

# BGA7L1BN6

Silicon Germanium Low Noise Amplifier for LTE

# Data Sheet

Revision 3.1, 2017-03-03

# **RF & Protection Devices**

Edition 2017-03-03

Published by Infineon Technologies AG 81726 Munich, Germany © 2017 Infineon Technologies AG All Rights Reserved.

#### Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.



| <b>Revision Histo</b> | ory                                              |  |
|-----------------------|--------------------------------------------------|--|
| Page or Item          | Subjects (major changes since previous revision) |  |
| Revision 3.1, 2       | 2017-03-03                                       |  |
| all                   | Initial final version                            |  |
|                       |                                                  |  |
|                       |                                                  |  |

#### Trademarks of Infineon Technologies AG

AURIX<sup>™</sup>, C166<sup>™</sup>, CanPAK<sup>™</sup>, CIPOS<sup>™</sup>, CIPURSE<sup>™</sup>, EconoPACK<sup>™</sup>, CoolMOS<sup>™</sup>, CoolSET<sup>™</sup>, CORECONTROL<sup>™</sup>, CROSSAVE<sup>™</sup>, DAVE<sup>™</sup>, DI-POL<sup>™</sup>, EasyPIM<sup>™</sup>, EconoBRIDGE<sup>™</sup>, EconoDUAL<sup>™</sup>, EconoPIM<sup>™</sup>, EconoPACK<sup>™</sup>, EiceDRIVER<sup>™</sup>, eupec<sup>™</sup>, FCOS<sup>™</sup>, HITFET<sup>™</sup>, HybridPACK<sup>™</sup>, I<sup>2</sup>RF<sup>™</sup>, ISOFACE<sup>™</sup>, IsoPACK<sup>™</sup>, MIPAQ<sup>™</sup>, ModSTACK<sup>™</sup>, my-d<sup>™</sup>, NovalithIC<sup>™</sup>, OptiMOS<sup>™</sup>, ORIGA<sup>™</sup>, POWERCODE<sup>™</sup>; PRIMARION<sup>™</sup>, PrimePACK<sup>™</sup>, PrimeSTACK<sup>™</sup>, PRO-SIL<sup>™</sup>, PROFET<sup>™</sup>, RASIC<sup>™</sup>, ReverSave<sup>™</sup>, SatRIC<sup>™</sup>, SIEGET<sup>™</sup>, SINDRION<sup>™</sup>, SIPMOS<sup>™</sup>, SmartLEWIS<sup>™</sup>, SOLID FLASH<sup>™</sup>, TEMPFET<sup>™</sup>, thinQ!<sup>™</sup>, TRENCHSTOP<sup>™</sup>, TriCore<sup>™</sup>.

#### Other Trademarks

Advance Design System<sup>™</sup> (ADS) of Agilent Technologies, AMBA<sup>™</sup>, ARM<sup>™</sup>, MULTI-ICE<sup>™</sup>, KEIL<sup>™</sup>, PRIMECELL<sup>™</sup>, REALVIEW<sup>™</sup>, THUMB<sup>™</sup>, µVision<sup>™</sup> of ARM Limited, UK. AUTOSAR<sup>™</sup> is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-ig™ of DECT Forum. COLOSSUS™, FirstGPS<sup>™</sup> of Trimble Navigation Ltd. EMV<sup>™</sup> of EMVCo, LLC (Visa Holdings Inc.). EPCOS<sup>™</sup> of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANI ZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11



#### BGA7L1BN6

#### **Table of Contents**

## **Table of Contents**

|   | Table of Contents          | 4  |
|---|----------------------------|----|
|   | List of Figures            | 5  |
|   | List of Tables             | 6  |
|   | Features                   | 7  |
| 1 | Maximum Ratings            | 9  |
| 2 | Electrical Characteristics | 10 |
| 3 | Application Information    | 11 |
| 4 | Package Information        | 12 |



### List of Figures

# List of Figures

| Figure 1 | Block Diagram                                                    | 7  |
|----------|------------------------------------------------------------------|----|
| Figure 2 | Application Schematic BGA7L1BN6                                  | 11 |
| Figure 3 | TSNP-6-2 Package Outline (top, side and bottom views)            | 12 |
| Figure 4 | Footprint Recommendation TSNP-6-2                                | 12 |
| Figure 5 | Marking Layout (top view).                                       | 12 |
| Figure 6 | Tape & Reel Dimensions (reel diameter 180 mm, pieces/reel 15000) | 13 |



#### List of Tables

# List of Tables

| Table 1 | Pin Definition and Function                                                                                               |
|---------|---------------------------------------------------------------------------------------------------------------------------|
| Table 2 | Maximum Ratings                                                                                                           |
| Table 3 | Electrical Characteristics: $T_{A}$ = 25 °C, $V_{CC}$ = 2.8 V, $V_{C,ON}$ = 2.8 V, $V_{C,BYP}$ = 0 V, $f$ = 716 - 960 MHz |
|         |                                                                                                                           |
| Table 4 | Bill of Materials                                                                                                         |



### Silicon Germanium Low Noise Amplifier for LTE

#### BGA7L1BN6

### Features

- Insertion power gain: 13.6 dB
- Low noise figure: 0.75 dB
- Low current consumption: 4.9 mA
- Insertion Loss in bypass mode: -2.2 dB
- Operating frequencies: 716 960 MHz
- Two-state control: Bypass- and High gain-Mode
- Supply voltage: 1.5 V to 3.6 V
- Digital on/off switch (1V logic high level)
- Ultra small TSNP-6-2 leadless package (footprint: 0.7 x 1.1 mm<sup>2</sup>)
- B7HF Silicon Germanium technology
- RF output internally matched to 50  $\Omega$
- Only 1 external SMD component necessary
- Pb-free (RoHS compliant) package





#### **Product Validation**

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.



#### Figure 1 Block Diagram

| Product Name | Marking | Package  |
|--------------|---------|----------|
| BGA7L1BN6    | К       | TSNP-6-2 |



Features

#### Description

The BGA7L1BN6 is a front-end low noise amplifier for LTE which covers a wide frequency range from 716 MHz to 960 MHz. The LNA provides 13.6 dB gain and 0.75 dB noise figure at a current consumption of 4.9 mA in the application configuration described in **Chapter 3**. In bypass mode the LNA provides an insertion loss of -2.2dB. The BGA7L1BN6 is based upon Infineon Technologies' B7HF Silicon Germanium technology. It operates from 1.5 V to 3.6 V supply voltage. The device features a single-line two-state control (Bypass- and High gain-Mode). OFF-state can be enabled by powering down Vcc.

#### Pin Definition and Function

| Pin No. | Name | Function   |
|---------|------|------------|
| 1       | GND  | Ground     |
| 2       | VCC  | DC supply  |
| 3       | AO   | LNA output |
| 4       | GND  | Ground     |
| 5       | AI   | LNA input  |
| 6       | С    | Control    |

#### Table 1 Pin Definition and Function



#### **Maximum Ratings**

## 1 Maximum Ratings

| Table 2 | Maximum Ratings |
|---------|-----------------|
|---------|-----------------|

| Parameter                                                      | Symbol           | Values |      |                       | Unit | Note /         |
|----------------------------------------------------------------|------------------|--------|------|-----------------------|------|----------------|
|                                                                |                  | Min.   | Тур. | Max.                  |      | Test Condition |
| Voltage at pin VCC                                             | V <sub>CC</sub>  | -0.3   | _    | 5.0                   | V    | 1)             |
| Voltage at pin Al                                              | $V_{AI}$         | -0.3   | _    | 0.9                   | V    | -              |
| Voltage at pin AO                                              | $V_{AO}$         | -0.3   | -    | V <sub>CC</sub> + 0.3 | V    | -              |
| Voltage at pin C                                               | V <sub>C</sub>   | -0.3   | _    | V <sub>CC</sub> + 0.3 | V    | -              |
| Voltage at GND pins                                            | $V_{GND}$        | -0.3   | _    | 0.3                   | V    | _              |
| Current into pin VCC                                           | I <sub>CC</sub>  | _      | _    | 50                    | mA   | -              |
| RF input power                                                 | P <sub>IN</sub>  | _      | _    | +25                   | dBm  | _              |
| Total power dissipation,<br>$T_{\rm S}$ < 148 °C <sup>2)</sup> | P <sub>tot</sub> | -      | -    | 250                   | mW   | -              |
| Junction temperature                                           | TJ               | _      | _    | 150                   | °C   | _              |
| Ambient temperature range                                      | T <sub>A</sub>   | -40    | -    | 85                    | °C   | -              |
| Storage temperature range                                      | T <sub>STG</sub> | -65    | -    | 150                   | °C   | -              |

1) All voltages refer to GND-Node unless otherwise noted

2)  $T_{\rm S}$  is measured on the ground lead at the soldering point

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.



#### **Electrical Characteristics**

# 2 Electrical Characteristics

| Parameter                                                                 | Symbol                   | Values |      |                 | Unit | Note / Test Condition              |
|---------------------------------------------------------------------------|--------------------------|--------|------|-----------------|------|------------------------------------|
|                                                                           |                          | Min.   | Тур. | Max.            |      |                                    |
| Supply voltage                                                            | V <sub>CC</sub>          | 1.5    | _    | 3.6             | V    | -                                  |
| Supply current                                                            | I <sub>CC</sub>          | -      | 4.9  | 5.9             | mA   | High gain mode                     |
|                                                                           |                          | _      | 87   | 120             | μA   | Bypass mode                        |
|                                                                           |                          | _      | 110  | 150             | μA   | Bypass mode / $V_{\rm CC}$ = 5.0 V |
| Control voltage                                                           | V <sub>C</sub>           | 1.0    | _    | V <sub>CC</sub> | V    | High gain mode                     |
|                                                                           |                          | 0      | _    | 0.4             | V    | Bypass mode                        |
| Insertion power gain                                                      | $ S_{21} ^2$             | 12.1   | 13.6 | 15.1            | dB   | High gain mode                     |
| <i>f</i> = 840 MHz                                                        |                          | -3.2   | -2.2 | -1.2            | dB   | Bypass mode                        |
| Noise figure <sup>2)</sup>                                                | NF                       | _      | 0.75 | 1.3             | dB   | High gain mode                     |
| $Z_{\rm S}$ = 50 $\Omega$                                                 |                          | _      | 1.8  | 2.8             | dB   | Bypass mode                        |
| Input return loss                                                         | <i>RL</i> <sub>in</sub>  | 9      | 12   | _               | dB   | High gain mode                     |
| <i>f</i> = 840 MHz                                                        |                          | 6      | 9    | _               | dB   | Bypass mode                        |
| Output return loss                                                        | <i>RL</i> <sub>out</sub> | 10     | 13   | -               | dB   | High gain mode                     |
| <i>f</i> = 840 MHz                                                        |                          | 5      | 8    | _               | dB   | Bypass mode                        |
| Reverse isolation                                                         | $1/ S_{12} ^2$           | 17     | 21   | _               | dB   | High gain mode                     |
|                                                                           |                          | -3.2   | -2.2 | _               | dB   | Bypass mode                        |
| Power gain settling time <sup>3)</sup>                                    | t <sub>S</sub>           | -      | 3    | 6               | μs   | Bypass- to HG-mode                 |
|                                                                           |                          | _      | 0.2  | 0.3             | μs   | HG- to Bypass-mode                 |
| Inband input 1dB-compression                                              | IP <sub>1dB</sub>        | -3     | -1   | _               | dBm  | High gain mode                     |
| point, <i>f</i> = 840 MHz                                                 |                          | +2     | +6   | _               | dBm  | Bypass mode                        |
| Inband input 3 <sup>rd</sup> -order intercept                             | IIP <sub>3</sub>         | 0      | +5   | _               | dBm  | High gain mode                     |
| point <sup>4)</sup><br>$f_1 = 840 \text{ MHz}, f_2 = f_1 + 1 \text{ MHz}$ |                          | +13    | +18  | -               | dBm  | Bypass mode                        |
| Phase shift                                                               | PS                       | -5     | 0    | 5               | o    | High gain mode and bypass mode     |
| Stability                                                                 | k                        | > 1    | _    | _               |      | <i>f</i> = 20 MHz 10 GHz           |

| Table 3 | Electrical Characteristics: | $T_{\rm A} = 25$ | °C, $V_{\rm CC}$ = 2.8 V, | $V_{\rm C,ON}$ = 2.8 V, V | ν <sub>C,BYP</sub> = 0 V, <i>f</i> = 716 - 960 MHz |
|---------|-----------------------------|------------------|---------------------------|---------------------------|----------------------------------------------------|
|---------|-----------------------------|------------------|---------------------------|---------------------------|----------------------------------------------------|

1) Based on the application described in chapter 3

2) PCB losses are subtracted

3) To be within 1 dB of the final gain

4) High gain mode: Input power = -30 dBm for each tone / Bypass mode: Input power = -10 dBm for each tone



#### **Application Information**

# 3 Application Information

#### **Application Board Configuration**



#### Figure 2 Application Schematic BGA7L1BN6

#### Table 4 Bill of Materials

| Name          | Value     | Package  | Manufacturer    | Function                |
|---------------|-----------|----------|-----------------|-------------------------|
| C1            | 1nF       | 0402     | Various         | DC block <sup>1)</sup>  |
| C2 (optional) | ≥ 1nF     | 0402     | Various         | RF bypass <sup>2)</sup> |
| L1            | 11nH      | 0402     | Murata LQW type | Input matching          |
| N1            | BGA7L1BN6 | TSNP-6-2 | Infineon        | SiGe LNA                |

1) DC block might be necessary due to internal LNA bias voltage @ AI (LNA Analog Input pin). The DC block can be realized with pre-filter (e.g. SAW)

2) RF bypass recommended to mitigate power supply noise

Note: No external DC blocking capacitor at RFout is required in typical applications as long as no DC is applied.

A list of all application notes is available at http://www.infineon.com/Itelna



**Package Information** 

# 4 Package Information















#### BGA7L1BN6

#### **Package Information**



Figure 6 Tape & Reel Dimensions (reel diameter 180 mm, pieces/reel 15000)

www.infineon.com

Published by Infineon Technologies AG