

GaAs HBT INTEGRATED CIRCUIT $\mu PG2301T5L$

POWER AMPLIFIER FOR Bluetooth[™] Class 1

DESCRIPTION

The μPG2301T5L is GaAs HBT MMIC for power amplifier which were developed for Bluetooth Class 1. This device realizes high efficiency, high gain and high output power by using InGaP HBT. This device is housed in a 12-pin plastic TSQFN package. And this package is able to high-density surface mounting.

FEATURES

$V_{enable} = 2.9 V,$
2.5 V, Venable = 2.9
5 V, Venable = 2.9 V,

• High-density surface mounting : 12-pin plastic TSQFN package (2.0 × 2.0 × 0.37 mm)

APPLICATIONS

· Power Amplifier for Bluetooth Class 1 etc.

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μPG2301T5L-E2	μPG2301T5L-E2-A	12-pin plastic TSQFN (Pb-Free) ^{Note}	2301	 Embossed tape 8 mm wide Pin 10, 11, 12 face the perforation side of the tape Qty 3 kpcs/reel

Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales office.

Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: μ PG2301T5L-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS

Pin Name		
GND (NC)		
GND		
OUT/Vcc2		
GND (NC)		
Venable		
Vbias		
Vcc1		
GND		
IN		
GND (NC)		
Vcont		
GND (NC)		

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Supply Voltage	Vcc1, 2	5.5	V
	V _{bias}		
Control Voltage	Vcont	3.6	V
	Venable		
Circuit Current	lcc	400	mA
Control Current	Icont	0.5	mA
	lenable		
Power Dissipation	PD	700 ^{Note}	mW
Operating Ambient Temperature	Та	-40 to +85	°C
Storage Temperature	Tstg	–55 to +150	°C
Input Power	Pin	+10	dBm

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB, T_A = +85°C

RECOMMENDED OPERATING RANGE (TA = +25°C)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating Frequency	fopt	2 400	2 450	2 500	MHz
Supply Voltage	Vcc1, 2	2.7	3.3	3.6	V
	Vbias				
Control Voltage	Vcont	0	2.5	3.6	V
	Venable	0	2.9	3.1	

ELECTRICAL CHARACTERISTICS

(TA = +25°C, Vcc1, 2 = V_{bias} = 3.3 V, f = 2 450 MHz, External input and output matching, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	lcc	$\label{eq:Vcont} \begin{array}{l} V_{cont} = 2.5 \ V, \ V_{enable} = 2.9 \ V, \\ P_{in} = +4 \ dBm \end{array}$	110	120	130	mA
Shut Down Current	İshut down	$\label{eq:Vcont} \begin{split} V_{cont} &= 2.5 \text{ V}, \text{ V}_{enable} = 0 \text{ V}, \\ P_{in} &= +4 \text{ dBm} \end{split}$	I	0.1	1.0	μA
Output Power 1	Pout1	$\label{eq:Vcont} \begin{array}{l} V_{cont} = 2.5 \ V, \ V_{enable} = 2.9 \ V, \\ P_{in} = +4 \ dBm \end{array}$	+21	+23	+24.5	dBm
Output Power 2	Pout2	$\label{eq:Vcont} \begin{split} V_{cont} &= 0 \ V, \ V_{enable} = 2.9 \ V, \\ P_{in} &= +4 \ dBm \end{split}$		0	+1	dBm
Gain Control Range	GCR	$\label{eq:Vcont} \begin{array}{l} V_{cont} = 0 \text{ to } 2.5 \text{ V}, \text{ V}_{enable} = 2.9 \text{ V}, \\ P_{in} = +4 \text{ dBm} \end{array}$	20	23	-	dB

STANDARD CHARACTERISTICS FOR REFERENCE

(TA = +25°C, Vcc1, 2 = V_{bias} = 3.3 V, f = 2 450 MHz, External input and output matching, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Efficiency	PAE	$\label{eq:Vcont} \begin{split} V_{cont} &= 2.5 \text{ V}, \text{ V}_{enable} = 2.9 \text{ V}, \\ P_{in} &= +4 \text{ dBm} \end{split}$	-	50	-	%
Power Gain1	G₽1	$\label{eq:Vcont} \begin{split} V_{cont} &= 2.5 \text{ V}, \text{ V}_{enable} = 2.9 \text{ V}, \\ P_{in} &= -5 \text{ dBm} \end{split}$	-	23	-	dB
Power Gain2	G₽2	$V_{cont} = 2.5 \text{ V}, \text{ V}_{enable} = 2.9 \text{ V},$ $P_{in} = +4 \text{ dBm}$	-	19	-	dB

EVALUATION CIRCUIT (Vcc1, 2 = Vbias = 3.3 V, f = 2 450 MHz)

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

PACKAGE DIMENSIONS

12-PIN PLASTIC TSQFN (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

Caution GaAs Products	This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.
	 Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
	 Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
	Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
	Do not burn, destroy, cut, crush, or chemically dissolve the product.
	Do not lick the product or in any way allow it to enter the mouth.