
Adafruit NeoPixel Überguide
Created by Phillip Burgess

Last updated on 2021-03-09 01:07:38 PM EST

2
5
5
6
6
6
7
8
8

10
10
11
12
13
14
15
17
17
18
20
20
20
20
22
22
23
23
23
23
24
24
26
26
26
26
27
27
27
27
29
29
29
29
30
31
31

Guide Contents

Guide Contents
The Magic of NeoPixels

Important Things to Know About NeoPixels in General
Can I use NeoPixels for POV (persistence of vision) displays?
How about for light painting?
Is there a limit to the number of NeoPixels in a chain?

Form Factors
NeoPixel Strips and Strands
RGB NeoPixel Strips
Mini Skinny RGB NeoPixel Strips
Side-Light NeoPixel Strips
RGBW NeoPixel Strips
“Neon-Like” NeoPixel Flex Strip
Ultraviolet NeoPixel Strips
NeoPixel Strands
Finer Details About NeoPixel Strips
NeoPixel Rings

NeoPixel Ring Product Selector (http://adafru.it/3042)
Finer Details About NeoPixel Rings

NeoPixel Matrices
Rigid 8x8 NeoPixel Matrices

NeoPixel Matrix Product Selector (http://adafru.it/3052)
Flexible NeoPixel Matrices
Finer Details About NeoPixel Matrices

We also have a few special-purpose matrices on the NeoPixel Shields page!
NeoPixel Shields
NeoPixel Shield for Arduino

NeoPixel Shield Product Selector (https://adafru.it/lCw)
NeoPixel FeatherWing
Pimoroni Unicorn Hat
Particle/Spark NeoPixel Ring Kit
Other NeoPixel Shapes
NeoPixel Stick

NeoPixel Stick Product Selector (http://adafru.it/3039)
NeoPixel Jewels

NeoPixel Jewel Product Selector (http://adafru.it/3047)
1/4 60 NeoPixel Ring

NeoPixel Ring Product Selector (http://adafru.it/3042)
Side Light NeoPixel LED PCB Bar
Individual NeoPixels
Integrated NeoPixel Products

Flora RGB Smart NeoPixels
Breadboard-Friendly RGB Smart NeoPixels
NeoPixel Mini PCB

Discrete NeoPixel Products
Through-Hole NeoPixels

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 2 of 78

32
34
35
36
37
37
39
41

41
42
42
42
42
43
44
45
45
45
46
46
46
46
47
50
51
51
51
52
52
52
52
52
53
53
56
56
57
57
58
59
59
59
59
59
60
60
60
61
61

SMT NeoPixels
WS2811 Driver IC

Basic Connections
Can NeoPixels be powered directly from the Arduino’s 5V pin?

Best Practices
Improper use can damage your NeoPixels. Before diving in, be aware of the following:

Powering NeoPixels
Estimating Power Requirements

I estimate I need a 3.6 Amp power supply. I have a 10 Amp supply on-hand. Will this cause my NeoPixels to
explode?
What about batteries and “Amp hours”?
I need to power LOTS of NeoPixels and don’t have a power supply that large. Can I use several smaller ones?

Giant Power Supplies
Distributing Power
Driving 5V NeoPixels from 3.3V Microcontrollers
Software
Arduino Library Installation
Install Adafruit_NeoPixel via Library Manager
Manually Install Adafruit_NeoPixel Library
A Simple Code Example: strandtest

Nothing happens!
Something happens but the LEDs are blinking in a weird way!
I don't have RGBW LEDs and the LEDs are still blinking weird!

Arduino Library Use
HSV (Hue-Saturation-Value) Colors…
…and Gamma Correction
Help!

I’m calling setPixel() but nothing’s happening!
Can I have multiple NeoPixel objects on different pins?
Can I connect multiple NeoPixel strips to the same Arduino pin?
I'm getting the wrong colors. Red and blue are swapped!
The colors fall apart when I use setBrightness() repeatedly!

Pixels Gobble RAM
NeoMatrix Library
Layouts

Why not just use the rotation feature in Adafruit_GFX?
Tiled Matrices
Other Layouts
RAM Again
Gamma Correction
Advanced Coding

FastLED Library
FAQ and Further Programming Insights
Help! My Arduino servo code stops working when combined with NeoPixels!
When driving NeoPixels I cannot receive infrared codes on my IR receiver!
How fast can I refresh a string of (N) pixels?
That won’t do. Now what?
Can I control NeoPixels using (Board X)?
Why not Raspberry Pi?

DMA NeoPixels for ARM Cortex-M0 Boards

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 3 of 78

61
61
62
62
64
64
64
65
65
65
67
69
70
70
71
71
71
72
73
73
74
75
76
77

Third-Party Libraries
WS2811? WS2812? Why do I see two different names mentioned?

Writing Your Own Library
My Microcontroller Isn’t Fast Enough to Do That

Python & CircuitPython
CircuitPython Microcontroller Wiring
Python Computer Wiring
CircuitPython Installation of NeoPixel Library
Python Installation of NeoPixel Library
CircuitPython & Python Usage
Full Example Code
Python Docs
MakeCode
Guide Link: NeoPixels with MakeCode (https://adafru.it/D1L)
Downloads
NeoPixel 12-LED Ring
NeoPixel 16-LED Ring
NeoPixel 24-LED Ring
NeoPixel 1/4 60-LED Ring
NeoPixel Jewel
Breadboard Friendly NeoPixel Breakout
NeoPixel NeoMatrix 8x8
NeoPixel Arduino Shield
NeoPixel 8 Stick

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 4 of 78

The Magic of NeoPixels
Incorporating scads of LEDs into an electronic project used to be a hairy prospect, a veritable rat’s nest of

wires and code. The arrival of dedicated LED driver chips brought welcome relief, offloading grunt work

from the microcontroller and allowing one to focus on the application. Much simpler, but still not

“Christmas light” simple.

The WS2812 Integrated Light Source — or NeoPixel in Adafruit parlance — is the latest advance in the

quest for a simple, scalable and affordable full-color LED. Red, green and blue LEDs are integrated

alongside a driver chip into a tiny surface-mount package controlled through a single wire. They can be

used individually, chained into longer strings or assembled into still more interesting form-factors.

� We know you’re eager to get started…but If this is your first time using NeoPixels, please at least

read the “Best Practices” page before connecting anything!

Important Things to Know About NeoPixels in General
Not all addressable LEDs are NeoPixels. “NeoPixel” is Adafruit’s brand for individually-addressable

RGB color pixels and strips based on the WS2812, WS2811 and SK6812 LED/drivers, using a single-

wire control protocol. Other LED products we carry — DotStars, WS2801 pixels, LPD8806 and

“analog” strips — use different methodologies (and have their own tutorials). When seeking technical
support in the forums, a solution can be found more quickly if the correct LED type is mentioned, i.e.
avoid calling DotStars “NeoPixels”…similar, but different!
NeoPixels don’t just light up on their own; they require a microcontroller (such as Arduino) and some

programming. We provide some sample code to get you started. To create your own effects and

animation, you’ll need some programming practice. If this is a new experience, work through some of

the beginning Arduino tutorials to get a feel for the language.

NeoPixels aren’t the answer for every project. The control signal has very strict timing requirements,

and some development boards (such as Netduino or Raspberry Pi) can’t reliably achieve this. This is

why we continue to offer other LED types; some are more adaptable to certain situations.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 5 of 78

�
�
Can I use NeoPixels for POV (persistence of vision) displays?
Not recommended. The refresh rate is relatively low (about 400 Hz), and color displays in fast motion may

appear “speckled.” They look fine in stationary displays though (signs, decorations, jewelry, etc.). For POV

use, DotStar strips (https://adafru.it/kDg) will look much better (they have about a 20 KHz refresh rate).

�
�
How about for light painting?
Definitely! The slower movement used for photographic light painting doesn’t call attention to the limited

refresh rate; the results look great (https://adafru.it/jTb), especially with a light diffuser.

�
�
Is there a limit to the number of NeoPixels in a chain?
There’s no inherent limit in the maximum length of a NeoPixel chain, but eventually you’ll encounter any of

various practical limits:

1. RAM: NeoPixels require some RAM from the host microcontroller; more pixels = more RAM. It’s only a

few bytes each, but as most microcontrollers are pretty resource-constrained, this becomes a very

real consideration for large projects.

2. Power: each NeoPixel draws a little bit of current; more pixels = more power. Power supplies likewise

have some upper limit.

3. Time: NeoPixels process data from the host microcontroller at a fixed data rate; more pixels = more

time and lower animation frame rates.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 6 of 78

file:///adafruit-dotstar-leds/overview
file:///neopixel-painter/overview

Form Factors

NeoPixel products are available in a zillion form factors…from individual tiny pixels to huge matrices…plus

strips, rings and everything in-between.

Pick a category from the left column for product links and tips & tricks specific to each type of NeoPixel.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 7 of 78

NeoPixel Strips and Strands
The most popular type of NeoPixels are these flexible LED strips…they can be cut to length and fit into all

manner of things. We’ve got over a dozen varieties! Two vital things to be aware of:

Though strips are described as “flexible,” they do not tolerate continuous and repeated

bending. “Formable” might be a better word. A typical application is architecture, where they can be

curved around columns and then stay put. Repeated flexing (as on costumes) will soon crack the

solder connections. For wearable use, either affix shorter segments to a semi-rigid base (e.g. a hat,

BMX armor, etc.), or use the individual sewable NeoPixels shown later.

Watch your power draw. Though each pixel only needs a little current, it adds up fast…NeoPixel

strips are so simple to use, one can quickly get carried away! We’ll explain more on the “Powering

NeoPixels” page.

RGB NeoPixel Strips

NeoPixel Digital RGB LED Weatherproof Strip is available in

three different “densities”: 30, 60 and 144 LEDs per meter, on

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 8 of 78

https://learn.adafruit.com//assets/30691
https://learn.adafruit.com//assets/30692

a white or black backing strip.

30 LEDs per meter, white strip (http://adafru.it/1376)

30 LEDs per meter, black strip (http://adafru.it/1460)

60 LEDs per meter, white strip (http://adafru.it/1138)

60 LEDs per meter, black strip (http://adafru.it/1461)

144 LEDs per meter, white strip (http://adafru.it/1507)

144 LEDs per meter, black strip (http://adafru.it/1506)

The approximate peak power use (all LEDs on at maximum

brightness) per meter is:

30 LEDs: 9 Watts (about 1.8 Amps at 5 Volts).

60 LEDs: 18 Watts (about 3.6 Amps at 5 Volts).

144 LEDs : 43 watts (8.6 Amps at 5 Volts).

Mixed colors and lower brightness settings will use

proportionally less power.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 9 of 78

https://learn.adafruit.com//assets/30693
https://learn.adafruit.com//assets/30694
https://learn.adafruit.com//assets/30695
https://learn.adafruit.com//assets/30696
http://www.adafruit.com/products/1376
http://www.adafruit.com/products/1460
http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1461
http://www.adafruit.com/products/1507
http://www.adafruit.com/products/1506

For those using Circuit Playground

Express (https://adafru.it/wpF) or just needing a “no soldering”

option (as in most classrooms), we have a special half-meter,

30-LED NeoPixel strip with alligator clips

attached (https://adafru.it/DIV). Easy!

Mini Skinny RGB NeoPixel Strips

Mini Skinny NeoPixel strips are about half the width of classic

NeoPixel strips. They’re available in two densities and

backing colors:

30 LEDs per meter, white strip (http://adafru.it/2949)

30 LEDs per meter, black strip (http://adafru.it/2954)

60 LEDs per meter, white strip (https://adafru.it/lFs)

60 LEDs per meter, black strip (http://adafru.it/2964)

144 LEDs per meter, white strip (https://adafru.it/lXa)

144 LEDs per meter, black strip (https://adafru.it/lXb)

30 and 60 LED/meter strips are 7.5 mm wide, or 5 mm if you

remove the strip from the casing (vs 12.5 mm / 10 mm for

classic strips). The high-density 144/m strips are about 10 mm

wide, or 7.5mm with the casing removed.

Power requirements are similar to standard-width NeoPixel

strips as described above.

Side-Light NeoPixel Strips

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 10 of 78

https://learn.adafruit.com//assets/74073
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3811
https://learn.adafruit.com//assets/30838
https://learn.adafruit.com//assets/31004
https://www.adafruit.com/products/2949
https://www.adafruit.com/products/2954
https://www.adafruit.com/product/2959
https://www.adafruit.com/products/2964
https://www.adafruit.com/product/2969
https://www.adafruit.com/product/2970

Side-Light NeoPixel strips have the interesting property of

illuminating next to the strip rather than over it. They’re not

quite as bright as regular NeoPixels, but may have interesting

uses in tight spaces or for edge-lit acrylic. These strips are

available in three densities on black flex-strip:

60 LEDs, 1 meter black strip (https://adafru.it/Et0)

90 LEDs, 1 meter black strip (https://adafru.it/Et1)

120 LEDs, 1 meter black strip (https://adafru.it/Et2)

RGBW NeoPixel Strips

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 11 of 78

https://learn.adafruit.com//assets/74070
https://learn.adafruit.com//assets/74071
https://www.adafruit.com/product/3636
https://www.adafruit.com/product/3635
https://www.adafruit.com/product/3634

A recent addition is RGBW NeoPixel strips. These add a

fourth LED element — pure white — which is more “true” and

pleasing to the eye than white mixed from red+green+blue.

Like the RGB strips, they’re available in different pixel

densities and backing strip colors.

30 RGBW LEDs per meter,

white strip (http://adafru.it/2832)

30 RGBW LEDs per meter, black

strip (http://adafru.it/2824)

60 RGBW LEDs per meter, white

strip (http://adafru.it/2842)

60 RGBW LEDs per meter, black

strip (http://adafru.it/2837)

144 RGBW LEDs per meter, white

strip (http://adafru.it/2847)

144 RGBW LEDs per meter, black

strip (http://adafru.it/2848)

With a fourth LED per pixel, these strips may potentially draw

up to 33% more current than their RGB equivalents. The

maximum brightest cases are (approximately):

30 RGBW LEDs: 12 Watts (2.4 Amps at 5 Volts)

60 RGBW LEDs: 24 Watts (4.8 Amps at 5 Volts)

144 RGBW LEDs: 57 Watts (11.5 Amps at 5 Volts)

Width is the same as “classic” NeoPixel strip…these are

not the “skinny” size.

“Neon-Like” NeoPixel Flex Strip

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 12 of 78

https://learn.adafruit.com//assets/30697
https://www.adafruit.com/products/2832
https://www.adafruit.com/products/2824
https://www.adafruit.com/products/2842
https://www.adafruit.com/products/2837
https://www.adafruit.com/products/2847
https://www.adafruit.com/products/2848

This distinctive NeoPixel flex strip has a gorgeous diffused

neon-like appearance thanks to its thick silicone casing.

This strip contains 60 LED along the meter but in groups of 3-

LEDs-per-pixel. So basically, in your NeoPixel program, this

looks like a 20-pixel-long strand.

Unlike the other varieties of NeoPixel strip, this one needs to

be powered from 9 Volts (minimum) to 12 Volts (ideal) DC.

NeoPixel RGB Neon-like LED Flex Strip with Silicone

Tube - 1 meter (https://adafru.it/Et3)

Ultraviolet NeoPixel Strips
A single-color ultraviolet variant of NeoPixel strip is available

for special applications, currently one pixel density and

backing color:

32 UV LEDs per meter, white strip (https://adafru.it/BZ5)

This can provide unusual effects when combined with UV-

reactive paints, fluorescent laser-cut acrylic, etc.

The usual NeoPixel R, G and B channels translate to three

individual UV diodes. So we recommend you pretty much just

set all three channels to the same value, ranging from (0, 0, 0)

to (255, 255, 255).

Same width as “classic” NeoPixel strip, and power draw at full

brightness should be just a bit more than RGB 30/m: about

9.6W/meter (1.9A @ 5V).

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 13 of 78

https://learn.adafruit.com//assets/74076
https://learn.adafruit.com//assets/74078
https://www.adafruit.com/product/3869
https://learn.adafruit.com//assets/58370
https://www.adafruit.com/product/3851

NeoPixel Strands

Like NeoPixel strips, these “strands” are flexible and can be

wrapped around things. The pixels are spaced further apart (2

or 4 inches) with each pixel is sealed in its own tiny plastic

capsule, making them weatherproof (but not rated for

continuous submersion). There are 20 pixels in a strand.

NeoPixel Strand — 20 LED 4" Pitch (https://adafru.it/Et3)

NeoPixel Strand — 20 LEDs at 2"

Pitch (https://adafru.it/CV5)

Finer Details About NeoPixel Strips
144 pixel/m NeoPixel strips and 32/m UV strips are sold in one meter lengths. Each meter is a

separate strip with end connectors. Longer contiguous lengths are not offered in 144 pixels/m RGB,

RGBW or 32/m UV.

30 and 60 pixel/m NeoPixel strips are sold in one meter multiples. Orders for multiple meters will be

a single contiguous strip, up to a limit: 4 meters for 60 pixels/m strip, 5 meters for 30 pixels/m.

For 30 and 60 pixels/meter strips, if purchasing less than a full reel (4 or 5 meters, respectively), the

strip may or may not have 3-pin JST plugs soldered at one or both ends. These plugs are for factory

testing and might be at either end — the plug does not always indicate the input end! Arrows printed

on the strip show the actual data direction. You may need to solder your own wires or plug.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 14 of 78

https://learn.adafruit.com//assets/74082
https://learn.adafruit.com//assets/74083
https://learn.adafruit.com//assets/74084
https://www.adafruit.com/product/3869
https://www.adafruit.com/product/3630

The flex strips are enclosed in a weatherproof silicone sleeve, making them immune to rain and

splashes, but are not recommended for continuous submersion. Early 144 pixel/meter strips were not

weatherproof, but the current inventory now offers this feature.

The silicone sleeve can be cut and removed for a slimmer profile, but this compromises the strip's

weather resistance.

Very few glues will adhere to the weatherproof silicone sleeve. Using zip ties for a “mechanical”

bond is usually faster and easier. The only reliable glues we’ve found are Permatex 66B Clear RTV

Silicone (not all silicone glues will work!) and Loctite Plastics Bonding System, a 2-part cyanoacrylate

glue. Customers have reported excellent results with Permatex Ultra Grey Silicone Gasket Maker ,

Lexel® adhesive and Clear Gorilla Glue as well.

However, do not use Permatex 66B silicone to seal the open end of a cut strip! Like many

RTV silicones, 66B releases acetic acid when curing, which can destroy electronics. It’s fine on

the outside of the strip, but not the inside. Use GE Silicone II for sealing strip ends, or good ol’ hot

melt glue.

2-sided carpet tape provides a light grip on the silicone sleeve; something like a Post-It Note. Or you

can try clear duct tape over the top.

All LED strips are manufactured in 1/2 meter segments that are then joined into a longer strip. The

pixel spacing across these joins is usually 2-3 millimeters different than the rest. This is not a

manufacturing mistake, just physical reality.

Some batches of 144 pixel strip don’t have pads between the

LEDs. If you cut these into shorter sections, the only way to

connect to them (except at the half-meter segments) is to

carefully solder directly to the LED. The corner with the notch

is the GND pin.

NeoPixel strips are just the start…we’ve got shapes too! Rings, grids, shields and more…

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 15 of 78

https://learn.adafruit.com//assets/30698

NeoPixel Rings
NeoPixel rings are circular rigid printed circuit boards festooned with NeoPixel LEDs. Originally designed

for our NeoPixel Goggles kit (http://adafru.it/2221), they proved so popular with other projects…

timepieces, GPS wayfinders, jewelry, etc…that we now offer several sizes and varieties…

Rather than list a zillion different links, we have a single landing page for selecting among all the different

NeoPixel ring products:

NeoPixel Ring Product Selector (http://adafru.it/3042)

NeoPixel rings are offered in 12, 16, 24 and 60 pixel varieties.

60-pixel rings are actually sold as 15-pixel quarters. For a full

circle, you’ll need to purchase 4 and solder them together. Or

you might find creative ideas for individual arcs!

Number of Pixels Outer DiameterInner Diameter

12 37 mm / 1.5" 23 mm / 1"

16 44.5 mm / 1.75" 31.75 mm / 1.25"

24 66 mm / 2.6" 52.5 mm / 2.05"

60 (4x 15-pixel arcs)158 mm / 6.2" 145 mm / 5.7"

All rings are about 3.6 millimeters / 0.15" thick (1.6 mm for PCB, 2 mm for NeoPixels).

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 16 of 78

https://www.adafruit.com/products/2221
https://www.adafruit.com/products/3042
https://learn.adafruit.com//assets/30700
https://learn.adafruit.com//assets/30701

RGB NeoPixels are the most affordable and can produce

millions of color combinations.

RGBW NeoPixels offer an eye-pleasing “true” white in

addition to RGB. These are available in three different color

temperaures:

Cool white: approximately 6000 Kelvin (K).

Neutral: approx 4500K.

Warm white: approx. 3000K.

RGBW pixels incorporate a translucent diffuser layer to help

mix and soften the light output. This makes them appear less

intense than RGB pixels (which are “water clear”), but it’s

really the same LEDs inside.

Finer Details About NeoPixel Rings

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 17 of 78

https://learn.adafruit.com//assets/30702
https://learn.adafruit.com//assets/30703
https://learn.adafruit.com//assets/30704
https://learn.adafruit.com//assets/30705

When soldering wires to these rings, you need to be extra vigilant about solder blobs and short

circuits. The spacing between components is very tight! It’s often easiest to insert the wire from the

front and solder on the back.

If using alligator clips, we recommend first soldering short jumper wires to the ring inputs and

connecting the clips to those, for similar reasons. (Some of our tutorials and product photos do show
alligator clips directly connected to the rings, but we’ve had a lot of experience using them.)

There’s also a 24-pixel RGB ring (http://adafru.it/2268)

specifically designed for the Particle (formerly Spark) Photon

development board.

This one’s not “see-through” like the others — the space at

the center provides a socket for the Photon

board (http://adafru.it/2721).

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 18 of 78

https://learn.adafruit.com//assets/30706
https://www.adafruit.com/products/2268
https://www.adafruit.com/products/2721

NeoPixel Matrices
NeoPixel matrices are two-dimensional grids of NeoPixels, all controlled from a single microcontroller pin.

Rigid 8x8 NeoPixel Matrices
Like NeoPixel rings, these 64-pixel matrices are assembled on a rigid printed circuit board and are

available in both RGB and RGBW varieties.

NeoPixel Matrix Product Selector (http://adafru.it/3052)
All measure 71 millimeters (2.8 inches) square and about 3.6 mm thick. There are several mounting holes,

and the DOUT pin allows multiple matrices to be linked in series.

RGB NeoPixels are the most affordable and can produce millions of color combinations.

RGBW NeoPixels offer an eye-pleasing “true” white in addition to RGB. These are available in three

different color temperaures:

Cool white: approximately 6000 Kelvin (K).

Neutral: approx 4500K.

Warm white: approx. 3000K.

RGBW pixels incorporate a translucent diffuser layer to help mix and soften the light output. This makes

them appear less intense than RGB pixels (which are “water clear”), but it’s really the same LEDs inside.

Flexible NeoPixel Matrices

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 19 of 78

https://www.adafruit.com/products/3052

Flexible NeoPixel matrices are available in three different

sizes:

8x8 RGB pixels (http://adafru.it/2612)

16x16 RGB pixels (http://adafru.it/2547)

8x32 RGB pixels (http://adafru.it/2294)

Size Dimensions
Total # of

LEDs
Max Power Draw (approx)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 20 of 78

https://learn.adafruit.com//assets/30713
https://learn.adafruit.com//assets/30714
https://learn.adafruit.com//assets/30715
https://www.adafruit.com/products/2612
https://www.adafruit.com/products/2547
https://www.adafruit.com/products/2294

8x8
80 mm / 3.15" square

64
19 Watts (3.8 Amps at 5

Volts)

16x16160 mm / 6.3" square 256 77 Watts (15 Amps at 5 Volts)

8x32
320 mm x 80 mm / 12.6" x

3"
256 77 Watts (15 Amps at 5 Volts)

Flex matrices are about 2 millimeters (0.08 inches) thick.

Though called “flexible,” these matrices do not tolerate continuous and repeated bending. “Formable”

might be a better word — they can be bent around a rigid or semi-rigid shape, like a hat. Repeated flexing

(as on costumes) will soon crack the solder connections. (The videos on the product pages are to

highlight just how flexible these matrices are, but this really is a “don’t try this at home” thing.)

Flex matrices are available with RGB pixels only; RGBW is not offered.

Finer Details About NeoPixel Matrices
As mentioned on the NeoPixel Strips page, keep power consumption in mind when working with NeoPixel

matrices. With so many pixels at your disposal, it’s easy to get carried away.

If you need a size or shape of NeoPixel matrix that’s not offered here, it’s possible to create your own

using sections of NeoPixel strip!

NeoPixel matrices don’t enforce any particular “topology” — some may have rows of pixels arranged left-

to-right, others may alternate left-to-right and right-to-left rows, or they could be installed in vertical

columns instead. This will require some planning in your code. Our NeoMatrix library supports most

matrix topologies.

We also have a few special-purpose matrices on the NeoPixel Shields
page!

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 21 of 78

NeoPixel Shields
Though not all “Shields” in the strictly-speaking Arduino sense, a few NeoPixel products are designed to

fit directly atop (or below) certain microcontroller boards…

NeoPixel Shield for Arduino

This 5x8 NeoPixel Shield for

Arduino (http://adafru.it/1430) fits neatly atop an Arduino Uno

or compatible boards (5V logic recommended). Like many of

our NeoPixel products, they’re available in RGB and various

RGBW pixel types:

NeoPixel Shield Product
Selector (https://adafru.it/lCw)

By default, the LEDs are powered from the Arduino’s 5V pin.

As long as you aren't lighting up all the pixels at full

brightness that should be fine. Or power the shield with an

external power supply by soldering the included terminal

block.

The NeoPixels are controlled on digital pin 6, but with some

deft wiring you could change this to any pin.

NeoPixel FeatherWing

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 22 of 78

https://learn.adafruit.com//assets/30716
https://learn.adafruit.com//assets/30717
https://learn.adafruit.com//assets/30750
https://www.adafruit.com/products/1430
https://www.adafruit.com/product/3053

Quite possibly The Cutest Thing in the History of Cute Little

Things, the NeoPixel FeatherWing (http://adafru.it/2945) is is

4x8 pixel matrix that fits perfectly atop any of our Feather

microcontroller boards (https://adafru.it/l7B).

The NeoPixels are normally controlled from digital pin 6, but

pads on the bottom make this reassignable. In particular, the

default pin for Feather Huzzah ESP8266 must be moved, try

pin #15!

The NeoPixel Featherwing is RGB only; there’s no RGBW

version.

Pimoroni Unicorn Hat
The Pimoroni Unicorn Hat (http://adafru.it/2288) is aptly

named after a mythical animal — normally we’ll say that

NeoPixels don’t work with the Raspberry Pi, but Pimoroni has

worked up some magical software (https://adafru.it/lCx) that

makes this combination possible! It’s an 8x8 RGB matrix that

fits neatly atop the Raspberry Pi Model A+, B+ or Pi 2.

Due to the way Unicorn HAT works, you can't use your Pi's

analog audio alongside it. If you see odd random colour

patterns and flickering make sure analog audio is disabled.

Particle/Spark NeoPixel Ring Kit

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 23 of 78

https://learn.adafruit.com//assets/30718
https://learn.adafruit.com//assets/30719
https://www.adafruit.com/products/2945
https://www.adafruit.com/feather
https://learn.adafruit.com//assets/30720
https://www.adafruit.com/products/2288
https://github.com/pimoroni/unicorn-hat

Previously mentioned on the “Rings” page, but for posterity:

this 24-pixel RGB ring (http://adafru.it/2268) is specifically

designed for the Particle (formerly

Spark) Photon development board.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 24 of 78

https://learn.adafruit.com//assets/30721
https://www.adafruit.com/products/2268

Other NeoPixel Shapes
NeoPixel Stick

The simplest thing…a row of 8 NeoPixels along a rigid circuit

board. These make great bargraph indicators!

Like our rings and matrices, NeoPixel sticks are available in

RGB and RGBW varieties.

NeoPixel Stick Product
Selector (http://adafru.it/3039)

All measure 51.1 x 10.2 millimeters (2.0 x 0.4 inches).

NeoPixel Jewels

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 25 of 78

https://learn.adafruit.com//assets/30722
https://learn.adafruit.com//assets/30723
https://www.adafruit.com/products/3039

When you need more “punch” than a single NeoPixel can

provide, these 7-pixel jewels provide a lot of light in a

compact shape. Again, RGB and RGBW varieties are

available.

NeoPixel Jewel Product
Selector (http://adafru.it/3047)

All measure 23 millimeters (0.9 inches) in diameter.

1/4 60 NeoPixel Ring

Though originally designed to be used in groups of four to

complete a 60 NeoPixel Ring, the individual 15-pixel quarter

rings can also be used to solve interesting design problems!

RGB and RGBW are available.

NeoPixel Ring Product
Selector (http://adafru.it/3042)

Side Light NeoPixel LED PCB Bar

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 26 of 78

https://learn.adafruit.com//assets/30724
https://learn.adafruit.com//assets/30725
https://www.adafruit.com/products/3047
https://learn.adafruit.com//assets/30726
https://www.adafruit.com/products/3042

A half-meter rigid PCB tightly packed with 60 side-light

NeoPixels. This is a strange animal but might be just the thing

for compact light-painting projects or edge-lit signage. What

might you make of it?

Side Light NeoPixel LED PCB Bar - 60 LEDs - 120

LED/meter - 500mm Long (https://adafru.it/Et5)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 27 of 78

https://learn.adafruit.com//assets/74087
https://www.adafruit.com/product/3729

Individual NeoPixels
If you need just a small number of pixels…or if ready-made shapes and strips don’t quite provide what

you’re after…individual NeoPixels provide the most control over placement and quantity.

Integrated NeoPixel Products
Some individual NeoPixel products come ready to use, with a small PCB holding the LED, a decoupling

capacitor for power, and points for connecting wires.

Flora RGB Smart NeoPixels

The original Adafruit NeoPixel form factor! Flora RGB Smart

NeoPixels were designed for wearable projects using

conductive thread, but can also be soldered normally with

wires. These are available in two formats:

Pack of 4 (http://adafru.it/1260), ready to use as-is.

Sheet of 20 (http://adafru.it/1559), cut them off the

sheet as you need them and save a little money.

Flora RGB Smart Pixels measure about 12.5 millimeters (0.5

inches) in diameter. These are RGB only; there’s no RGBW

version.

Breadboard-Friendly RGB Smart NeoPixels

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 28 of 78

https://learn.adafruit.com//assets/30727
https://learn.adafruit.com//assets/30728
https://www.adafruit.com/products/1260
https://www.adafruit.com/products/1559

These are similar to the sewable Flora NeoPixels, but with a

pin arrangement that (with the addition of headers) fits neatly

into a breadboard for prototyping. Also available in two

formats:

Pack of 4 (http://adafru.it/1312), ready to use as-is.

Sheet of 25 (http://adafru.it/1558), cut off as needed.

For both types, headers (http://adafru.it/392) are optional and

not included.

Breadboard-Friendly NeoPixels measure 10.2 x 12.7

millimeters (0.4 x 0.5 inches) and are RGB only; there’s no

RGBW version.

NeoPixel Mini PCB

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 29 of 78

https://learn.adafruit.com//assets/30729
https://learn.adafruit.com//assets/30730
https://www.adafruit.com/products/1312
https://www.adafruit.com/products/1558
https://www.adafruit.com/products/392

NeoPixel Mini PCB (http://adafru.it/1612) — sold in packs of 5

— are the smallest ready-to-use NeoPixel format.

These have no mounting holes or soldering vias…wires must

be soldered directly to pads on the back of the PCB.

Each is about 10 millimeters (0.3 inches) in diameter. These

are RGB only; there’s no RGBW version.

Discrete NeoPixel Products
For advanced users needing fully customized designs, discrete NeoPixel components are available. You’ll

need to provide your own PCB and (depending on the pixel type) surface-mount soldering skill.

It’s very strongly recommended that each NeoPixel have an accompanying 0.1 μF capacitor between +V

and ground. This prevents communication problems due to brownout of the on-pixel driver logic. It’s

occasionally sufficient to have one capacitor between pairs of pixels; some of our NeoPixel rings work that

way.

Through-Hole NeoPixels

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 30 of 78

https://learn.adafruit.com//assets/30731
https://learn.adafruit.com//assets/30732
https://www.adafruit.com/products/1612

Discrete Through-hole NeoPixels are available in two sizes:

8mm Diffused (http://adafru.it/1734) – pack of 5.

5mm Diffused (http://adafru.it/1938) – pack of 5.

5mm Clear (http://adafru.it/1837) have been

discontinued, but the product page is still available if

you require pinout information.

Through-hole NeoPixels are RGB only; there’s no RGBW

version. Use of a 0.1 μF capacitor (http://adafru.it/753)

between + and ground on each pixel is strongly encouraged.

SMT NeoPixels

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 31 of 78

https://learn.adafruit.com//assets/30733
https://learn.adafruit.com//assets/30734
https://learn.adafruit.com//assets/30735
https://www.adafruit.com/products/1734
https://www.adafruit.com/products/1938
https://www.adafruit.com/products/1837
https://www.adafruit.com/products/753

Surface-mount “5050” (5 millimeter square) NeoPixels are

available in many varieties:

5050 RGB LED (http://adafru.it/1655) – pack of 10.

RGBW NeoPixel – Cool White – white

case (http://adafru.it/2759) – pack of 10.

RGBW NeoPixel – Neutral White –

white case (http://adafru.it/2758) – pack of 10.

RGBW NeoPixel – Warm White –

white case (http://adafru.it/2757) – pack of 10.

RGBW NeoPixel – Cool White –

black case (http://adafru.it/2762) – pack of 10.

RGBW NeoPixel – Neutral White –

black case (http://adafru.it/2761) – pack of 10.

RGBW NeoPixel – Warm White –

black case (http://adafru.it/2760) – pack of 10.

NeoPixel – Cool White (http://adafru.it/2375) (3X white,

no RGB) – pack of 10.

NeoPixel – Warm White (http://adafru.it/2376) (3X

white, no RGB) – pack of 10.

All measure 5 millimeters square. Adding a 0.1 μF capacitor

between + and ground is recommended for each pixel.

The white- and black-cased pixels are functionally identical;

this is purely an aesthetic choice for your design.

“Cool white” measures approximately 6000 Kelvin. “Neutral

white” is approx. 4500K. “Warm White” is approx. 3000K.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 32 of 78

https://learn.adafruit.com//assets/30736
https://learn.adafruit.com//assets/30737
https://learn.adafruit.com//assets/30738
https://learn.adafruit.com//assets/30739
https://www.adafruit.com/products/1655
https://www.adafruit.com/products/2759
https://www.adafruit.com/products/2758
https://www.adafruit.com/products/2757
https://www.adafruit.com/products/2762
https://www.adafruit.com/products/2761
https://www.adafruit.com/products/2760
https://www.adafruit.com/products/2375
https://www.adafruit.com/products/2376

Tiny surface-mount “3535” (3.5 millimeters square) NeoPixels

are available in two RGB versions; no RGBW is available.

NeoPixel Mini 3535 RGB – white

case (http://adafru.it/2659) – pack of 10.

NeoPixel Mini 3535 RGB – black

case (http://adafru.it/2686) – pack of 10.

Decoupling capacitor recommended. As with the “5050”

NeoPixels, white- and black-cased versions are functionally

identical, this is an aesthetic design option.

WS2811 Driver IC
The NeoPixel driver logic is available

separately (http://adafru.it/1378) from the LEDs, allowing

power-users to create extremely customized designs…

perhaps using other LED colors, or combined with power

MOSFETs (http://adafru.it/355) to control high-current LEDs or

“analog” RGB LED strips (https://adafru.it/lCy) using the

NeoPixel protocol.

These require circuit design skills, custom PCBs and fine

surface-mount soldering. A 0.1 uF decoupling capacitor is

recommended for each chip.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 33 of 78

https://learn.adafruit.com//assets/30740
https://www.adafruit.com/products/2659
https://www.adafruit.com/products/2686
https://learn.adafruit.com//assets/30741
https://www.adafruit.com/products/1378
https://www.adafruit.com/products/355
file:///rgb-led-strips/overview

Basic Connections
To get started, let’s assume you have some model of Arduino microcontroller connected to the

computer’s USB port. We’ll elaborate on the finer points of powering NeoPixels later, but in general you’ll

usually be using a 5V DC power supply (e.g. “wall wart”) or — for wearable projects — a 3.7 Volt lithium-

polymer battery.

Identify the “input” end of your NeoPixel strip, pixel(s) or other device. On some, there will be a solder pad

labeled “DIN” or “DI” (data input). Others will have an arrow showing the direction that data moves. The

data input can originate from any digital pin on the Arduino, but all the example code is set up for digital

pin 6 by default. The NeoPixel shield comes wired this way.

If using a Flora, Feather or other microcontroller board with an attached lithium-polymer

battery: connect the +5V input on the strip to the pad labeled VBAT or BAT on the board, GND from the

strip to any GND pad on the microcontroller board, and DIN to Flora pin D6. If the board doesn’t have a

pin #6, you’ll need to modify the example code to change the pin number.

For other Arduino boards with a separate +5V DC power supply for the NeoPixels: connect the +5V input

on the strip to the + (positive) terminal on the power supply (don’t connect to the Arduino), DIN to digital

pin 6 on the Arduino, and – (minus or GND) on the strip must connect to both the minus (–) terminal on the

DC supply and a GND pin on the Arduino (there are usually several — any will do).

The 144 pixel strips are so tightly packed, there’s no room for labels other than –, + and the data direction

arrows. Data is the un-labeled pad.

� The order of the three pins can vary between different strip densities and batches. ALWAYS use the

labels printed ON THE STRIP. Look closely, NEVER blindly follow a NeoPixel strip wiring diagram; it

might be based on a different strip type!

� When connecting NeoPixels to any LIVE power source or microcontroller, ALWAYS CONNECT

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 34 of 78

GROUND (–) BEFORE ANYTHING ELSE. Conversely, disconnect ground last when separating.

� When using a DC power supply, or an especially large battery, we recommend adding a large

capacitor (1000 µF, 6.3V or higher) across the + and – terminals. This prevents the initial onrush of

current from damaging the pixels. See the photo on the next page for an example.

� With through-hole NeoPixels (5mm or 8mm), add a 0.1 µF capacitor between the + and – pins of

EACH PIXEL. Individual pixels may misbehave without this “decoupling cap.”

� Adding a ~470 ohm resistor between your microcontroller's data pin and the data input on the

NeoPixels can help prevent spikes on the data line that can damage your first pixel. Please add one

between your micro and NeoPixels! Our NeoPixel rings already have this resistor on there

�
�
Can NeoPixels be powered directly from the Arduino’s 5V pin?
Sometimes. The Arduino can continuously supply only about 500 milliamps to the 5V pin. Each NeoPixel

can draw up to 60 milliamps at full brightness. So yes, you can skip the separate DC supply and power

directly off the Arduino as long as just a few pixels are used, more if the colors and overall brightness are

low. When in doubt, give the pixels a separate power supply.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 35 of 78

Best Practices
Improper use can damage your NeoPixels. Before diving in, be aware
of the following:

Before connecting NeoPixels to any large power source (DC “wall wart” or even a large battery), add

a capacitor (1000 µF, 6.3V or higher) across the + and – terminals as shown above. The capacitor

buffers sudden changes in the current drawn by the strip.

Place a 300 to 500 Ohm resistor between the Arduino data output pin and the input to the first

NeoPixel. The resistor should be at the end of the wire closest to the NeoPixel(s), not the

microcontroller. Some products already incorporate this resistor…if you’re not sure, add one…there’s
no harm in doubling up!
Try to minimize the distance between the Arduino and first pixel, so the signal is clear. A meter or

two is usually no problem. Much longer and things can become unreliable.

Avoid connecting NeoPixels to a live circuit. If you simply must, always connect ground first, then

+5V, then data. Disconnect in the reverse order.

If powering the pixels with a separate supply, apply power to the pixels before applying power to the

microcontroller.

Observe the same precautions as you would for any static-sensitive part; ground yourself before

handling, etc.

NeoPixels powered by 5v require a 5V data signal. If using a 3.3V microcontroller you must use a

logic level shifter such as a 74AHCT125 (https://adafru.it/e5g) or 74HCT245 (http://adafru.it/1779). (If

you are powering your NeoPixels with 3.7v like from a LiPoly, a 3.3v data signal is OK)

Make sure that your connections are secure. Alligator clips do not make reliable connections to the

tiny solder pads on NeoPixel rings. Better to solder a small pigtail wire to the ring and attach the

alligator clips to that.

If your microcontroller and NeoPixels are powered from two different sources (e.g. separate batteries

for each), there must be a ground connection between the two.

Some of our projects don’t make the above precautions…these are typically small battery-powered

devices and power spikes aren’t a big concern. Any project with a lot pixels or a large power

source should definitely include the power capacitor and data line resistor.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 36 of 78

https://www.adafruit.com/product/1787
https://www.adafruit.com/products/1779

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 37 of 78

Powering NeoPixels
� When connecting NeoPixels to any live power source or microcontroller, ALWAYS CONNECT

GROUND (–) BEFORE ANYTHING ELSE. Conversely, disconnect ground last when separating.

� Adding a 300 to 500 Ohm resistor between your microcontroller's data pin and the data input on the

first NeoPixel can help prevent voltage spikes that might otherwise damage your first pixel. Please

add one between your micro and NeoPixels!

NeoPixels are usually described as “5 Volt devices,” but the reality is a little more nuanced than that.

Some (not all) NeoPixel products can work with slightly higher voltages. This depends on the additional

support components around the chip, based on available space, cost and the most likely application.

Refer to the specific product description page for guidance on acceptable voltage limits for each type.

When in doubt, aim for 5 Volts.

Lower voltages are always acceptable , with the caveat that the LEDs will be slightly dimmer. There’s a

limit below which the LED will fail to light, or will start to show the wrong color.

Before connecting a NeoPixel strip to ANY source of power,

we very strongly recommend adding a large capacitor (1000

µF, 6.3V or higher) across the + and – terminals. This

prevents the initial onrush of current from damaging the

pixels.

For many wearable projects we recommend a lithium-polymer

battery (http://adafru.it/328). These deliver 3.7 Volts — perfect

for directly feeding low-power microcontrollers such as the

Adafruit Flora, yet enough voltage to run a short length of

NeoPixels.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 38 of 78

https://learn.adafruit.com//assets/11763
https://learn.adafruit.com//assets/10710
http://www.adafruit.com/products/328

Three alkaline cells (such as AA batteries) can be installed in a

battery holder (http://adafru.it/771) to provide 4.5 Volts.

Though larger and heaver than the fancy lithium-polymer

pack, they’re inexpensive and readily available.

Four nickel-metal hydride (NiMH) rechargeable cells can

similarly be used in a 4-cell battery holder (http://adafru.it/830)

to provide 4.8 Volts.

Make sure you only use NiMH cells in this configuration. Four

alkaline cells (the disposable type) will output 6V total — that’s

too high for some NeoPixels, and definitely too much for the

microcontroller!

Battery-operated LED project planning is discussed in greater detail in Battery Power for LED Pixels and

Strips (https://adafru.it/cDU).

For most non-portable “desktop” projects, a 5V DC switching

power supply (http://adafru.it/276) is ideal. This small 2 Amp

supply is good for a a meter or so of NeoPixel strip. We’ll

explain larger projects in a moment.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 39 of 78

https://learn.adafruit.com//assets/10711
http://www.adafruit.com/products/771
https://learn.adafruit.com//assets/10712
http://www.adafruit.com/products/830
http://learn.adafruit.com/battery-power-for-led-pixels-and-strips/overview
https://learn.adafruit.com//assets/10713
http://www.adafruit.com/products/276

Be extremely cautious with bench power supplies. Some —

even reputable, well-regarded brands — can produce a large

voltage spike when initially switched on, instantly destroying

your NeoPixels!

If you use a bench supply, do not connect NeoPixels directly.

Turn on the power supply first, let the voltage stabilize, then

connect the pixels (GND first).

Estimating Power Requirements
Each individual NeoPixel draws up to 60 milliamps at maximum brightness white (red + green + blue). In

actual use though, it’s rare for all pixels to be turned on that way. When mixing colors and displaying

animations, the current draw will be much less. It’s impossible to estimate a single number for all

circumstances, but we’ve been using 1/3 this (20 mA per pixel) as a gross rule of thumb with no ill effects.

But if you know for a fact that you need every pixel on at maximum brightness, use the full 60 mA figure.

To estimate power supply needs, multiply the number of pixels by 20, then divide the result by 1,000 for

the “rule of thumb” power supply rating in Amps. Or use 60 (instead of 20) if you want to guarantee an

absolute margin of safety for all situations. For example:

60 NeoPixels × 20 mA ÷ 1,000 = 1.2 Amps minimum

60 NeoPixels × 60 mA ÷ 1,000 = 3.6 Amps minimum

The choice of “overhead” in your power supply is up to you. Maximum safety and reliability are achieved

with a more generously-sized power supply, and this is what we recommend. Most power supplies can

briefly push a little extra current for short periods. Many contain a thermal fuse and will simply shut down if

overworked. So they may technically work, but this is the electronics equivalent of abusing a rental car.

Keep in mind, 60 mA is a worst case estimate! We’ve written a whole separate tutorial on getting things

under control: Sipping Power with NeoPixels (https://adafru.it/wbm).

�
�
I estimate I need a 3.6 Amp power supply. I have a 10 Amp supply on-
hand. Will this cause my NeoPixels to explode?
As long as the output is 5 Volts DC, you’re golden. The LEDs will only draw as much current (Amperes) as

they need. So extra Amps are OK — in fact, it can be a good thing. The larger power supply will run cooler

because it’s not being pushed to its limit.

Excessive voltage, however, will definitely kill your LEDs.

Extra Amps = good. Extra Volts = bad.
�
�

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 40 of 78

https://learn.adafruit.com//assets/10717
file:///sipping-power-with-neopixels

What about batteries and “Amp hours”?
Amp-hours are current over time. A 2,600 mAh (milliamp-hour) battery can be thought of as delivering 2.6

Amps continuously for one hour, or 1.3 Amps for 2 hours, and so forth. In reality, it’s not quite linear like

that; most batteries have disproportionally shorter run times with a heavy load. Also, most batteries won’t

take kindly to being discharged in an hour — this can even be dangerous! Select a battery sufficiently

large that it will take at least a couple hours to run down. It’s both safer for you and better for the longevity

of the battery.
�
�
I need to power LOTS of NeoPixels and don’t have a power supply
that large. Can I use several smaller ones?
Maybe. There are benefits to using a single supply, and large power supplies are discussed below. “Non-

optimal” doesn’t necessarily mean “pessimal” though, and we wouldn’t discourage anyone from using

what resources they have.

If you go this route, the key is to have all of the ground pins among the strips connected in common, but

the +5V from each power supply should be connected only to one length of NeoPixels — those should not
all be joined. Every power supply is a little different — not precisely 5 Volts — and this keeps some from

back-feeding into others.

Giant Power Supplies
Adafruit offers 5V DC power supplies up to 10 Amps (http://adafru.it/658). This is usually sufficient for a

couple hundred NeoPixels or more. For really large installations, you’ll need to look elsewhere.

One possibility is to repurpose an ATX computer power supply. The nice beefy server types often provide

up to 30 Amps. Some minor modifications are needed…Google around for “ATX power supply hack.”

 Note that the ATX 5V rail can be very unstable if there's no load on the 12V rail!

Even larger (and scarier, and much more expensive) are laboratory power supplies with ratings into the

hundreds of Amps. Sometimes this is what’s needed for architectural scale projects and large stage

productions. And occasionally we get requests for help…

Please note that projects of this scale are potentially very dangerous , and the problems of power

distribution are fundamentally different than hobby-scale projects. As much as we enjoy helping our

customers in the forums, they are for product technical support and not full-on engineering services. If
you’re developing a project of this scope, hire a professional electrician with experience in high-power,

low-voltage systems such as photovoltaics or large RVs and boats. This is no charade.

Distributing Power
The longer a wire is, the more resistance it has. The more resistance, the more voltage drops along its

length. If voltage drops too far, the color of NeoPixels can be affected.

Consider a full 4 meter reel of NeoPixels. With 5V applied at one end of the strip, for those pixels closest

to this end, power traverses only a few inches of copper. But at the far end of the strip, power traverses 8
meters of copper — 4 meters out on the +5V line, 4 meters back on the ground line. Those furthest pixels

will be tinted brown due to the voltage drop (blue and green LEDs require higher voltage than red).

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 41 of 78

http://www.adafruit.com/products/658

Pro Tip: NeoPixels don’t care what end they receive power from. Though data moves in only one

direction, electricity can go either way. You can connect power at the head, the tail, in the middle, or

ideally distribute it to several points. For best color consistency, aim for 1 meter or less distance from any

pixel to a power connection. With larger NeoPixel setups, think of power distribution as branches of a tree

rather than one continuous line.

Resistance is just as much a concern on tiny projects too!

For wearable electronics we like conductive thread…it’s

flexible and withstands hand washing. Downside is that it

doesn’t carry much current. Here several strands of

conductive thread have been grouped to provide better

capacity for the + and – conductors down a pair of

suspenders.

(From the Pac Man Pixel Suspenders (https://adafru.it/ciD)

guide.)

Driving 5V NeoPixels from 3.3V Microcontrollers
Increasingly, microcontrollers are running at 3.3 Volts instead of 5 Volts. That’s great news for efficiency,

but can present a communication problem with 5V NeoPixels. The 3.3V signal from the microcontroller

may not be “loud” enough to register with the higher-voltage device. The manufacturer recommends a

minimum signal voltage of 70% of the NeoPixel voltage.

There are two ways this can be addressed:

1. Lower the voltage to the NeoPixels so it’s closer (or equal) to that of the microcontroller. This is why

we recommend LiPo batteries for FLORA projects: 3.7V is enough to run a short length of pixels, and

the microcontroller is comfortable at that voltage as well.

2. Use a logic level shifter (https://adafru.it/e5g) to step up the signal from the microcontroller to the first

pixel.

For more info on using a level shifter with your NeoPixels, have a look at this guide. (https://adafru.it/FXc)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 42 of 78

https://learn.adafruit.com//assets/10718
http://learn.adafruit.com/pac-man-pixel-suspenders
https://www.adafruit.com/product/1787
https://learn.adafruit.com/neopixel-levelshifter

Software
NeoPixels got their start on Arduino, but have since branched out to other boards and languages.

Pick a category from the left column for information specific to each coding environment.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 43 of 78

Arduino Library Installation
Controlling NeoPixels “from scratch” is quite a challenge, so we provide a library letting you focus on the

fun and interesting bits. The library works with most mainstream Arduino boards and derivatives: Uno,

Mega, Leonardo, Micro, Adafruit Flora, etc. — most anything with an Atmel AVR 8-bit processor from 8 to

16 MHz — and also works with the Arduino Due and all varieties of the PJRC Teensy boards.

Because processor-specific assembly language is used, this library does not work on Netduino, ChipKIT

or other advanced “Arduino-like” boards. Others may have written code and libraries for such boards, but

we’re not able to provide technical support for any bugs or trouble you might encounter there; it’s some

real frontier engineering. Some of these alternative libraries are covered in the “Advanced Coding”

section.

Install Adafruit_NeoPixel via Library Manager
Recent versions of the Arduino IDE (1.6.2 and later) make library installation super easy via the Library

Manager interface. From the Sketch menu, > Include Library > Manage Libraries... In the text input box

type in "NeoPixel". Look for "Adafruit NeoPixel by Adafruit" and select the latest version by clicking on

the popup menu next to the Install button. Then click on the Install button. After it's installed, you can click

the "close" button.

Manually Install Adafruit_NeoPixel Library
If you’re using an older version of the IDE, or just want to set things up manually, “classic” installation of

the library is as follows: you can visit the Adafruit_NeoPixel library page (https://adafru.it/aZU) at Github

and download from there, or just click this button:

https://adafru.it/cDj

1. Uncompress the ZIP file after it’s finished downloading.

2. The resulting folder should contain the files Adafruit_NeoPixel.cpp, Adafruit_NeoPixel.h and an

“examples” sub-folder. Sometimes in Windows you’ll get an intermediate-level folder and need to

move things around.

3. Rename the folder (containing the .cpp and .h files) to Adafruit_NeoPixel (with the underscore and

https://adafru.it/cDj

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 44 of 78

https://github.com/adafruit/Adafruit_NeoPixel
https://github.com/adafruit/Adafruit_NeoPixel/archive/master.zip

everything), and place it alongside your other Arduino libraries, typically in your (home

folder)/Documents/Arduino/Libraries folder. Libraries should never be installed in the “Libraries”

folder alongside the Arduino application itself…put them in the subdirectory of your home folder.

4. Re-start the Arduino IDE if it’s currently running.

Here’s a tutorial (https://adafru.it/aYM) that walks through the process of correctly installing Arduino

libraries manually.

A Simple Code Example: strandtest
Launch the Arduino IDE. From the File menu,

select Sketchbook→Libraries→Adafruit_NeoPixel→strandtest

(If the Adafruit_NeoPixel rollover menu is not present, the library has not been correctly installed, or the

IDE needs to be restarted after installation. Check the installation steps above to confirm it’s properly

named and located.)

Select your board type and serial port from the Tools menu, and try uploading to the board. If the

NeoPixels are connected and powered as previously described, you should see a little light show.

�
�
Nothing happens!
Check your connections. The most common mistake is connecting to the output end of a strip rather than

the input.

�
�
Something happens but the LEDs are blinking in a weird way!
If you are using an RGBW NeoPixel product (look at the LEDs, are they divided in half with a yellow

semicircle? You have RGBW Neopixels!)

Change this line:

Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);

to

Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_RGBW + NEO_KHZ800);

and reupload the strandtest example.

�
�
I don't have RGBW LEDs and the LEDs are still blinking weird!
99% of the time this is due to not having a shared ground wire connected to the Arduino. Make sure the

Ground wire from the Neopixels connects to BOTH your power supply ground AND the Arduino ground.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 45 of 78

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Arduino Library Use
Doxygen-generated documentation for the Adafruit_NeoPixel library is available

here. (https://adafru.it/Etk)

It’s assumed at this point that you have the Adafruit_NeoPixel library for Arduino installed and have run

the strandtest example sketch successfully. If not, return to the prior page for directions to set that up.

To learn about writing your own NeoPixel sketches, let’s begin by dissecting the strandtest sketch…

All NeoPixel sketches begin by including the header file:

#include <Adafruit_NeoPixel.h>

The block of code that follows is mostly descriptive comments. Only a couple lines are really doing any

work:

// Which pin on the Arduino is connected to the NeoPixels?
// On a Trinket or Gemma we suggest changing this to 1:
#define LED_PIN 6

// How many NeoPixels are attached to the Arduino?
#define LED_COUNT 60

// Declare our NeoPixel strip object:
Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);
// Argument 1 = Number of pixels in NeoPixel strip
// Argument 2 = Arduino pin number (most are valid)
// Argument 3 = Pixel type flags, add together as needed:
// NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
// NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
// NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
// NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
// NEO_RGBW Pixels are wired for RGBW bitstream (NeoPixel RGBW products)

The first few lines assign numbers to the symbols “LED_PIN” and “LED_COUNT” for later reference. It

doesn’t need to be done this way, but makes it easier to change the pin and length where the NeoPixels

are connected without digging deeper into the code.

The last line declares a NeoPixel object. We’ll refer to this by name later to control the strip of pixels.

There are three parameters or arguments in parenthesis:

1. The number of sequential NeoPixels in the strip. In the example this is set to LED_COUNT, which was

defined as 60 above, equal to 1 meter of medium-density strip. Change this to match the actual

number you’re using.

2. The pin number to which the NeoPixel strip (or other device) is connected. Normally this would be a

number, but we previously declared the symbol LED_PIN to refer to it by name here.

3. A value indicating the type of NeoPixels that are connected. In most cases you can leave this off and

pass just two arguments; the example code is just being extra descriptive. If you have a supply of

classic “V1” Flora pixels, those require NEO_KHZ400 + NEO_RGB to be passed here. RGBW

NeoPixels also require a different value here: NEO_RGBW.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 46 of 78

https://adafruit.github.io/Adafruit_NeoPixel/html/index.html

� For through-hole 8mm NeoPixels, use NEO_RGB instead of NEO_GRB in the strip declaration. For

RGBW LEDs use NEO_RGBW (some RGBW strips use NEO_GRBW, so try that if you're getting

unexpected results!)

Then, in the setup() function, call begin() to prepare the data pin for NeoPixel output:

void setup() {
 strip.begin();
 strip.show(); // Initialize all pixels to 'off'
}

The second line, strip.show(), isn’t absolutely necessary, it’s just there to be thorough. That function

pushes data out to the pixels…since no colors have been set yet, this initializes all the NeoPixels to an

initial “off” state in case some were left lit by a prior program.

� The Adafruit Trinket 5V 16 MHz board requires a little extra setup. You can see the steps required in

the “strandtest” example sketch.

In the strandtest example, loop() doesn’t set any pixel colors on its own — it calls other functions that

create animated effects. So let’s ignore it for now and look ahead, inside the individual functions, to see

how the strip is controlled.

There are a couple different ways to set the color of a pixel. The first is:

strip.setPixelColor(n, red, green, blue);

or, if you're using RGBW strips:

strip.setPixelColor(n, red, green, blue, white);

The first argument — n in this example — is the pixel number along the strip, starting from 0 closest to the

Arduino. If you have a strip of 30 pixels, they’re numbered 0 through 29. It’s a computer thing. You’ll see

various places in the code using a for loop, passing the loop counter variable as the pixel number to this

function, to set the values of multiple pixels.

The next three arguments are the pixel color, expressed as red, green and blue brightness levels, where 0

is dimmest (off) and 255 is maximum brightness. The last optional argument is for white, which will only be

used if the strip was defined during creation as an RGBW type and the strip actually is RGBW type.

To set the 12th pixel (#11, counting from 0) to magenta (red + blue), you could write:

strip.setPixelColor(11, 255, 0, 255);

to set the 8th pixel (#7 counting from 0) to half-brightness white (with an RGBW strip), with no light from

red/green/blue, use:

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 47 of 78

strip.setPixelColor(7, 0, 0, 0, 127);

An alternate syntax has just two arguments:

strip.setPixelColor(n, color);

Here, color is a 32-bit type that merges the red, green and blue values into a single number. This is

sometimes easier or faster for some (but not all) programs to work with; you’ll see the strandtest code

uses both syntaxes in different places.

You can also convert separate red, green and blue values into a single 32-bit type for later use:

uint32_t magenta = strip.Color(255, 0, 255);

Then later you can just pass “magenta” as an argument to setPixelColor rather than the separate red,

green and blue numbers every time.

You can also (optionally) add a white component to the color at the end, like this:

uint32_t greenishwhite = strip.Color(0, 64, 0, 64);

setPixelColor() does not have an immediate effect on the LEDs. To “push” the color data to the strip, call

show():

strip.show();

This updates the whole strip at once, and despite the extra step is actually a good thing. If every call to

setPixelColor() had an immediate effect, animation would appear jumpy rather than buttery smooth.

Multiple pixels can be set to the same color using the fill() function, which accepts one to three arguments.

Typically it’s called like this:

strip.fill(color, first, count);

“color” is a packed 32-bit RGB (or RGBW) color value, as might be returned by strip.Color(). There is no

option here for separate red, green and blue, so call the Color() function to pack these into one value.

“first” is the index of the first pixel to fill, where 0 is the first pixel in the strip, and strip.numPixels() - 1 is the

last. Must be a positive value or 0.

“count” is the number of pixels to fill. Must be a positive value.

If called without a count argument (only color and first), this will from first to the end of the strip.

If called without first or count arguments (only color), the full strip will be set to the requested color.

If called with no arguments, the strip will be filled with black or “off,” but there’s also a different syntax

which might be easier to read:

strip.clear();

You can query the color of a previously-set pixel using getPixelColor():

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 48 of 78

uint32_t color = strip.getPixelColor(11);

This returns a 32-bit merged RGB color value. This is always RGB, even if the “ColorHSV()” function

(described below) was used.

The number of pixels in a previously-declared strip can be queried using numPixels():

uint16_t n = strip.numPixels();

The overall brightness of all the LEDs can be adjusted using setBrightness(). This takes a single argument,

a number in the range 0 (off) to 255 (max brightness). For example, to set a strip to 1/4 brightness:

strip.setBrightness(64);

Just like setPixel(), this does not have an immediate effect. You need to follow this with a call to show().

setBrightness() was intended to be called once, in setup(), to limit the current/brightness of the LEDs

throughout the life of the sketch. It is not intended as an animation effect itself! The operation of this

function is “lossy” — it modifies the current pixel data in RAM, not in the show() call — in order to meet

NeoPixels’ strict timing requirements. Certain animation effects are better served by leaving the

brightness setting at the default maximum, modulating pixel brightness in your own sketch logic and

redrawing the full strip with setPixel().

HSV (Hue-Saturation-Value) Colors…
The NeoPixel library has some support for colors in the “HSV” (hue-saturation-value) color space. This is a

different way of specifying colors than the usual RGB (red-green-blue). Some folks find it easier or more

“natural” to think about…or quite often it’s just easier for certain color effects (the popular rainbow cycle

and such).

In the NeoPixel library, hue is expressed as a 16-bit number.

Starting from 0 for red, this increments first toward yellow

(around 65536/6, or 10922 give or take a bit), and on through

green, cyan (at the halfway point of 32768), blue, magenta

and back to red. In your own code, you can allow any hue-

related variables to overflow or underflow and they’ll “wrap

around” and do the correct and expected thing, it’s really

nice.

Saturation determines the intensity or purity of the color…this

is an 8-bit number ranging from 0 (no saturation, just

grayscale) to 255 (maximum saturation, pure hue). In the

middle, you’ll start to get sort of pastel tones.

Value determines the brightness of a color…it’s also an 8-bit

number ranging from 0 (black, regardless of hue or saturation)

to 255 (maximum brightness).

setPixelColor() and fill() both still want RGB values though, so we convert to these from HSV by using the

ColorHSV() function:

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 49 of 78

https://learn.adafruit.com//assets/74094

uint32_t rgbcolor = strip.ColorHSV(hue, saturation, value);

If you just want a “pure color” (fully saturated and full brightness), the latter two arguments can be left off:

uint32_t rgbcolor = strip.ColorHSV(hue);

In either case, the resulting RGB value can then be passed to a pixel-setting function, e.g.:

strip.fill(rgbcolor);

There is no corresponding function to go the other way , from RGB to HSV. This is on purpose and by

design, because conversion in that direction is often ambiguous — there may be multiple valid possibilities

for a given input. If you look at some of the example sketches you’ll see they keep track of their own
hues…they don’t assign colors to pixels and then try to read them back out again.

…and Gamma Correction
Something you might observe when working with more nuanced color changes is that things may appear

overly bright or washed-out. It’s generally not a problem with simple primary and secondary colors, but

becomes more an issue with blends, transitions, and the sorts of pastel colors you might get from the

ColorHSV() function. Numerically the color values are correct, but perceptually our eyes make something

different of it, as explained in this guide (https://adafru.it/w2B).

The gamma32() function takes a packed RGB value (as you might get out of Color() or ColorHSV()) and

filters the result to look more perceptually correct.

uint32_t rgbcolor = strip.gamma32(strip.ColorHSV(hue, sat, val));

You might notice in strandtest and other example sketches that we never use ColorHSV() without passing

the result through gamma32() before setting a pixel’s color. It’s that desirable.

However, the gamma32 operation is not built in to ColorHSV() — it must be called as a separate operation

— for a few reasons, including that advanced programmers might want to provide a more specific color-

correction function of their own design (gamma32() is a “one size fits most” approximation) or may need to

keep around the original “numerically but not perceptually correct” numbers.

There is no corresponding reverse operation. When you set a pixel to a color filtered through gamma32(),

reading back the pixel value yields that filtered color, not the original RGB value. It’s precisely because of

this sort of decimation that advanced NeoPixel programs often treat the pixel buffer as a write-only
resource…they generate each full frame of animation based on their own program state, not as a series of

read-modify-write operations.

Help!
�
�
I’m calling setPixel() but nothing’s happening!
There are two main culprits for this:

1. forgetting to call strip.begin() in setup().

2. forgetting to call strip.show() after setting pixel colors.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 50 of 78

https://learn.adafruit.com/led-tricks-gamma-correction

Another (less common) possibility is running out of RAM — see the last section below. If the program sort
of works but has unpredictable results, consider that.
�
�
Can I have multiple NeoPixel objects on different pins?
Certainly! Each requires its own declaration with a unique name:

Adafruit_NeoPixel strip_a = Adafruit_NeoPixel(16, 5);
Adafruit_NeoPixel strip_b = Adafruit_NeoPixel(16, 6);

The above declares two distinct NeoPixel objects, one each on pins 5 and 6, each containing 16 pixels and

using the implied default type (NEO_KHZ800 + NEO_GRB).
�
�
Can I connect multiple NeoPixel strips to the same Arduino pin?
In many cases, yes. All the strips will then show exactly the same thing. This only works up to a point

though…four strips on a single pin is a good and reliable number. If you need more than that, individual

NeoPixels can be used as buffers to “fan out” to more strips: connect one Arduino pin to the inputs of four

separate NeoPixels, then connect each pixels’ output to the inputs of four strips (or fewer, if you don’t

need quite that many). If the strips are 10 pixels long, declare the NeoPixel object as having 11 pixels. The

extra “buffer” pixels will be at position #0 — just leave them turned off — and the strips then run from

positions 1 through 10.
�
�
I'm getting the wrong colors. Red and blue are swapped!
When using through-hole 8mm NeoPixels (or V1 Flora pixels), use NEO_RGB for the third parameter in the

Adafruit_NeoPixel declaration. For all other types of NeoPixels, use NEO_GRB.
�
�
The colors fall apart when I use setBrightness() repeatedly!
See note above; setBrightness() is designed as a one-time setup function, not an animation effect.

Also see the “Advanced Coding” page — there’s an alternative library that includes “nondestructive”

brightness adjustment, among other features!

Pixels Gobble RAM
Each NeoPixel requires about 3 bytes of RAM. This doesn’t sound like very much, but when you start

using dozens or even hundreds of pixels, and consider that the mainstream Arduino Uno only has 2

kilobytes of RAM (often much less after other libraries stake their claim), this can be a real problem!

For using really large numbers of LEDs, you might need to step up to a more potent board like the

Arduino Mega or Due. But if you’re close and need just a little extra space, you can sometimes tweak your

code to be more RAM-efficient. This tutorial has some pointers on memory usage. (https://adafru.it/coj)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 51 of 78

http://learn.adafruit.com/memories-of-an-arduino

NeoMatrix Library

The Adafruit_NeoMatrix library builds upon Adafruit_NeoPixel to create two-dimensional graphic displays

using NeoPixels. You can then easily draw shapes, text and animation without having to calculate every

X/Y pixel position. Small NeoPixel matrices are available in the shop. Larger displays can be formed using

sections of NeoPixel strip, as shown in the photo above.

In addition to the Adafruit_NeoPixel library (which was already downloaded and installed in a prior step),

NeoMatrix requires two additional libraries:

1. Adafruit_NeoMatrix (https://adafru.it/cDt)

2. Adafruit_GFX (https://adafru.it/cBB)

If you’ve previously used any Adafruit LCD or OLED displays, you might already have the latter library

installed.

Installation for both is similar to Adafruit_NeoPixel before: unzip, make sure the folder name matches the

.cpp and .h files within, then move to your Arduino libraries folder and restart the IDE.

If using an older (pre-1.8.10) Arduino IDE, you’ll also need to locate and install

Adafruit_BusIO (https://adafru.it/Ldl).

Arduino sketches need to include all three headers just to use this library:

#include <Adafruit_GFX.h>
#include <Adafruit_NeoMatrix.h>
#include <Adafruit_NeoPixel.h>

Layouts
Adafruit_NeoMatrix uses exactly the same coordinate system, color functions and graphics commands as

the Adafruit_GFX library. If you’re new to the latter, a separate tutorial explains its

use (https://adafru.it/aPe). There are also example sketches included with the Adafruit_NeoMatrix library.

We’ll just focus on the constructor here — how to declare a two-dimensional display made from NeoPixels.

Powering the beast is another matter, covered on the prior page.

The library handles both single matrices — all NeoPixels in a single uniform grid — and tiled matrices —

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 52 of 78

https://github.com/adafruit/Adafruit_NeoMatrix/archive/master.zip
https://github.com/adafruit/Adafruit-GFX-Library/archive/master.zip
https://github.com/adafruit/Adafruit_BusIO/archive/master.zip
http://learn.adafruit.com/adafruit-gfx-graphics-library/overview

multiple grids combined into a larger display:

Let’s begin with the declaration for a single matrix, because it’s simpler to explain. We’ll be demonstrating

the NeoPixel Shield for Arduino in this case — an 8x5 matrix of NeoPixels. When looking at this shield with

the text in a readable orientation, the first pixel, #0, is at the top left. Each successive pixel is right one

position — pixel 1 is directly to the right of pixel 0, and so forth. At the end of each row, the next pixel is at

the left side of the next row. This isn’t something we decide in code…it’s how the NeoPixels are hard-

wired in the circuit board comprising the shield.

We refer to this layout as row major and progressive. Row major means the pixels are arranged in

horizontal lines (the opposite, in vertical lines, is column major). Progressive means each row proceeds in

the same direction. Some matrices will reverse direction on each row, as it can be easier to wire that way.

We call that a zigzag layout.

However…for this example, we want to use the shield in the “tall” direction, so the Arduino is standing up

on the desk with the USB cable at the top. When we turn the board this way, the matrix layout changes…

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 53 of 78

Now the first pixel is at the top right. Pixels increment top-to-bottom — it’s now column major. The order of

the columns is still progressive though.

We declare the matrix thusly:

Adafruit_NeoMatrix matrix = Adafruit_NeoMatrix(5, 8, 6,
 NEO_MATRIX_TOP + NEO_MATRIX_RIGHT +
 NEO_MATRIX_COLUMNS + NEO_MATRIX_PROGRESSIVE,
 NEO_GRB + NEO_KHZ800);

The first two arguments — 5 and 8 — are the width and height of the matrix, in pixels. The third argument

— 6 — is the pin number to which the NeoPixels are connected. On the shield this is hard-wired to digital

pin 6, but standalone matrices are free to use other pins.

The next argument is the interesting one. This indicates where the first pixel in the matrix is positioned

and the arrangement of rows or columns. The first pixel must be at one of the four corners; which corner is

indicated by adding either NEO_MATRIX_TOP or NEO_MATRIX_BOTTOM to either NEO_MATRIX_LEFT

or NEO_MATRIX_RIGHT. The row/column arrangement is indicated by further adding either

NEO_MATRIX_COLUMNS or NEO_MATRIX_ROWS to either NEO_MATRIX_PROGRESSIVE or

NEO_MATRIX_ZIGZAG. These values are all added to form a single value as in the above code.

NEO_MATRIX_TOP + NEO_MATRIX_RIGHT + NEO_MATRIX_COLUMNS + NEO_MATRIX_PROGRESSIVE

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 54 of 78

The last argument is exactly the same as with the NeoPixel library, indicating the type of LED pixels being

used. In the majority of cases with the latest NeoPixel products, you can simply leave this argument off…

the example code is just being extra descriptive.

The point of this setup is that the rest of the sketch never needs to think about the layout of the matrix.

Coordinate (0,0) for drawing graphics will always be at the top-left, regardless of the actual position of

the first NeoPixel.
�
�
Why not just use the rotation feature in Adafruit_GFX?
Adafruit_GFX only handles rotation. Though it would handle our example above, it doesn’t cover every

permutation of rotation and mirroring that may occur with certain matrix layouts, not to mention the zig-

zag capability, or this next bit…

Tiled Matrices
A tiled matrix is comprised of multiple smaller NeoPixel matrices. This is sometimes easier for assembly or

for distributing power. All of the sub-matrices need to be the same size, and must be ordered in a

predictable manner. The Adafruit_NeoMatrix() constructor then receives some additional arguments:

Adafruit_NeoMatrix matrix = Adafruit_NeoMatrix(
 matrixWidth, matrixHeight, tilesX, tilesY, pin, matrixType, ledType);

The first two arguments are the width and height, in pixels, of each tiled sub-matrix, not the entire display.

The next two arguments are the number of tiles, in the horizontal and vertical direction. The dimensions of

the overall display then will always be a multiple of the sub-matrix dimensions.

The fifth argument is the pin number, same as before and as with the NeoPixel library. The last argument

also follows prior behaviors, and in most cases can be left off.

The second-to-last argument though…this gets complicated…

With a single matrix, there was a starting corner, a major axis (rows or columns) and a line sequence

(progressive or zigzag). This is now doubled — similar information is needed both for the pixel order within

the individual tiles, and the overall arrangement of tiles in the display. As before, we add up a list of

symbols to produce a single argument describing the display format.

The NEO_MATRIX_* symbols work the same as in the prior single-matrix case, and now refer to the

individual sub-matrices within the overall display. All tiles must follow the same format. An additional set of

symbols work similarly to then describe the tile order.

The first tile must be located at one of the four corners. Add either NEO_TILE_TOP or

NEO_TILE_BOTTOM and NEO_TILE_LEFT or NEO_TILE_RIGHT to indicate the position of the first tile.

This is independent of the position of the first pixel within the tiles; they can be different corners.

Tiles can be arranged in horizontal rows or vertical columns. Again this is independent of the pixel order

within the tiles. Add either NEO_TILE_ROWS or NEO_TILE_COLUMNS.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 55 of 78

Finally, rows or columns of tiles may be arranged in progressive or zigzag order; that is, every row or

column proceeds in the same order, or alternating rows/columns switch direction. Add either

NEO_TILE_PROGRESSIVE or NEO_TILE_ZIGZAG to indicate the order. BUT…if NEO_TILE_ZIGZAG order

is selected, alternate lines of tiles must be rotated 180 degrees. This is intentional and by design; it keeps

the tile-to-tile wiring more consistent and simple. This rotation is not required for

NEO_TILE_PROGRESSIVE.

Tiles don’t need to be square! The above is just one possible layout. The display shown at the top of this

page is three 10x8 tiles assembled from NeoPixel strip.

Once the matrix is defined, the remainder of the project is similar to Adafruit_NeoPixel. Remember to use

matrix.begin() in the setup() function and matrix.show() to update the display after drawing. The

setBrightness() function is also available. The library includes a couple of example sketches for reference.

Other Layouts
For any other cases that are not uniformly tiled, you can provide your own function to remap X/Y

coordinates to NeoPixel strip indices. This function should accept two unsigned 16-bit arguments (pixel X,

Y coordinates) and return an unsigned 16-bit value (corresponding strip index). The simplest row-major

progressive function might resemble this:

uint16_t myRemapFn(uint16_t x, uint16_t y) {
 return WIDTH * y + x;
}

That’s a crude example. Yours might be designed for pixels arranged in a spiral (easy wiring), or a Hilbert

curve.

The function is then enabled using setRemapFunction():

matrix.setRemapFunction(myRemapFn);

RAM Again
On a per-pixel basis, Adafruit_NeoMatrix is no more memory-hungry than Adafruit_NeoPixel, requiring 3

bytes of RAM per pixel. But the number of pixels in a two-dimensional display takes off exponentially…a

16x16 display requires four times the memory of an 8x8 display, or about 768 bytes of RAM (nearly half the

available space on an Arduino Uno). It can be anywhere from tricky to impossible to combine large

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 56 of 78

displays with memory-hungry libraries such as SD or ffft.

Gamma Correction
Because the Adafruit_GFX library was originally designed for LCDs (having limited color fidelity), it handles

colors as 16-bit values (rather than the full 24 bits that NeoPixels are capable of). This is not the big loss it

might seem. A quirk of human vision makes bright colors less discernible than dim ones. The

Adafruit_NeoMatrix library uses gamma correction to select brightness levels that are visually (though not

numerically) equidistant. There are 32 levels for red and blue, 64 levels for green.

The Color() function performs the necessary conversion; you don’t need to do any math. It accepts 8-bit

red, green and blue values, and returns a gamma-corrected 16-bit color that can then be passed to other

drawing functions.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 57 of 78

Advanced Coding
FastLED Library
If looking to boost your NeoPixel prowess, you may find everything you need in the FastLED

library (https://adafru.it/eip). It’s an alternative to the Adafruit_NeoPixel library, providing more advanced

features like HSV color support, nondestructive brightness setting and high-speed mathematical

operations. (It works with other LED types too, such as DotStars!)

FastLED works altogether differently; it’s not a drop-in replacement for Adafruit_NeoPixel, and existing

sketches will require some rewriting.

Note: FastLED currently works only with RGB NeoPixels; RGBW pixels are not yet supported. At all. You

will get incorrect and unpredictable colors.

We don’t write or maintain FastLED, and can’t provide software troubleshooting advice. If requesting help

with a FastLED NeoPixel project in the forums, we’ll usually ask that you try one of the known-working

Adafruit_NeoPixel example sketches to narrow down whether it’s a hardware or software issue.

Visit the FastLED web site to get started. (https://adafru.it/eip)

FAQ and Further Programming Insights
�
�
Help! My Arduino servo code stops working when combined with
NeoPixels!
Unfortunately the NeoPixel and Servo libraries don’t play nice together; one is dependent on periodically

disabling interrupts, the other absolutely requires interrupts. There are a couple of options here:

Use a dedicated servo control shield (http://adafru.it/1411) or breakout board (http://adafru.it/815),

offloading that task from the processor so interrupts are a non-issue.

Use a hardware-PWM-based servo library (https://adafru.it/kDh) rather than the stock Arduino Servo

library. This can provide rock-steady servo timing without interrupts, but can only control a very

limited number of servos (2-3), and only on very specific pins.

�
�
When driving NeoPixels I cannot receive infrared codes on my IR
receiver!
Just like servos, the infrared library uses software interrupts to poll the IR LED, while the standard

NeoPixel library blocks interrupts while NeoPixel are being updated.

If you don't constantly update the NeoPixel, IR will work in between updates, but if you update them all

the time, you will need to use another library and a microcontroller more capable than an

Uno or Mega. Ideally one with DMA so that NeoPixels don't take up any CPU cycles.

Marc MERLIN explains how to this depending on what chip you have (Teensy, ESP8266 or ESP32):

http://marc.merlins.org/perso/arduino/post_2017-04-03_Arduino-328P-Uno-Teensy3_1-ESP8266-ESP32-

IR-and-Neopixels.html (https://adafru.it/xA2)

�
�

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 58 of 78

http://fastled.io
http://fastled.io
http://www.adafruit.com/products/1411
http://www.adafruit.com/products/815
file:///neopixels-and-servos
http://marc.merlins.org/perso/arduino/post_2017-04-03_Arduino-328P-Uno-Teensy3_1-ESP8266-ESP32-IR-and-Neopixels.html

How fast can I refresh a string of (N) pixels?
NeoPixels receive data from a fixed-frequency 800 KHz datastream (except for “V1” Flora pixels, which

use 400 KHz). Each bit of data therefore requires 1/800,000 sec — 1.25 microseconds. One pixel requires

24 bits (8 bits each for red, green blue) — 30 microseconds. After the last pixel’s worth of data is issued,

the stream must stop for at least 50 microseconds for the new colors to “latch.”

For a strip of 100 pixels, that’s (100 * 30) + 50, or 3,050 microseconds. 1,000,000 / 3,050 = 328 updates

per second, approximately.

However…

That’s only the time needed to push the bits down the wire. The actual refresh rate will be something less

than this, and can’t be estimated as a single number for all cases. It takes time to process each “frame” of

animation. How much time depends on the complexity of the math and the efficiency of the code (for

example, floating-point calculations can be relatively slow). The formula above gives a maximum

theoretical rate, but that’s just a starting point. Reality in some cases could fall an order of magnitude (or

more) below this.

For exploratory benchmarking, you can always write code as if a large number of pixels were present, and

time the result. The extra output bits will simply be ignored by the strip (or you can even test with no

NeoPixels connected at all).

�
�
That won’t do. Now what?
Because NeoPixels use a fixed-frequency clock, options are limited. You can’t switch out for a faster

microcontroller and expect substantially different results.

One option is to use a different LED type, such as our DotStar or LPD8806 strips, or WS2801 pixels. These

can be driven at higher data rates, though they do have some other tradeoffs with respect to NeoPixels

(cost, color resolution and/or pixel density).

Another is to develop your own code on a more capable microcontroller or an FPGA that drives multiple
NeoPixel strips in parallel. One such project — OctoWS2811 for the Teensy 3 microcontroller — is shown

later. This sort of thing is a complex undertaking and not recommended for beginners. And even among

more experienced programmers, there’s often an unreasonable over-emphasis on data rates when the

real bottlenecks lie elsewhere…don’t dwell on this too much unless you can confirm it’s the root of

the problem.

�
�
Can I control NeoPixels using (Board X)?
We currently only offer an Arduino library. See the links later for other devices. For anything beyond this, if

considering writing your own library, understand that some processors are better suited to the task than

others. Read through the timing requirements shown below and determine if the chip in question can

synthesize a signal meeting those specifications. An 8 MHz AVR can just barely keep up…anything slower

may have trouble, though some hardware-specific hacks (like clever use of SPI) might make it possible. In

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 59 of 78

many cases, assembly language is required.

�
�
Why not Raspberry Pi?
The Raspberry Pi running Linux is a multitasking system, and control may switch among multiple running

programs at any time. As such, it’s impossible to guarantee the strict 800 KHz signal required by

NeoPixels. You may be able to fudge it for short intervals, but it’s not something that can be counted upon.

This is why we use DotStar LEDs for the Raspberry Pi light painting project (https://adafru.it/kET).

 DMA NeoPixels for ARM Cortex-M0 Boards
If you’re using a recent “M0” development board such as the Adafruit Feather M0, Circuit Playground

Express or Arduino Zero, an alternate NeoPixel library (https://adafru.it/xBb) exploits these devices’ direct
memory access (DMA) feature to operate more smoothly. Advanced Arduino sketches can then use

interrupts with impunity, and code that depends on the millis() or micros() functions will not lose time.

There’s a corresponding DMA version of the NeoMatrix library (https://adafru.it/xAQ) as well.

Plus a super potent 8-way concurrent NeoPixel DMA library (https://adafru.it/Blw). We offer a

companion FeatherWing (https://adafru.it/Et6) and breakout board (https://adafru.it/CJd) to make

connections and level-shifting easier!

Third-Party Libraries
In addition to the previously-mentioned FastLED library, NeoPixel-compatible libraries have been

developed for devices beyond Arduino. Please keep in mind that Adafruit did not develop any of this code

and can’t fix bugs or offer technical help. This is Wild West stuff.

OctoWS2811 (https://adafru.it/cDM): specifically for the PJRC Teensy 3.0 microcontroller board. Uses

DMA to drive up to 8 NeoPixel strips concurrently with minimal processor load. Multiple boards can

be cascaded for still larger displays.

FadeCandy (https://adafru.it/cDN): also for Teensy 3.0. Doesn’t support as many pixels as

OctoWS2811, but adds dithering and smooth interpolation for color purists.

LEDscape (https://adafru.it/cDO): specifically for BeagleBone Black. Although the BeagleBone is a

multitasking Linux system like the not-NeoPixel-compatible Raspberry Pi, this code exploits hardware

features specific to the BeagleBone Black to drive hundreds of meters of NeoPixel strip with virtually

no processor load.

WS2812 LED Driver (https://adafru.it/Etc) for Parallax Propeller.

xCORE NeoPixel test code (https://adafru.it/dcO) for the XMOS xCORE startKIT.

� Some of these are 3.3V devices. See the “Powering NeoPixel” page for notes on controlling 5V

NeoPixels from 3.3V microcontrollers.

�
�
WS2811? WS2812? Why do I see two different names mentioned?
The WS2811 is an earlier driver chip separate from the RGB LED. The data signal is similar, but runs at half

the speed. By the time the WS2812 (with integrated LED) was released, a lot of code and projects had

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 60 of 78

file:///dotstar-pi-painter/overview
file:///dma-driven-neopixels/overview
https://github.com/adafruit/Adafruit_NeoMatrix_ZeroDMA
https://github.com/adafruit/Adafruit_NeoPXL8
https://www.adafruit.com/product/3249
https://www.adafruit.com/product/3975
http://www.pjrc.com/teensy/td_libs_OctoWS2811.html
https://github.com/scanlime/fadecandy
http://www.nycresistor.com/2013/07/27/ledscape/
http://obex.parallax.com/object/868
https://github.com/teachop/xcore_neopixel_buffered

already built up around the WS2811 name. Sometimes code “for the WS2811” might actually be for the

newer chip, or for either type. The Adafruit_NeoPixel library supports both.

Writing Your Own Library
The WS2812 datasheet (https://adafru.it/cDB) explains the data transmission protocol. This is a self-
clocking signal — there’s only one wire, not separate data and clock lines. “1” and “0” bits are indicated by

varying the duty cycle of a fixed-frequency square wave.

There’s a math goof in the datasheet’s timing values. Use these figures instead:

Note that there’s nearly 25% “wiggle room” in the timing. So if your code can’t match the recommended

times exactly, it’s usually okay, as long as it’s close.

There are three bytes of data for each pixel. These should be issued in green, red, blue order, with the

most-significant bit first.

The data for pixel #0 (nearest the microcontroller) is issued first, then pixel #1, and so forth to the furthest

pixel. This does not operate like a traditional shift register!

After all the color data is sent, the data line must be held low for a minimum of 50 microseconds for the

new colors to “latch.”

You may want to dig through our Arduino library (https://adafru.it/aZU) for insights. The timing-critial parts

are written in AVR assembly language, but it’s extensively commented with C-like pseudocode.
�
�
My Microcontroller Isn’t Fast Enough to Do That
The WS2812 appears to be backwardly-compatible with the 400 KHz WS2811 signal. If you can precisely

match the latter chip’s timing, either type will respond. The WS2811 protocol is not simply a half-speed

WS2812. The duty cycle for the “0” and “1” bits is slightly different. From the WS2811

datasheet (https://adafru.it/cDS):

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 61 of 78

http://www.adafruit.com/datasheets/WS2812.pdf
https://github.com/adafruit/Adafruit_NeoPixel
http://www.adafruit.com/datasheets/WS2811.pdf

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 62 of 78

Python & CircuitPython
It's easy to use NeoPixel LEDs with Python or CircuitPython and the Adafruit CircuitPython

NeoPIxel (https://adafru.it/yew) module. This module allows you to easily write Python code that controls

your LEDs.

You can use these LEDs with any CircuitPython microcontroller board or with a computer that has GPIO

and Python thanks to Adafruit_Blinka, our CircuitPython-for-Python compatibility

library (https://adafru.it/BSN).

� Of single boards computers, only Raspberry Pi computers have NeoPixel support at this time.

CircuitPython Microcontroller Wiring
First wire up some NeoPixels to your board exactly as shown on the previous pages. Verify your

connection is on the DATA INPUT or DIN side. Plugging into the DATA OUT or DOUT side is a common

mistake! The connections are labeled and some formats have arrows to indicate the direction the data

must flow.

� Do not use the USB pin on your microcontroller for powering more than a few LEDs! For more than

that, you'll want to use an external power source. For more information, check out the Powering

NeoPixels page of this guide: https://learn.adafruit.com/adafruit-neopixel-uberguide/powering-

neopixels

Here's an example of wiring a Feather M0 to a NeoPIxel strip:

Board USB to LED 5V

Board GND to LED GND

Board D5 to LED Din

Python Computer Wiring
Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For

other platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

supported (https://adafru.it/BSN).

Here's the Raspberry Pi wired to a NeoPixel strip:

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 63 of 78

https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/adafruit-neopixel-uberguide/powering-neopixels
https://learn.adafruit.com//assets/63643
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pi 5V to LED 5V

Pi GND to LED GND

Pi GPIO18 to LED Din

On the Raspberry Pi, NeoPixels must be connected to

GPIO10, GPIO12, GPIO18 or GPIO21 to work!

CircuitPython Installation of NeoPixel Library
You'll need to install the Adafruit CircuitPython NeoPixel (https://adafru.it/yew) library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and

install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our CircuitPython

starter guide has a great page on how to install the library bundle (https://adafru.it/ABU).

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually install the necessary

libraries from the bundle:

neopixel.mpy

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the neopixel.mpy, and

adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

Python Installation of NeoPixel Library
You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This

may also require verifying you are running Python 3. Since each platform is a little different, and Linux

changes often, please visit the CircuitPython on Linux guide to get your computer

ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-neopixel

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to

use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 64 of 78

https://learn.adafruit.com//assets/63866
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

To demonstrate the usage of this library with NeoPixel LEDs, we'll use the board's Python REPL.

� For NeoPixels to work on Raspberry Pi, you must run the code as root! Root access is required to

access the RPi peripherals.

Run the following code to import the necessary modules and initialise a NeoPixel strip with 30 LEDs. Don't

forget to change the pin if your NeoPixels are connected to a different pin, and change the number of

pixels if you have a different number.

import board
import neopixel
pixels = neopixel.NeoPixel(board.D5, 30) # Feather wiring!
pixels = neopixel.NeoPixel(board.D18, 30) # Raspberry Pi wiring!

Now you're ready to light up your NeoPixel LEDs using the following properties:

brightness - The overall brightness of the LED

fill - Color all pixels a given color.

show - Update the LED colors if auto_write is set to False .

For example, to light up the first NeoPixel red:

pixels[0] = (255, 0, 0)

To light up all the NeoPixels green:

pixels.fill((0, 255, 0))

That's all there is to getting started with CircuitPython and NeoPixel LEDs!

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 65 of 78

Full Example Code
SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import neopixel

On CircuitPlayground Express, and boards with built in status NeoPixel -> board.NEOPIXEL
Otherwise choose an open pin connected to the Data In of the NeoPixel strip, i.e. board.D1
pixel_pin = board.NEOPIXEL

On a Raspberry pi, use this instead, not all pins are supported
pixel_pin = board.D18

The number of NeoPixels
num_pixels = 10

The order of the pixel colors - RGB or GRB. Some NeoPixels have red and green reversed!
For RGBW NeoPixels, simply change the ORDER to RGBW or GRBW.
ORDER = neopixel.GRB

pixels = neopixel.NeoPixel(
 pixel_pin, num_pixels, brightness=0.2, auto_write=False, pixel_order=ORDER
)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 r = g = b = 0
 elif pos < 85:
 r = int(pos * 3)
 g = int(255 - pos * 3)
 b = 0
 elif pos < 170:
 pos -= 85
 r = int(255 - pos * 3)
 g = 0
 b = int(pos * 3)
 else:
 pos -= 170
 r = 0
 g = int(pos * 3)
 b = int(255 - pos * 3)
 return (r, g, b) if ORDER in (neopixel.RGB, neopixel.GRB) else (r, g, b, 0)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 pixel_index = (i * 256 // num_pixels) + j
 pixels[i] = wheel(pixel_index & 255)
 pixels.show()
 time.sleep(wait)

while True:
 # Comment this line out if you have RGBW/GRBW NeoPixels

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 66 of 78

 pixels.fill((255, 0, 0))
 # Uncomment this line if you have RGBW/GRBW NeoPixels
 # pixels.fill((255, 0, 0, 0))
 pixels.show()
 time.sleep(1)

 # Comment this line out if you have RGBW/GRBW NeoPixels
 pixels.fill((0, 255, 0))
 # Uncomment this line if you have RGBW/GRBW NeoPixels
 # pixels.fill((0, 255, 0, 0))
 pixels.show()
 time.sleep(1)

 # Comment this line out if you have RGBW/GRBW NeoPixels
 pixels.fill((0, 0, 255))
 # Uncomment this line if you have RGBW/GRBW NeoPixels
 # pixels.fill((0, 0, 255, 0))
 pixels.show()
 time.sleep(1)

 rainbow_cycle(0.001) # rainbow cycle with 1ms delay per step

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 67 of 78

Python Docs
Python Docs (https://adafru.it/C5m)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 68 of 78

https://circuitpython.readthedocs.io/projects/neopixel/en/latest/

MakeCode
We’re got a whole separate guide explaining the use of NeoPixels in Microsoft

MakeCode (https://adafru.it/wpC):

Guide Link: NeoPixels with
MakeCode (https://adafru.it/D1L)
Many of the examples work right in your browser with Circuit Playground Express (https://adafru.it/wpF)

and its 10 built-in NeoPixel LEDs. There’s even a page explaining how to use MakeCode with external

strips (https://adafru.it/Etd) as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 69 of 78

https://makecode.adafruit.com
https://learn.adafruit.com/neopixels-with-makecode
https://www.adafruit.com/product/3333
https://learn.adafruit.com/neopixels-with-makecode/external-strips

Downloads
WS2812 Datasheet (used in some older items) (https://adafru.it/qta)

WS2812B Datasheet (https://adafru.it/uaR) (used in some older items)

SK6812 Datasheet (https://adafru.it/uaS) (used in all our strips as of 2016)

Online NeoPixel Simulator (https://adafru.it/NfG)

NeoPixel 12-LED Ring
EagleCAD PCB files on GitHub (https://adafru.it/qic)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

NeoPixel 16-LED Ring
EagleCAD PCB files on GitHub (https://adafru.it/qic)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 70 of 78

https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+.pdf
https://wokwi.com/arduino/libraries/Adafruit_NeoPixel
https://github.com/adafruit/Adafruit-NeoPixel-Ring
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-NeoPixel-Ring
https://github.com/adafruit/Fritzing-Library

NeoPixel 24-LED Ring
EagleCAD PCB files on GitHub (https://adafru.it/qic)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 71 of 78

https://github.com/adafruit/Adafruit-NeoPixel-Ring
https://github.com/adafruit/Fritzing-Library

NeoPixel 1/4 60-LED Ring
EagleCAD PCB files on GitHub (https://adafru.it/qic)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

NeoPixel Jewel
EagleCAD PCB files on GitHub (https://adafru.it/ped)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 72 of 78

https://github.com/adafruit/Adafruit-NeoPixel-Ring
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-NeoPixel-Jewel-7
https://github.com/adafruit/Fritzing-Library

Breadboard Friendly NeoPixel Breakout
EagleCAD PCB files on GitHub (https://adafru.it/rAt)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 73 of 78

https://github.com/adafruit/Adafruit_Breadboard_NeoPixel_PCB
https://github.com/adafruit/Fritzing-Library

NeoPixel NeoMatrix 8x8
EagleCAD PCB files on GitHub (https://adafru.it/rB8)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 74 of 78

https://github.com/adafruit/Adafruit-NeoPixel-8x8-Matrix
https://github.com/adafruit/Fritzing-Library

NeoPixel Arduino Shield
EagleCAD PCB files on GitHub (https://adafru.it/rCg)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 75 of 78

https://github.com/adafruit/Adafruit-NeoPixel-Shield-PCB
https://github.com/adafruit/Fritzing-Library

NeoPixel 8 Stick
EagleCAD PCB files on GitHub (https://adafru.it/rCQ)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 76 of 78

https://github.com/adafruit/NeoPixel-Sticks
https://github.com/adafruit/Fritzing-Library

© Adafruit Industries https://learn.adafruit.com/adafruit-neopixel-uberguide Page 77 of 78

© Adafruit Industries Last Updated: 2021-03-09 01:07:38 PM EST Page 78 of 78

	Guide Contents
	The Magic of NeoPixels
	Important Things to Know About NeoPixels in General
	Can I use NeoPixels for POV (persistence of vision) displays?
	How about for light painting?
	Is there a limit to the number of NeoPixels in a chain?

	Form Factors
	NeoPixel Strips and Strands
	RGB NeoPixel Strips
	Mini Skinny RGB NeoPixel Strips
	Side-Light NeoPixel Strips
	RGBW NeoPixel Strips
	“Neon-Like” NeoPixel Flex Strip
	Ultraviolet NeoPixel Strips
	NeoPixel Strands
	Finer Details About NeoPixel Strips
	NeoPixel Rings
	NeoPixel Ring Product Selector (http://adafru.it/3042)
	Finer Details About NeoPixel Rings

	NeoPixel Matrices
	Rigid 8x8 NeoPixel Matrices
	NeoPixel Matrix Product Selector (http://adafru.it/3052)

	Flexible NeoPixel Matrices
	Finer Details About NeoPixel Matrices
	We also have a few special-purpose matrices on the NeoPixel Shields page!

	NeoPixel Shields
	NeoPixel Shield for Arduino
	NeoPixel Shield Product Selector (https://adafru.it/lCw)

	NeoPixel FeatherWing
	Pimoroni Unicorn Hat
	Particle/Spark NeoPixel Ring Kit
	Other NeoPixel Shapes
	NeoPixel Stick
	NeoPixel Stick Product Selector (http://adafru.it/3039)

	NeoPixel Jewels
	NeoPixel Jewel Product Selector (http://adafru.it/3047)

	1/4 60 NeoPixel Ring
	NeoPixel Ring Product Selector (http://adafru.it/3042)

	Side Light NeoPixel LED PCB Bar
	Individual NeoPixels
	Integrated NeoPixel Products
	Flora RGB Smart NeoPixels
	Breadboard-Friendly RGB Smart NeoPixels
	NeoPixel Mini PCB

	Discrete NeoPixel Products
	Through-Hole NeoPixels
	SMT NeoPixels
	WS2811 Driver IC

	Basic Connections
	Can NeoPixels be powered directly from the Arduino’s 5V pin?

	Best Practices
	Improper use can damage your NeoPixels. Before diving in, be aware of the following:

	Powering NeoPixels
	Estimating Power Requirements
	I estimate I need a 3.6 Amp power supply. I have a 10 Amp supply on-hand. Will this cause my NeoPixels to explode?
	What about batteries and “Amp hours”?
	I need to power LOTS of NeoPixels and don’t have a power supply that large. Can I use several smaller ones?

	Giant Power Supplies
	Distributing Power
	Driving 5V NeoPixels from 3.3V Microcontrollers
	Software
	Arduino Library Installation
	Install Adafruit_NeoPixel via Library Manager
	Manually Install Adafruit_NeoPixel Library
	A Simple Code Example: strandtest
	Nothing happens!
	Something happens but the LEDs are blinking in a weird way!
	I don't have RGBW LEDs and the LEDs are still blinking weird!

	Arduino Library Use
	HSV (Hue-Saturation-Value) Colors…
	…and Gamma Correction
	Help!
	I’m calling setPixel() but nothing’s happening!
	Can I have multiple NeoPixel objects on different pins?
	Can I connect multiple NeoPixel strips to the same Arduino pin?
	I'm getting the wrong colors. Red and blue are swapped!
	The colors fall apart when I use setBrightness() repeatedly!

	Pixels Gobble RAM
	NeoMatrix Library
	Layouts
	Why not just use the rotation feature in Adafruit_GFX?

	Tiled Matrices
	Other Layouts
	RAM Again
	Gamma Correction
	Advanced Coding
	FastLED Library
	FAQ and Further Programming Insights
	Help! My Arduino servo code stops working when combined with NeoPixels!
	When driving NeoPixels I cannot receive infrared codes on my IR receiver!
	How fast can I refresh a string of (N) pixels?
	That won’t do. Now what?
	Can I control NeoPixels using (Board X)?
	Why not Raspberry Pi?

	DMA NeoPixels for ARM Cortex-M0 Boards
	Third-Party Libraries
	WS2811? WS2812? Why do I see two different names mentioned?

	Writing Your Own Library
	My Microcontroller Isn’t Fast Enough to Do That

	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of NeoPixel Library
	Python Installation of NeoPixel Library
	CircuitPython & Python Usage
	Full Example Code
	Python Docs
	MakeCode
	Guide Link: NeoPixels with MakeCode (https://adafru.it/D1L)
	Downloads
	NeoPixel 12-LED Ring
	NeoPixel 16-LED Ring
	NeoPixel 24-LED Ring
	NeoPixel 1/4 60-LED Ring
	NeoPixel Jewel
	Breadboard Friendly NeoPixel Breakout
	NeoPixel NeoMatrix 8x8
	NeoPixel Arduino Shield
	NeoPixel 8 Stick

