DD 2B
DECW IY FD 2B
DECW SP 3B
DJNZ 123456H FD 10 56 34 12
DJNZ 1234H DD 10 34 12
DJNZ 12H 10 12
INC BC 03
INC DE 13
INC HL 23
INC IX DD 23
INC IY FD 23
INC SP 33
INCW BC 03
INCW DE 13
INCW HL 23
INCW IX DD 23
INCW IY FD 23
INCW SP 33
JP (HL) E9
JP (IX) DD E9
JP (IY) FD E9
JR 123456H FD 18
JR 1234H DD 18 34 12
JR 12H 18 12
JR C,123456H FD 38 56 34 12
JR C,1234H DD 38 34 12
JR C,12H 38 12
JR NC,123456H FD 30 56 34 12
JR NC,1234H DD 30 34 12
JR NZ,123456H FD 20 56 34 12
JR NZ,1234H DD 20 34 12
JR NZ,12H 20 12
JR Z,123456H FD 28 56 34 12
JR Z,1234H DD 28 34 12
JR Z,12H 28 12
RET C D8
RET M F8
RET NC D0
RET NS F0
RET NV E0
RET NZ C0
RET P F0
RET PE E8
RET PO E0
RET S F8
RET V E8
RET Z C8
RET C9
RETI ED 4D

USER'S MANUALZILOG

Source Code Object Code

RETN ED 45
RST 00H C7
RST 08H CF
RST 10H D7
RST 18H DF
RST 20H E7
RST 28H EF
RST 30H F7
RST 38H FF

Table D-2. Instructions operates different in Long
Word Modes.

Source Code Object Code

EX (SP),HL E3
EX (SP),IX DD E3
EX (SP),IY FD E3
EX BC,BC’ ED CB 30
EX BC,DE ED 05
EX BC,HL ED 0D
EX BC,IX ED 03
EX BC,IY ED 0B
EX DE,DE’ ED CB 31
EX DE,HL EB
EX DE,IX ED 13
EX DE,IY ED 1B
EX HL,HL’ ED CB 33
EX HL,IX ED 33
EX HL,IY ED 3B
EX IX,IX’ ED CB 34
EX IX,IY ED 2B
EX IY,IY’ ED CB 35
EXTS A ED 65
EXTS ED 65
LD (BC),BC FD 0C
LD (BC),DE FD 1C
LD (BC),HL FD 3C
LD (BC),IX DD 01
LD (BC),IY FD 01
LD (DE),BC FD 0D
LD (DE),DE FD 1D
LD (DE),HL FD 3D
LD (DE),IX DD 11
LD (DE),IY FD 11
LD (HL),BC FD 0F
LD (HL),DE FD 1F
LD (HL),HL FD 3F
LD (HL),IX DD 31
LD (HL),IY FD 31
LD BC,(BC) DD 0C
LD BC,(DE) DD 0D
LD BC,(HL) DD 0F
LD BC,BC ED 02

Source Code Object Code

LD BC,DE DD 02
LD BC,HL FD 02
LD BC,IX DD 0B
LD BC,IY FD 0B
LD DE,(BC) DD 1C
LD DE,(DE) DD 1D
LD DE,(HL) DD 1F
LD DE,BC ED 12
LD DE,DE DD 12
LD DE,HL FD 12
LD DE,IX DD 1B
LD DE,IY FD 1B
LD HL,(BC) DD 3C
LD HL,(DE) DD 3D
LD HL,(HL) DD 3F
LD HL,BC ED 32
LD HL,DE DD 32
LD HL,HL FD 32
LD HL,I DD 57
LD HL,IX DD 3B
LD HL,IY FD 3B
LD I,HL DD 47
LD IX,(BC) DD 03
LD IX,(DE) DD 13
LD IX,(HL) DD 33
LD IX,BC DD 07
LD IX,DE DD 17
LD IX,HL DD 37
LD IX,IY DD 27
LD IY,(BC) FD 03
LD IY,(DE) FD 13
LD IY,(HL) FD 33
LD IY,BC FD 07
LD IY,DE FD 17
LD IY,HL FD 37
LD IY,IX FD 27
LD SP,HL F9
LD SP,IX DD F9
LD SP,IY FD F9

USER'S MANUALZILOG

Source Code Object Code

LDCTL HL,SR ED C0
LDCTL SR,HL ED C8
LDDRW ED F8
LDDW ED E8
LDIRW ED F0
LDIW ED E0
LDW HL,I DD 57
LDW I,HL DD 47
POP AF F1
POP BC C1
POP DE D1
POP HL E1
POP IX DD E1
POP IY FD E1
POP SR ED C1
PUSH AF F5
PUSH BC C5
PUSH DE D5
PUSH HL E5
PUSH IX DD E5
PUSH IY FD E5
PUSH SR ED C5

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

USER'S MANUALZILOG

USER’s MANUAL

APPENDIX E
INSTRUCTIONS AFFECTED BY
DDIR IM INSTRUCTIONS

This Appendix has instructions which can be used with the
Decoder Directive(s) Extend Immediate. There are eight
tables (E1-E8) which are the subset of the Table A, sorted
by the category of the instruction.

Note that the instructions listed here does not have the
DDIR Decoder Directive in front of the instructions listed
below, and notation used here may be different by the
assembler to be used.

Table E-1. Valid with DDIR IB in Extended mode. LW
bit status does not affect the operation

ADD HL,(123456H) ED C6 56 34 12
ADD SP,123456H ED 82 56 34 12
CALL 123456H CD 56 34 12
CALL C,123456H DC 56 34 12
CALL M,123456H FC 56 34 12
CALL NC,123456H D4 56 34 12
CALL NZ,123456H C4 56 34 12
CALL P,123456H F4 56 34 12
CALL PE,123456H EC 56 34 12
CALL PO,123456H E4 56 34 12
CALL Z,123456H CC 56 34 12
JP 123456H C3 56 34 12
JP C,123456H DA 56 34 12
JP M,123456H FA 56 34 12
JP NC,123456H D2 56 34 12
JP NS,123456H F2 56 34 12
JP NV,123456H E2 56 34 12
JP NZ,123456H C2 56 34 12
JP P,123456H F2 56 34 12
JP PE,123456H EA 56 34 12
JP PO,123456H E2 56 34 12
JP S,123456H FA 56 34 12
JP V,123456H EA 56 34 12
JP Z,123456H CA 56 34 12
SUB HL,(123456H) ED D6 56 34 12
SUB SP,123456H ED 92 56 34 12

Table E-2. Valid with DDIR IB. XM bit status does not
affect the operation. Transfer size determined by LW
bit. (Either with DDIR IB, DDIR IB,LW or DDIR IB,W)

LD (123456H),BC ED 43 56 34 12
LD (123456H),DE ED 53 56 34 12
LD (123456H),HL 22 56 34 12
LD (123456H),HL ED 63 56 34 12
LD (123456H),IX DD 22 56 34 12
LD (123456H),IY FD 22 56 34 12
LD (123456H),SP ED 73 56 34 12
LD (IX+1234H),BC DD CB 34 12 0B
LD (IX+1234H),DE DD CB 34 12 1B
LD (IX+1234H),HL DD CB 34 12 3B
LD (IX+1234H),IY DD CB 34 12 2B
LD (IY+1234H),BC FD CB 34 12 0B
LD (IY+1234H),E FD 73 34 12
LD (IY+1234H),HL FD CB 34 12 3B
LD (IY+1234H),IX FD CB 34 12 2B
LD (SP+1234H),BC DD CB 34 12 09
LD (SP+1234H),DE DD CB 34 12 19
LD (SP+1234H),HL DD CB 34 12 39
LD (SP+1234H),IX DD CB 34 12 29
LD (SP+1234H),IY FD CB 34 12 29
LD BC,(123456H) ED 4B 56 34 12
LD BC,(IX+1234H) DD CB 34 12 03
LD BC,(IY+1234H) FD CB 34 12 03
LD BC,(SP+1234H) DD CB 34 12 01
LD DE,(123456H) ED 5B 56 34 12
LD DE,(IX+1234H) DD CB 34 12 13
LD DE,(IY+1234H) FD CB 34 12 13
LD DE,(SP+1234H) DD CB 34 12 11
LD HL,(123456H) 2A 56 34 12
LD HL,(123456H) ED 6B 56 34 12
LD HL,(IX+1234H) DD CB 34 12 33
LD HL,(IY+1234H) FD CB 34 12 33
LD HL,(SP+1234H) DD CB 34 12 31
LD IX,(123456H) DD 2A 56 34 12
LD IX,(IY+1234H) FD CB 34 12 23
LD IX,(SP+1234H) DD CB 34 12 21
LD IY,(123456H) FD 2A 56 34 12
LD IY,(IX+1234H) DD CB 34 12 23
LD IY,(SP+1234H) FD CB 34 12 21
LD SP,(123456H) ED 7B 56 34 12
LDW (BC),123456H ED 06 56 34 12
LDW (DE),123456H ED 16 56 34 12
LDW (HL),123456H ED 36 56 34 12

USER'S MANUALZILOG

Table E-3. Valid with DDIR IB in Long Word mode.
XM bit status does not affect the operation. (Either

with DDIR IB,LW or DDIR IB with LW bit set.)

LD BC,123456H 01 56 34 12
LD DE,123456H 11 56 34 12
LD HL,123456H 21 56 34 12
LD IX,123456H DD 21 56 34 12
LD IY,123456H FD 21 56 34 12
LD SP,123456H 31 56 34 12
PUSH 123456H FD F5 56 34 12

Table E-4. Valid with DDIR IB. XM bit nor LW bit
status do not affect the operation

ADC A,(IX+1234H) DD 8E 34 12
ADC A,(IY+1234H) FD 8E 34 12
ADCW (IX+1234H) DD CE 34 12
ADCW (IY+1234H) FD CE 34 12
ADCW HL,(IX+1234H) DD CE 34 12
ADCW HL,(IY+1234H) FD CE 34 12
ADD A,(IX+1234H) DD 86 34 12
ADD A,(IY+1234H) FD 86 34 12
ADDW (IX+1234H) DD C6 34 12
ADDW (IY+1234H) FD C6 34 12
ADDW HL,(IX+1234H) DD C6 34 12
ADDW HL,(IY+1234H) FD C6 34 12
AND (IX+1234H) DD A6 34 12
AND (IY+1234H) FD A6 34 12
AND A,(IX+1234H) DD A6 34 12
AND A,(IY+1234H) FD A6 34 12
ANDW (IX+1234H) DD E6 34 12
ANDW (IY+1234H) FD E6 34 12
ANDW HL,(IX+1234H) DD E6 34 12
ANDW HL,(IY+1234H) FD E6 34 12
BIT 0,(IX+1234H) DD CB 34 12 46
BIT 0,(IY+1234H) FD CB 34 12 46
BIT 1,(IX+1234H) DD CB 34 12 4E
BIT 1,(IY+1234H) FD CB 34 12 4E
BIT 2,(IX+1234H) DD CB 34 12 56
BIT 2,(IY+1234H) FD CB 34 12 56
BIT 3,(IX+1234H) DD CB 34 12 5E
BIT 3,(IY+1234H) FD CB 34 12 5E
BIT 4,(IX+1234H) DD CB 34 12 66
BIT 4,(IY+1234H) FD CB 34 12 66
BIT 5,(IX+1234H) DD CB 34 12 6E
BIT 5,(IY+1234H) FD CB 34 12 6E
BIT 6,(IX+1234H) DD CB 34 12 76
BIT 6,(IY+1234H) FD CB 34 12 76
BIT 7,(IX+1234H) DD CB 34 12 7E
BIT 7,(IY+1234H) FD CB 34 12 7E
CP (IX+1234H) DD BE 34 12
CP (IY+1234H) FD BE 34 12
CP A,(IX+1234H) DD BE 34 12
CP A,(IY+1234H) FD BE 34 12

CPW (IX+1234H) DD FE 34 12
CPW (IY+1234H) FD FE 34 12
CPW HL,(IX+1234H) DD FE 34 12
CPW HL,(IY+1234H) FD FE 34 12
DEC (IX+1234H) DD 35 34 12
DEC (IY+1234H) FD 35 34 12
DIVUW (IX+1234H) DD CB 34 12 BA
DIVUW (IY+1234H) FD CB 34 12 BA
DIVUW HL,(IX+1234H) DD CB 34 12 BA
DIVUW HL,(IY+1234H) FD CB 34 12 BA
INA A,(123456H) ED DB 34 12
INAW HL,(123456H) FD DB 34 12
INC (IX+1234H) DD 34 12
INC (IY+1234H) FD 34 12
LD (123456H),A 32 56 34 12
LD (IX+1234H),56H DD 36 34 12 56
LD (IX+1234H),A DD 77 34 12
LD (IX+1234H),B DD 70 34 12
LD (IX+1234H),C DD 71 34 12
LD (IX+1234H),D DD 72 34 12
LD (IX+1234H),E DD 73 34 12
LD (IX+1234H),H DD 74 34 12
LD (IX+1234H),L DD 75 34 12
LD (IY+1234H),56H FD 36 34 12 56
LD (IY+1234H),A FD 77 34 12
LD (IY+1234H),B FD 70 34 12
LD (IY+1234H),C FD 71 34 12
LD (IY+1234H),D FD 72 34 12
LD (IY+1234H),DE FD CB 34 12 1B
LD (IY+1234H),H FD 74 34 12
LD (IY+1234H),L FD 75 34 12
LD A,(1234H) 3A 34 34 12
LD A,(IX+1234H) DD 7E 34 12
LD A,(IY+1234H) FD 7E 34 12
LD B,(IX+1234H) DD 46 34 12
LD B,(IY+1234H) FD 46 34 12
LD C,(IX+1234H) DD 4E 34 12
LD C,(IY+1234H) FD 4E 34 12
LD D,(IX+1234H) DD 56 34 12
LD D,(IY+1234H) FD 56 34 12
LD E,(IX+1234H) DD 5E 34 12
LD E,(IY+1234H) FD 5E 34 12
LD H,(IX+1234H) DD 66 34 12
LD H,(IY+1234H) FD 66 34 12
LD L,(IX+1234H) DD 6E 34 12
LD L,(IY+1234H) FD 6E 34 12
MULTUW (IX+1234H) DD CB 34 12 9A
MULTUW (IY+1234H) FD CB 34 12 9A
MULTUW HL,(IX+1234H) DD CB 34 12 9A
MULTUW HL,(IY+1234H) FD CB 34 12 9A
MULTW (IX+1234H) DD CB 34 12 92
MULTW (IY+1234H) FD CB 34 12 92
MULTW HL,(IX+1234H) DD CB 34 12 92
MULTW HL,(IY+1234H) FD CB 34 12 92
OR (IX+1234H) DD B6 34 12

USER'S MANUALZILOG

OR (IY+1234H) FD B6 34 12
OR A,(IX+1234H) DD B6 34 12
OR A,(IY+1234H) FD B6 34 12
ORW (IX+1234H) DD F6 34 12
ORW (IY+1234H) FD F6 34 12
ORW HL,(IX+1234H) DD F6 34 12
ORW HL,(IY+1234H) FD F6 34 12
OUTA (123456H),A ED D3 56 34 12
OUTAW (123456H),HL FD D3 56 34 12
RES 0,(IX+1234H) DD CB 34 12 86
RES 0,(IY+1234H) FD CB 34 12 86
RES 1,(IX+1234H) DD CB 34 12 8E
RES 1,(IY+1234H) FD CB 34 12 8E
RES 2,(IX+1234H) DD CB 34 12 96
RES 2,(IY+1234H) FD CB 34 12 96
RES 3,(IX+1234H) DD CB 34 12 9E
RES 3,(IY+1234H) FD CB 34 12 9E
RES 4,(IX+1234H) DD CB 34 12 A6
RES 4,(IY+1234H) FD CB 34 12 A6
RES 5,(IX+1234H) DD CB 34 12 AE
RES 5,(IY+1234H) FD CB 34 12 AE
RES 6,(IX+1234H) DD CB 34 12 B6
RES 6,(IY+1234H) FD CB 34 12 B6
RES 7,(IX+1234H) DD CB 34 12 BE
RES 7,(IY+1234H) FD CB 34 12 BE
RL (IX+1234H) DD CB 34 12 16
RL (IY+1234H) FD CB 34 12 16
RLC (IX+1234H) DD CB 34 12 06
RLC (IY+1234H) FD CB 34 12 06
RLCW (IX+1234H) DD CB 34 12 02
RLCW (IY+1234H) FD CB 34 12 02
RLW (IX+1234H) DD CB 34 12 12
RLW (IY+1234H) FD CB 34 12 12
RR (IX+1234H) DD CB 34 12 1E
RR (IY+1234H) FD CB 34 12 1E
RRC (IX+1234H) DD CB 34 12 0E
RRC (IY+1234H) FD CB 34 12 0E
RRCW (IX+1234H) DD CB 34 12 0A
RRCW (IY+1234H) FD CB 34 12 0A
RRW (IX+1234H) DD CB 34 12 1A
RRW (IY+1234H) FD CB 34 12 1A
SBC A,(IX+1234H) DD 9E 34 12
SBC A,(IY+1234H) FD 9E 34 12
SBCW (IX+1234H) DD DE 34 12
SBCW (IY+1234H) FD DE 34 12
SET 0,(IX+1234H) DD CB 34 12 C6
SET 0,(IY+1234H) FD CB 34 12 C6
SET 1,(IX+1234H) DD CB 34 12 CE
SET 1,(IY+1234H) FD CB 34 12 CE
SET 2,(IX+1234H) DD CB 34 12 D6
SET 2,(IY+1234H) FD CB 34 12 D6
SET 3,(IX+1234H) DD CB 34 12 DE
SET 3,(IY+1234H) FD CB 34 12 DE
SET 4,(IX+1234H) DD CB 34 12 E6
SET 4,(IY+1234H) FD CB 34 12 E6

SET 5,(IX+1234H) DD CB 34 12 EE
SET 5,(IY+1234H) FD CB 34 12 EE
SET 6,(IX+1234H) DD CB 34 12 F6
SET 6,(IY+1234H) FD CB 34 12 F6
SET 7,(IX+1234H) DD CB 34 12 FE
SET 7,(IY+1234H) FD CB 34 12 FE
SLA (IX+1234H) DD CB 34 12 26
SLA (IY+1234H) FD CB 34 12 26
SLAW (IX+1234H) DD CB 34 12 22
SLAW (IY+1234H) FD CB 34 12 22
SRA (IX+1234H) DD CB 34 12 2E
SRA (IY+1234H) FD CB 34 12 2E
SRAW (IX+1234H) DD CB 34 12 2A
SRAW (IY+1234H) FD CB 34 12 2A
SRL (IX+1234H) DD CB 34 12 3E
SRL (IY+1234H) FD CB 34 12 3E
SRLW (IX+1234H) DD CB 34 12 3A
SRLW (IY+1234H) FD CB 34 12 3A
SUB A,(IX+1234H) DD 96 34 12
SUB A,(IY+1234H) FD 96 34 12
SUBW HL,(IX+1234H) DD D6 34 12
SUBW HL,(IY+1234H) FD D6 34 12
XOR (IX+1234H) DD AE 34 12
XOR (IY+1234H) FD AE 34 12
XOR A,(IX+1234H) DD AE 34 12
XOR A,(IY+1234H) FD AE 34 12
XORW (IX+1234H) DD EE 34 12
XORW (IY+1234H) FD EE 34 12
XORW HL,(IX+1234H) DD EE 34 12
XORW HL,(IY+1234H) FD EE 34 12

USER'S MANUALZILOG

Table E-5. Valid with DDIR IW in Exteded mode. LW
bit status does not affect the operation

ADD HL,(12345678H) ED C6 78 56 34 12
ADD SP,12345678H ED 82 78 56 34 12
CALL 12345678H CD 78 56 34 12
CALL C,12345678H DC 78 56 34 12
CALL M,12345678H FC 78 56 34 12
CALL NC,12345678H D4 78 56 34 12
CALL NZ,12345678H C4 78 56 34 12
CALL P,12345678H F4 78 56 34 12
CALL PE,12345678H EC 78 56 34 12
CALL PO,12345678H E4 78 56 34 12
CALL Z,12345678H CC 78 56 34 12
JP 12345678H C3 78 56 34 12
JP C,12345678H DA 78 56 34 12
JP M,12345678H FA 78 56 34 12
JP NC,12345678H D2 78 56 34 12
JP NS,12345678H F2 78 56 34 12
JP NV,12345678H E2 78 56 34 12
JP NZ,12345678H C2 78 56 34 12
JP P,12345678H F2 78 56 34 12
JP PE,12345678H EA 78 56 34 12
JP PO,12345678H E2 78 56 34 12
JP S,12345678H FA 78 56 34 12
JP V,12345678H EA 78 56 34 12
JP Z,12345678H CA 78 56 34 12
SUB HL,(12345678H) ED D6 78 56 34 12
SUB SP,12345678H ED 92 78 56 34 12

Table E-6. Valid with DDIR IW. XM bit status does
not affect the operation. Transfer size

determined by LW bit

LD (12345678H),BC ED 43 78 56 34 12
LD (12345678H),DE ED 53 78 56 34 12
LD (12345678H),HL 22 78 56 34 12
LD (12345678H),HL ED 63 78 56 34 12
LD (12345678H),IX DD 22 78 56 34 12
LD (12345678H),IY FD 22 78 56 34 12
LD (12345678H),SP ED 73 78 56 34 12
LD (IX+123456H),BC DD CB 56 34 12 0B
LD (IX+123456H),DE DD CB 56 34 12 1B
LD (IX+123456H),HL DD CB 56 34 12 3B
LD (IX+123456H),IY DD CB 56 34 12 2B
LD (IY+123456H),BC FD CB 56 34 12 0B
LD (IY+123456H),E FD 73 56 34 12
LD (IY+123456H),HL FD CB 56 34 12 3B
LD (IY+123456H),IX FD CB 56 34 12 2B
LD (SP+123456H),BC DD CB 56 34 12 09
LD (SP+123456H),DE DD CB 56 34 12 19
LD (SP+123456H),HL DD CB 56 34 12 39
LD (SP+123456H),IX DD CB 56 34 12 29
LD (SP+123456H),IY FD CB 56 34 12 29
LD BC,(12345678H) ED 4B 78 56 34 12
LD BC,(IX+123456H) DD CB 34 12 03
LD BC,(IY+123456H) FD CB 34 12 03
LD BC,(SP+123456H) DD CB 34 12 01
LD DE,(12345678H) ED 5B 78 56 34 12
LD DE,(IX+123456H) DD CB 56 34 12 13
LD DE,(IY+123456H) FD CB 56 34 12 13
LD DE,(SP+123456H) DD CB 56 34 12 11
LD HL,(12345678H) 2A 78 56 34 12
LD HL,(12345678H) ED 6B 78 56 34 12
LD HL,(IX+123456H) DD CB 56 34 12 33
LD HL,(IY+123456H) FD CB 56 34 12 33
LD HL,(SP+123456H) DD CB 56 34 12 31
LD IX,(12345678H) DD 2A 78 56 34 12
LD IX,(IY+123456H) FD CB 56 34 12 23
LD IX,(SP+123456H) DD CB 56 34 12 21
LD IY,(12345678H) FD 2A 78 56 34 12
LD IY,(IX+123456H) DD CB 56 34 12 23
LD IY,(SP+123456H) FD CB 56 34 12 21
LD SP,(12345678H) ED 7B 78 56 34 12
LDW (BC),12345678H ED 06 78 56 34 12
LDW (DE),12345678H ED 16 78 56 34 12
LDW (HL),12345678H ED 36 78 56 34 12

USER'S MANUALZILOG

Table E-7. Valid with DDIR IW in Long Word mode.
XM bit status does not affect the operation. (Either

with DDIR IW,LW or DDIR IW with LW bit set.)

LD BC,12345678H 01 78 56 34 12
LD DE,12345678H 11 78 56 34 12
LD HL,12345678H 21 78 56 34 12
LD IX,12345678H DD 21 78 56 34 12
LD IY,12345678H FD 21 78 56 34 12
LD SP,12345678H 31 78 56 34 12
PUSH 12345678H FD F5 78 56 34 12

Table E-8. Valid with DDIR IW. XM bit nor LW bit
status do not affect the operation

ADC A,(IX+123456H) DD 8E 56 34 12
ADC A,(IY+123456H) FD 8E 56 34 12
ADCW (IX+123456H) DD CE 56 34 12
ADCW (IY+123456H) FD CE 56 34 12
ADCW HL,(IX+123456H) DD CE 56 34 12
ADCW HL,(IY+123456H) FD CE 56 34 12
ADD A,(IX+123456H) DD 86 56 34 12
ADD A,(IY+123456H) FD 86 56 34 12
ADDW (IX+123456H) DD C6 56 34 12
ADDW (IY+123456H) FD C6 56 34 12
ADDW HL,(IX+123456H) DD C6 56 34 12
ADDW HL,(IY+123456H) FD C6 56 34 12
AND (IX+123456H) DD A6 56 34 12
AND (IY+123456H) FD A6 56 34 12
AND A,(IX+123456H) DD A6 56 34 12
AND A,(IY+123456H) FD A6 56 34 12
ANDW (IX+123456H) DD E6 56 34 12
ANDW (IY+123456H) FD E6 56 34 12
ANDW HL,(IX+123456H) DD E6 56 34 12
ANDW HL,(IY+123456H) FD E6 56 34 12
BIT 0,(IX+123456H) DD CB 56 34 12 46
BIT 0,(IY+123456H) FD CB 56 34 12 46
BIT 1,(IX+123456H) DD CB 56 34 12 4E
BIT 1,(IY+123456H) FD CB 56 34 12 4E
BIT 2,(IX+123456H) DD CB 56 34 12 56
BIT 2,(IY+123456H) FD CB 56 34 12 56
BIT 3,(IX+123456H) DD CB 56 34 12 5E
BIT 3,(IY+123456H) FD CB 56 34 12 5E
BIT 4,(IX+123456H) DD CB 56 34 12 66
BIT 4,(IY+123456H) FD CB 56 34 12 66
BIT 5,(IX+123456H) DD CB 56 34 12 6E
BIT 5,(IY+123456H) FD CB 56 34 12 6E
BIT 6,(IX+123456H) DD CB 56 34 12 76
BIT 6,(IY+123456H) FD CB 56 34 12 76
BIT 7,(IX+123456H) DD CB 56 34 12 7E
BIT 7,(IY+123456H) FD CB 56 34 12 7E
CP (IX+123456H) DD BE 56 34 12
CP (IY+123456H) FD BE 56 34 12
CP A,(IX+123456H) DD BE 56 34 12
CP A,(IY+123456H) FD BE 56 34 12
CPW (IX+123456H) DD FE 56 34 12
CPW (IY+123456H) FD FE 56 34 12

CPW HL,(IX+123456H) DD FE 56 34 12
CPW HL,(IY+123456H) FD FE 56 34 12
DEC (IX+123456H) DD 35 56 34 12
DEC (IY+123456H) FD 35 56 34 12
DIVUW (IX+123456H) DD CB 56 34 12 BA
DIVUW (IY+123456H) FD CB 56 34 12 BA
DIVUW HL,(IX+123456H) DD CB 56 34 12 BA
DIVUW HL,(IY+123456H) FD CB 56 34 12 BA
INA A,(123456H) ED DB 56 34 12
INAW HL,(123456H) FD DB 56 34 12
INC (IX+123456H) DD 56 34 12
INC (IY+123456H) FD 56 34 12
LD (12345678H),A 32 78 56 34 12
LD (IX+123456H),56H DD 36 56 34 12 56
LD (IX+123456H),A DD 77 56 34 12
LD (IX+123456H),B DD 70 56 34 12
LD (IX+123456H),C DD 71 56 34 12
LD (IX+123456H),D DD 72 56 34 12
LD (IX+123456H),E DD 73 56 34 12
LD (IX+123456H),H DD 74 56 34 12
LD (IX+123456H),L DD 75 56 34 12
LD (IY+123456H),78H FD 36 56 34 12 78
LD (IY+123456H),A FD 77 56 34 12
LD (IY+123456H),B FD 70 56 34 12
LD (IY+123456H),C FD 71 56 34 12
LD (IY+123456H),D FD 72 56 34 12
LD (IY+123456H),DE FD CB 56 34 12 1B
LD (IY+123456H),H FD 74 56 34 12
LD (IY+123456H),L FD 75 56 34 12
LD A,(12345678H) 3A 78 56 34 12
LD A,(IX+123456H) DD 7E 56 34 12
LD A,(IY+123456H) FD 7E 56 34 12
LD B,(IX+123456H) DD 46 56 34 12
LD B,(IY+123456H) FD 46 56 34 12
LD C,(IX+123456H) DD 4E 56 34 12
LD C,(IY+123456H) FD 4E 56 34 12
LD D,(IX+123456H) DD 56 56 34 12
LD D,(IY+123456H) FD 56 56 34 12
LD E,(IX+123456H) DD 5E 56 34 12
LD E,(IY+123456H) FD 5E 56 34 12
LD H,(IX+123456H) DD 66 56 34 12
LD H,(IY+123456H) FD 66 56 34 12
LD L,(IX+123456H) DD 6E 56 34 12
LD L,(IY+123456H) FD 6E 56 34 12
MULTUW (IX+123456H) DD CB 56 34 12 9A
MULTUW (IY+123456H) FD CB 56 34 12 9A
MULTUW HL,(IX+123456H) DD CB 56 34 12 9A
MULTUW HL,(IY+123456H) FD CB 56 34 12 9A
MULTW (IX+123456H) DD CB 56 34 12 92
MULTW (IY+123456H) FD CB 56 34 12 92
MULTW HL,(IX+123456H) DD CB 56 34 12 92
MULTW HL,(IY+123456H) FD CB 56 34 12 92
OR (IX+123456H) DD B6 56 34 12
OR (IY+123456H) FD B6 56 34 12

USER'S MANUALZILOG

SET 4,(IY+123456H) FD CB 56 34 12 E6
SET 5,(IX+123456H) DD CB 56 34 12 EE
SET 5,(IY+123456H) FD CB 56 34 12 EE
SET 6,(IX+123456H) DD CB 56 34 12 F6
SET 6,(IY+123456H) FD CB 56 34 12 F6
SET 7,(IX+123456H) DD CB 56 34 12 FE
SET 7,(IY+123456H) FD CB 56 34 12 FE
SLA (IX+123456H) DD CB 56 34 12 26
SLA (IY+123456H) FD CB 56 34 12 26
SLAW (IX+123456H) DD CB 56 34 12 22
SLAW (IY+123456H) FD CB 56 34 12 22
SRA (IX+123456H) DD CB 56 34 12 2E
SRA (IY+123456H) FD CB 56 34 12 2E
SRAW (IX+123456H) DD CB 56 34 12 2A
SRAW (IY+123456H) FD CB 56 34 12 2A
SRL (IX+123456H) DD CB 56 34 12 3E
SRL (IY+123456H) FD CB 56 34 12 3E
SRLW (IX+123456H) DD CB 56 34 12 3A
SRLW (IY+123456H) FD CB 56 34 12 3A
SUB A,(IX+123456H) DD 96 56 34 12
SUB A,(IY+123456H) FD 96 56 34 12
SUBW HL,(IX+123456H) DD D6 56 34 12
SUBW HL,(IY+123456H) FD D6 56 34 12
XOR (IX+123456H) DD AE 56 34 12
XOR (IY+123456H) FD AE 56 34 12
XOR A,(IX+123456H) DD AE 56 34 12
XOR A,(IY+123456H) FD AE 56 34 12
XORW (IX+123456H) DD EE 56 34 12
XORW (IY+123456H) FD EE 56 34 12
XORW HL,(IX+123456H) DD EE 56 34 12
XORW HL,(IY+123456H) FD EE 56 34 12

OR A,(IX+123456H) DD B6 56 34 12
OR A,(IY+123456H) FD B6 56 34 12
ORW (IX+123456H) DD F6 56 34 12
ORW (IY+123456H) FD F6 56 34 12
ORW HL,(IX+123456H) DD F6 56 34 12
ORW HL,(IY+123456H) FD F6 56 34 12
OUTA (12345678H),A ED D3 78 56 34 12
OUTAW (12345678H),HL FD D3 78 56 34 12
RES 0,(IX+123456H) DD CB 56 34 12 86
RES 0,(IY+123456H) FD CB 56 34 12 86
RES 1,(IX+123456H) DD CB 56 34 12 8E
RES 1,(IY+123456H) FD CB 56 34 12 8E
RES 2,(IX+123456H) DD CB 56 34 12 96
RES 2,(IY+123456H) FD CB 56 34 12 96
RES 3,(IX+123456H) DD CB 56 34 12 9E
RES 3,(IY+123456H) FD CB 56 34 12 9E
RES 4,(IX+123456H) DD CB 56 34 12 A6
RES 4,(IY+123456H) FD CB 56 34 12 A6
RES 5,(IX+123456H) DD CB 56 34 12 AE
RES 5,(IY+123456H) FD CB 56 34 12 AE
RES 6,(IX+123456H) DD CB 56 34 12 B6
RES 6,(IY+123456H) FD CB 56 34 12 B6
RES 7,(IX+123456H) DD CB 56 34 12 BE
RES 7,(IY+123456H) FD CB 56 34 12 BE
RL (IX+123456H) DD CB 56 34 12 16
RL (IY+123456H) FD CB 56 34 12 16
RLC (IX+123456H) DD CB 56 34 12 06
RLC (IY+123456H) FD CB 56 34 12 06
RLCW (IX+123456H) DD CB 56 34 12 02
RLCW (IY+123456H) FD CB 56 34 12 02
RLW (IX+123456H) DD CB 56 34 12 12
RLW (IY+123456H) FD CB 56 34 12 12
RR (IX+123456H) DD CB 56 34 12 1E
RR (IY+123456H) FD CB 56 34 12 1E
RRC (IX+123456H) DD CB 56 34 12 0E
RRC (IY+123456H) FD CB 56 34 12 0E
RRCW (IX+123456H) DD CB 56 34 12 0A
RRCW (IY+123456H) FD CB 56 34 12 0A
RRW (IX+123456H) DD CB 56 34 12 1A
RRW (IY+123456H) FD CB 56 34 12 1A
SBC A,(IX+123456H) DD 9E 56 34 12
SBC A,(IY+123456H) FD 9E 56 34 12
SBCW (IX+123456H) DD DE 56 34 12
SBCW (IY+123456H) FD DE 56 34 12
SET 0,(IX+123456H) DD CB 56 34 12 C6
SET 0,(IY+123456H) FD CB 56 34 12 C6
SET 1,(IX+123456H) DD CB 56 34 12 CE
SET 1,(IY+123456H) FD CB 56 34 12 CE
SET 2,(IX+123456H) DD CB 56 34 12 D6
SET 2,(IY+123456H) FD CB 56 34 12 D6
SET 3,(IX+123456H) DD CB 56 34 12 DE
SET 3,(IY+123456H) FD CB 56 34 12 DE
SET 4,(IX+123456H) DD CB 56 34 12 E6

USER'S MANUALZILOG

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

© 1994, 1995, 1996, 1997 by Zilog, Inc. All rights reserved. No
part of this document may be copied or reproduced in any form
or by any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change without
notice. Devices sold by Zilog, Inc. are covered by warranty and
patent indemnification provisions appearing in Zilog, Inc. Terms
and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY,
IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMA-
TION SET FORTH HEREIN OR REGARDING THE FREEDOM OF
THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear
in this document. Zilog, Inc. makes no commitment to update or
keep current the information contained in this document.

