General Description

The MAX9317/MAX9317A/MAX9317B/MAX9317C lowskew, dual 1-to-5 differential drivers are designed for clock and data distribution. The differential input is reproduced at five LVDS outputs with a low output-tooutput skew of 5ps.

The MAX9317/MAX9317A are designed for low-voltage operation from a 2.375V to 2.625V power supply for use in 2.5V systems. The MAX9317B/MAX9317C operate from a 3.0V to 3.6V power supply for use in 3.3V systems. The MAX9317A/MAX9317C feature 50 Ω input termination resistors to reduce component count.

The MAX9317 family is available in 32-pin 7mm × 7mm TQFP and space-saving 5mm × 5mm QFN packages and operate across the extended temperature range of -40°C to +85°C. The MAX9317A is pin compatible with ON Semiconductor's MC100EP210S.

Applications

Precision Clock Distribution Low-Jitter Data Repeaters Data and Clock Drivers and Buffers Central-Office Backplane Clock Distribution **DSLAM Backplanes Base Stations** ATE

Pin Configurations appear at end of data sheet.

Features

- Guaranteed 1.0GHz Operating Frequency
- 145ps (max) Part-to-Part Skew
- 5ps Output-to-Output Skew
- 330ps Propagation Delay from CLK to Q
- 2.375V to 2.625V Operation (MAX9317/MAX9317A)
- ♦ 3.0V to 3.6V Operation (MAX9317B/MAX9317C)
- ESD Protection: ±2kV (Human Body Model)
- Internal 50Ω Input Termination Resistors (MAX9317A/MAX9317C)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	NOMINAL SUPPLY VOLTAGE (V)
MAX9317ETJ*	-40°C to +85°C	32 Thin QFN	2.5
MAX9317ECJ	-40°C to +85°C	32 TQFP	2.5
MAX9317AETJ*	-40°C to +85°C	32 Thin QFN	2.5
MAX9317AECJ	-40°C to +85°C	32 TQFP	2.5
MAX9317BETJ*	-40°C to +85°C	32 Thin QFN	3.3
MAX9317BECJ	-40°C to +85°C	32 TQFP	3.3
MAX9317CETJ*	-40°C to +85°C	32 Thin QFN	3.3
MAX9317CECJ	-40°C to +85°C	32 TQFP	3.3

*Future product—contact factory for availability.

Functional Diagram

N/IXI/N

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +4.1V
Input Pins to GND	0.3V to (V _{CC} + 0.3V)
Differential Input Voltage	V _{CC} or 3.0V, whichever is less
Continuous Output Current	
Surge Output Current	50mA
Continuous Power Dissipation ($\Gamma_A = +70^{\circ}C)$
32-Pin, 7mm × 7mm TQFP	
(derate 20.7mW/°C above +7	′0°C)1.65W
32-Pin 5mm × 5mm QFN	
(derate 21.3mW/°C above +7	′0°C)1.7W

Junction-to-Ambient Thermal Resistance in Still Air
32-Pin, 7mm × 7mm TQFP+48.4°C/W
32-Pin, 5mm × 5mm QFN+47°C/W
Junction-to-Case Thermal Resistance
32-Pin, 7mm × 7mm TQFP+12°C/W
32-Pin, 5mm × 5mm QFN+2°C/W
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
ESD Protection
Human Body Model (CLK_, CLK_, Q_, Q_, VT_)±2kV
Soldering Temperature (10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 2.375V \text{ to } 2.625V \text{ (MAX9317/MAX9317A)}, V_{CC} = 3.0V \text{ to } 3.6V \text{ (MAX9317B/MAX9317C)}, all outputs loaded 100<math>\Omega \pm 1\%$ between Q_ and Q_, unless otherwise noted. Typical values are at V_{CC} = 2.5V (MAX9317/MAX9317A), V_{CC} = 3.3V (MAX9317B/MAX9317C), V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS			-40°C		+25°C				UNITS					
PARAMETER	STMBOL			MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	ТҮР	MAX				
INPUTS (CLK_, CL	Κ _)															
Differential Input High Voltage	VIHD	Figure 1		1.2		VCC	1.2		Vcc	1.2		Vcc	V			
Differential Input Low Voltage	VILD	Figure 1	Figure 1			V _{CC} - 0.1	0		V _{CC} - 0.1	0		Vcc - 0.1	V			
Differential Input Voltage	V _{ID}	N/	N.	N/	Vihd -	MAX9317/ MAX9317A	0.1		V _{CC}	0.1		Vcc	0.1		Vcc	
		VILD	MAX9317B/ MAX9317C	0.1		3.0	0.1		3.0	0.1		3.0				
Input Current	IIH, IIL	V _{IHD} or V	CLK_, or CLK_ = V _{IHD} or V _{ILD} , MAX9317/MAX9317B			+60	-60		+60	-60		+60	μA			
Input Termination Resistance	R _{IN}		MAX9317A/MAX9317C, Figure 2 (Note 4)		50	57	43	50	57	43	50	57	Ω			
OUTPUTS $(Q_{-}, \overline{Q_{-}})$																
Output High Voltage	V _{OH}	Figure 1				1.6			1.6			1.6	V			
Output Low Voltage	V _{OL}	Figure 1		0.9			0.9			0.9			V			

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 2.375V \text{ to } 2.625V \text{ (MAX9317/MAX9317A)}, V_{CC} = 3.0V \text{ to } 3.6V \text{ (MAX9317B/MAX9317C)}, all outputs loaded 100Ω ±1% between Q_ and Q_, unless otherwise noted. Typical values are at V_{CC} = 2.5V \text{ (MAX9317/MAX9317A)}, V_{CC} = 3.3V \text{ (MAX9317B/MAX9317C)}, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, unless otherwise noted.) (Notes 1, 2, and 3)$

PARAMETER	SYMBOL	CONDITIONS	-40°C			+25°C				UNITS			
FANAMEIER	STMBUL	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ΤΥΡ	MAX		
Differential Output Voltage	V _{OD}	Figure 1	250	350	450	250	350	450	250	350	450	mV	
Change in V _{OD} Between Complementary Output States	ΔV _{OD}			7	50		6	50		6	50	mV	
Output Offset Voltage	V _{OS}		1.125	1.25	1.375	1.125	1.25	1.375	1.125	1.25	1.375	V	
Change in V _{OS} Between Complementary Output States	ΔV _{OS}				25			25			25	mV	
Output Short		Q_ shorted to $\overline{Q_{-}}$			12			12			12		
Output Short- Circuit Current	IOSC	Q_ or \overline{Q} shorted to GND			28			28			28	mA	
POWER SUPPLY													
Power-Supply		MAX9317/9317A		69	107		75	107		80	107	mA	
Current (Note 5)	Icc	MAX9317B/9317C		75	107		81	107		86	107	ШA	

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 2.375V \text{ to } 2.625V \text{ (MAX9317/MAX9317A) or } V_{CC} = 3.0V \text{ to } 3.6V \text{ (MAX9317B/MAX9317C), all outputs loaded with } 100\Omega \pm 1\%$, between Q_ and Q_, f_{IN} \leq 1.0GHz, input transition time = 125ps (20% to 80%), V_{IHD} - V_{ILD} = 0.15V to V_{CC}, unless otherwise noted. Typical values are at V_{CC} = 2.5V (MAX9317/MAX9317A), V_{CC} = 3.3V (MAX9317B/MAX9317C), f_{IN} = 1.0GHz, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, unless otherwise noted.) (Notes 1 and 4)

PARAMETER	SYMBOL	CONDITIONS	-40°C			+25°C						
PARAMETER	STMBOL	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
Propagation Delay CLK_, CLK_ to Q_, Q_	tphl tplh	Figure 1	250	310	600	250	330	600	250	335	600	ps
Output-to-Output Skew	^t SKEW1	(Note 6)		9	55		5	45		4	25	ps
Part-to-Part Skew	tSKEW2	(Note 7)			145			145			145	ps
Added Random Jitter	t _{RJ}	f _{IN} = 1.0GHz, clock pattern (Note 8)		0.8	2.0		0.8	2.0		0.8	2.0	ps(RMS)
Added Deterministic Jitter	tDJ	f _{IN} = 1.0GHz, 2 ²³ - 1 PRBS pattern (Note 8)		80	105		80	105		80	105	PS(P-P)
Operating Frequency	fMAX	$V_{OD} \ge 250 mV$	1.0			1.0			1.0			GHz

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 2.375V \text{ to } 2.625V \text{ (MAX9317/MAX9317A) or } V_{CC} = 3.0V \text{ to } 3.6V \text{ (MAX9317B/MAX9317C), all outputs loaded with } 100\Omega \pm 1\%$ between Q_ and \overline{Q}_{-} , f_{IN} \leq 1.0GHz, input transition time = 125ps (20% to 80%), V_{IHD} - V_{ILD} = 0.15V to V_{CC}, unless otherwise noted. Typical values are at V_{CC} = 2.5V (MAX9317/MAX9317A), V_{CC} = 3.3V (MAX9317B/MAX9317C), f_{IN} = 1.0GHz, V_{IHD} = V_{CC} - 1.0V, $V_{ILD} = V_{CC} - 1.5V$, unless otherwise noted.) (Notes 1 and 4)

PARAMETER	SYMBOL	CONDITIONS	-40°C			+25°C			+85°C			UNITS
PARAMETER	STMBOL		MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	
Differential Output Rise/Fall Time	t _R /t _F	20% to 80%, Figure 1	140	200	300	140	205	300	140	205	300	ps

Note 1: Measurements are made with the device in thermal equilibrium.

Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.

Note 3: DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full operating temperature range.

Note 4: Guaranteed by design and characterization, and are not production tested. Limits are set to ±6 sigma.

Note 5: All outputs loaded with 100Ω differential, all inputs biased differential high or low except VT.

Note 6: Measured between outputs of the same device at the signal crossing points for a same-edge transition.

Note 7: Measured between outputs on different devices for identical transitions and V_{CC} levels.

Note 8: Device jitter added to the input signal.

Typical Operating Characteristics

(MAX9317, V_{CC} = 2.5V, all outputs loaded with 100 Ω ±1%, between Q_ and \overline{Q}_{-} , f_{IN} = 1.0GHz, input transition time = 125ps (20% to 80%), $V_{IHD} = V_{CC} - 1.0V$, $V_{ILD} = V_{CC} - 1.5V$, unless otherwise noted.)

Pin Description

	NAME		
PIN	MAX9317 MAX9317B	MAX9317A MAX9317C	FUNCTION
1, 8	GND	GND	Ground
	N.C.		No Connection. Connect this pin to ground or leave floating.
2	_	VTA	CLKA Input Termination Voltage. This pin is connected to CLKA and $\overline{\text{CLKA}}$ through 50 Ω termination resistors. Connect this pin to V _{CC} - 2V for an LVPECL input signal on CLKA or leave floating for an LVDS input signal.
3	CLKA	CLKA	Noninverting Differential Clock Input A
4	CLKA	CLKA	Inverting Differential Clock Input A
	N.C.	_	No Connection. Connect this pin to ground or leave floating.
5	_	V _{TB}	CLKB Input Termination Voltage. This pin is connected to CLKB and $\overline{\text{CLKB}}$ through 50 Ω termination resistors. Connect this pin to V _{CC} - 2V for an LVPECL input signal on CLKB or leave floating for an LVDS input signal.
6	CLKB	CLKB	Noninverting Differential Clock Input B
7	CLKB	CLKB	Inverting Differential Clock Input B
9, 16, 25, 32	V _{CC}	V _{CC}	Positive Supply Voltage. Bypass each V _{CC} pin to ground with 0.1μ F and 0.01μ F ceramic capacitors. Place the capacitors as close to the device as possible with the 0.01μ F capacitor closest to the device.
10	QB4	QB4	CLKB Inverting Differential Output 4. Terminate with 100 Ω to QB4.
11	QB4	QB4	CLKB Noninverting Differential Output 4. Terminate with 100 Ω to $\overline{\text{QB4}}$.
12	QB3	QB3	CLKB Inverting Differential Output 3. Terminate with 100 Ω to QB3.
13	QB3	QB3	CLKB Noninverting Differential Output 3. Terminate with 100 Ω to $\overline{\text{QB3}}$.
14	QB2	QB2	CLKB Inverting Differential Output 2. Terminate with 100 Ω to QB2.
15	QB2	QB2	CLKB Noninverting Differential Output 2. Terminate with 100 Ω to $\overline{\text{QB2}}$.
17	QB1	QB1	CLKB Inverting Differential Output 1. Terminate with 100 Ω to QB1.
18	QB1	QB1	CLKB Noninverting Differential Output 1. Terminate with 100 Ω to $\overline{\text{QB1}}$.
19	QB0	QB0	CLKB Inverting Differential Output 0. Terminate with 100 Ω to QB0.
20	QB0	QB0	CLKB Noninverting Differential Output 0. Terminate with 100 Ω to $\overline{\text{QB0}}$.
21	QA4	QA4	CLKA Inverting Differential Output 4. Terminate with 100 Ω to QA4.
22	QA4	QA4	CLKA Noninverting Differential Output 4. Terminate with 100 Ω to $\overline{QA4}$.
23	QA3	QA3	CLKA Inverting Differential Output 3. Terminate with 100 Ω to QA3.
24	QA3	QA3	CLKA Noninverting Differential Output 3. Terminate with 100 Ω to $\overline{QA3}$.
26	QA2	QA2	CLKA Inverting Differential Output 2. Terminate with 100 Ω to QA2.
27	QA2	QA2	CLKA Noninverting Differential Output 2. Terminate with 100 Ω to $\overline{QA2}$.
28	QA1	QA1	CLKA Inverting Differential Output 1. Terminate with 100 Ω to QA1.
29	QA1	QA1	CLKA Noninverting Differential Output 1. Terminate with 100 Ω to $\overline{QA1}$.
30	QAO	QA0	CLKA Inverting Differential Output 0. Terminate with 100 Ω to QA0.
31	QA0	QA0	CLKA Noninverting Differential Output 0. Terminate with 100 Ω to $\overline{QA0}$.
	EP	EP	Exposed Pad. QFN package only. Internally connected to ground.

Figure 1. MAX9317 Timing Diagram

Detailed Description

The MAX9317 family of low-skew, 1-to-5 dual differential drivers are designed for clock or data distribution. Two independent 1-to-5 splitters accept a differential input signal and reproduce it on five separate differential LVDS outputs. The output drivers are guaranteed to operate at frequencies up to 1.0GHz with the LVDS output levels conforming to the EIA/TIA-644 standard.

The MAX9317/MAX9317A operate from a 2.375V to 2.625V power supply for use in 2.5V systems. The MAX9317B/MAX9317C operate from a 3.0V to 3.6V supply for 3.3V systems.

Differential LVPECL and LVDS Input

The MAX9317 family has two input differential pairs: CLKA and CLKA, and CLKB and CLKB. Each differential input pair can be configured or terminated independently. The inputs are designed to be driven by either LVPECL or LVDS signals with a maximum differential voltage of V_{CC} or 3.0V, whichever is less.

The MAX9317A/MAX9317C reduce external component count by having the input 50 Ω termination resistors on chip. Configure the MAX9317A/MAX9317C to receive LVPECL signals by connecting V_T to V_{CC} - 2V (Figure 2(a)). Leaving the V_T input floating configures the

Figure 2. MAX9317A/MAX9317C Input Terminations

respective input with a differential 100Ω termination to receive LVDS signals (Figure 2(b)).

The MAX9317/MAX9317B accept LVPECL if the inputs are externally terminated with 50 Ω resistors from CLKA and CLKA or CLKB and CLKB to V_{CC} - 2V. Alternatively, if the inputs are differentially terminated with 100 Ω , they accept an LVDS input signal.

The LVDS input signal must adhere to the specifications given in the *Electrical Characteristics* table. Note that the signal must be at least 1.2V to be a valid logic HIGH.

Applications Information

Output Termination

Terminate the outputs with 100Ω across each differential pair (Q_ to \overline{Q}). Ensure that output currents do not exceed the current limits as specified in the *Absolute Maximum Ratings* table. Under all operating conditions, observe the device's total thermal limits.

Power-Supply Bypassing

Bypass each V_{CC} pin to ground with high-frequency surface-mount ceramic 0.1μ F and 0.01μ F capacitors in parallel and as close to the device as possible, with the 0.01μ F capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance and reduce power-supply bounce with high-current transients.

Circuit Board Traces

Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Use 50 Ω traces for CLK_, CLK_, Q_, and \overline{Q} . Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing common-mode noise immunity by keeping the differential traces close together.

Signal reflections are caused by discontinuities in the 50 Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, and not using sharp corners or vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.

Chip Information

TRANSISTOR COUNT: 1119 PROCESS: Bipolar

Pin Configurations

7

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2002 Maxim Integrated Products

10

Printed USA

is a registered trademark of Maxim Integrated Products.