RICHTEK

2.5A, Ultra-Low Dropout, Ultra-Fast CMOS LDO Regulator

General Description

The RT9009 is a high performance, 2.5A LDO regulator, offering extremely high PSRR and ultra-low dropout. Ideal for portable RF and wireless applications with demanding performance and space requirements.

Regulator ground current increases only slightly in dropout, further prolonging the battery life. The RT9009 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications that is critical in hand-held wireless devices.

The RT9009 consumes less than 1μ A in shutdown mode and has fast turn-on time of less than 400μ s. The other features include ultra-low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. The RT9009 is available in the TO-263S-5 package.

Ordering Information

RT9009

Package Type MS5 : TO-263S-5 — Lead Plating System P : Pb Free G : Green (Halogen Free and Pb Free)

Note :

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Features

- Ultra Fast Response in Line/Load Transient
- < 1µA Shutdown Current
- Low Dropout : 520mV at 2A
- Wide Operating Voltage Ranges : 2.5V to 5.5V
- TTL-Logic-Controlled Shutdown Input
- Current Limiting Protection
- Thermal Shutdown Protection
- Low-ESR Ceramic Output Capacitor Required for Stability
- High Power Supply Rejection Ratio
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- Game Console
- CDMA/GSM Cellular Handsets
- Battery-Powered Equipment
- Laptop, Palmtops, Notebook Computers
- Hand-Held Instruments
- Mini PCI & PCI-Express Cards
- PCMCIA & New Cards
- Portable Information Appliances

Pin Configurations

(TOP VIEW)

TO-263S-5

Typical Application Circuit

VOUT =
$$1.25 \times (1 + \frac{R1}{R2})$$
 Volts

Note: The value of R2 should be less than 80k to maintain regulation.

Figure 1. Adjustable Operation

Function Pin Description

Pin No.	Pin Name	Pin Function
1	VIN	Power Supply Input.
2	EN	Chip Enable (Active High). When the EN goes to a logic low, the device will be shutdown.
3	VOUT	Regulator Output.
4	ADJ	Output Voltage Feedback Input. If external feedback resistors are applied, the output voltage will be : $V_{OUT} = 1.25 \times (1 + \frac{R_1}{R_2})$ Volts
5	GND	Ground.

Function Block Diagram

RICHTEK

Absolute Maximum Ratings (Note 1)

 Supply Input Voltage EN Input Voltage 	
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
TO-263S-5	3.448W
Package Thermal Resistance (Note 2)	
TO-263S-5, θ _{JA}	29°C/W
TO-263S-5, θ _{JC}	7°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
НВМ	2kV
MM	200V

Recommended Operating Conditions (Note 4)

Supply Input Voltage	2.5V to 5.5V
EN Input Voltage	0V to 5.5V
Junction Temperature Range	40°C to 125°C
Ambient Temperature Range	40°C to 85°C

Electrical Characteristics

 $(V_{IN} = 3.3V, V_{EN} = V_{IN}, C_{IN} = 2.2\mu F$ (Ceramic), $C_{OUT} = 4.7\mu F$ (Ceramic), $T_A = 25^{\circ}C$ unless otherwise specified)

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit	
Input Voltage		VIN		2.5		5.5	V	
Output Voltage Range (Adjustable)		V _{OUT_Adj}		1.25		4.5	V	
Quiescent Current		lQ	$V_{EN} \ge V_{IH}, \ I_{OUT} = 0mA$		380	500	μA	
Shutdown Current		I _{STBY}	$V_{EN} \leq V_{IL}, V_{IN} = 3.3V$		0.1	1	μA	
Current Limit		ILIM		2.6	3.2		А	
Dropout Voltage		V _{DROP}	V _{OUT} = 2.8V, I _{OUT} = 2A		520	790	mV	
Load Regulation		ΔV_{LOAD}	10mA < I _{OUT} < 2A		0.4	2	%	
Line Regulation		ΔV_{LINE}	V _{IN} = 2.5V to 5.5V, I _{OUT} = 5mA			1	%	
EN Threshold	Logic-Low Voltage	VIL				0.6	V	
	Logic-High Voltage	VIH		1.8			V	
Enable Pin Cu	nable Pin Current		Enable		0.1	1	μA	
Power Supply	Power Supply Rejection Rate		I _{OUT} = 300mA, f = 100Hz		60		dB	
Thermal Shutdown Temperature		T _{SD}			155		•••	
Thermal Shutdown Hysteresis		ΔT_{SD}			30		°C	
ADJ		•				, <u> </u>		
Reference Voltage Tolerance		V _{REF}		1.225	1.25	1.275	V	
ADJ Pin Current		I _{ADJ}	V _{ADJ} = V _{REF}		10	100	nA	

RT9009

- Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a high effective four layers thermal conductivity test board of JEDEC 51-7 thermal measurement standard. The case point of θ_{JC} is on the exposed pad for the package. The copper area as heat sink is 225mm².
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

Enable Voltage vs. Temperature

DS9009-01 April 2011

RT9009

Time (250µs/Div)

RICHTEK

Applications Information

Thermal Considerations

For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

Where $T_{J(MAX)}$ is the maximum operation junction temperature, T_A is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions specification of RT9009, the maximum operating junction temperature is 125°C. The junction to ambient thermal resistance θ_{JA} is layout dependent. As shown in Figure 2, RT9009 TO-263S-5 with 15mm x 15mm PCB copper area on the standard JEDEC 51-7 four layers thermal test board thermal resistance θ_{JA} is about 29°C/W. The maximum power dissipation at $T_A = 25^{\circ}$ C can be calculated by following formula :

 $P_{D(MAX)}$ = (125°C - 25°C) / (29°C/W) = 3.448W for TO-263S-5 packages

Figure 2. Thermal Resistance θ_{JA} vs. Copper Area of TO-263S-5 Package

The maximum power dissipation depends on operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance θ_{JA} . For the RT9009, the Figure 3 of de-rating curve allows the designer to see the effect of rising ambient temperature on the maximum power dissipation allowed.

Figure 3. Derating Curve for RT9009 Package

Outline Dimension

	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	4.064	4.826	0.160	0.190	
В	1.143	1.397	0.045	0.055	
b	0.660	0.914	0.026	0.036	
b2	0.305	0.584	0.012	0.023	
С	1.250	1.450	0.049	0.057	
D	9.652	10.668	0.380	0.420	
E	8.128	9.652	0.320	0.380	
е	1.524	1.829	0.060	0.072	
L1	13.000	14.300	0.512	0.563	
L2	1.090	1.590	0.043	0.063	
U	7.600 Ref.		0.299 Ref.		
V	5.900) Ref.	0.232 Ref.		

5-Lead TO-263S Surface Mount Package

Richtek Technology Corporation

Headquarter 5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing) 5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)86672399 Fax: (8862)86672377 Email: marketing@richtek.com

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.