

CMPA3135060S

3.1 - 3.5 GHz, 60 W, Packaged GaN MMIC **Power Amplifier**

Description

Wolfspeed's CMPA3135060S is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. This MMIC power amplifier contains a two-stage reactively matched amplifier design approach, enabling high power and power added efficiency to be achieved in a 7mm x 7mm, surface mount (QFN package). The MMIC is designed for S-Band radar power amplifier applications.

Package Type: 7x7 QFN PN: CMPA3135060S

Typical Performance Over 3.1 - 3.5 GHz ($T_c = 25^{\circ}C$)

Parameter	3.1 GHz	3.3 GHz	3.5 GHz	Units
Small Signal Gain ^{1,2}	37	37	36	dB
Output Power ^{1, 3}	72	83	87	W
Power Gain ^{1, 3}	29	29	29	dB
Power Added Efficiency ^{1,3}	55	55	57	%

Notes:

 1 V_{DD} = 50 V, I_{DQ} = 260 mA

² Measured at P_{IN} = -20 dBm

 3 Measured at P_{IN} = 20 dBm and 300µs; Duty Cycle = 20%

Features

- 75 W Typical Output Power
- 29 dB Power Gain
 - 50-ohm Matched for Ease of Use
- Plastic Surface-Mount Package, 7x7 mm QFN

3.1 - 3.5 GHz Operation

Applications

- Air Traffic Control Radar
- Defense Surveillance Radar
- **Fire Control Radar**
- Military Air, Land and Sea Radar

Weather Radar

Note

Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

> **RoHS** compliant

Rev. 1.0, 2022-8-25

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions	
Drain-source Voltage	V _{DSS}	150	N/	ar°c	
Gate-source Voltage	V _{GS}	-10, +2	V _{DC}	25°C	
Storage Temperature	T _{STG}	55, +150	°C		
Maximum Forward Gate Current	l _G	15.2	mA	25°C	
Maximum Drain Current	I _{GMAX}	14.2	А		
Soldering Temperature	Ts	260	°C		

Electrical Characteristics (Frequency = 3.1 GHz to 3.5 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 15.2 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	-	V _{DC}	$V_{DD} = 50 \text{ V}, I_{DQ} = 260 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	9.9	14.1	_	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	100	-	_	V	V _{GS} = -8 V, I _D = 15.2 mA
RF Characteristics ^{2,3}						
Small Signal Gain at 3.1 - 3.5 GHz	S211	_	36	_	dB	P _{IN} = -20 dBm
Output Power at 3.1 GHz	P _{OUT1}	_	72	-		
Output Power at 3.3 GHz	P _{OUT2}	_	83	_	w	
Output Power at 3.5 GHz	P _{OUT3}	_	87	_		
Power Added Efficiency at 3.1 GHz	PAE ₁	_	FF	_		
Power Added Efficiency at 3.3 GHz	PAE ₂	_	55	_	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 260 \text{ mA}, P_{IN} = 20 \text{ dBm}$
Power Added Efficiency at 3.5 GHz	PAE ₃	_	57	_		
Power Gain at 3.1 GHz	G _{P1}	_		_		
Power Gain at 3.3 GHz	G _{P2}	_	29	_		
Power Gain at 3.5 GHz	G _{P3}	_		_	dB	
Input Return Loss at 3.1 - 3.3 GHz	S11	_	-12	_		
Output Return Loss at 3.1 - 3.5 GHz	S12	_	-7	_		$P_{IN} = -20 \text{ dBm}$
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles

Notes:

¹Scaled from PCM data

²Measured in CMPA3135060S high volume test fixture at 3.1, 3.3 and 3.5 GHz and may not show the full capability of the device due to source inductance and thermal performance.

³ Unless otherwise noted: Pulse Width = 25μ s, Duty Cycle = 1%

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	ΤJ	225	°C	
Thermal Resistance, Junction to Case (packaged) ¹	R _{ejc}	TBD	°C/W	Pulse Width = 300µs, Duty Cycle =20%

Notes:

 1 Measured for the CMPA3135060S at P_{DISS} = TBD W

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 260 mA, Pulse Width = 300µs, Duty Cycle = 20%, P_{IN} = 20 dBm, T_{BASE} = +25°C

Figure 1. Output Power vs Frequency as a Function of Temperature

Figure 3. Power Added Eff. vs Frequency as a Function of Temperature

Figure 5. Drain Current vs Frequency as a Function of Temperature

Figure 2. Output Power vs Frequency as a Function of Input Power

Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

Rev. 1.0, 2022-8-25

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 260 mA, Pulse Width = 300µs, Duty Cycle = 20%, P_{IN} = 20 dBm, T_{BASE} = +25°C

Figure 7. Output Power vs Frequency as a Function of V_D

Figure 9. Power Added Eff. vs Frequency as a Function of V_D

Figure 11. Drain Current vs Frequency as a Function of V_D

Figure 8. Output Power vs Frequency as a Function of I_{DQ}

Figure 10. Power Added Eff. vs Frequency as a Function of I_{DQ}

Rev. 1.0, 2022-8-25

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 . Wolfspeed and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed. Inc.

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 260 mA, Pulse Width = 300µs, Duty Cycle = 20%, P_{IN} = 20 dBm, T_{BASE} = +25°C

Figure 13. Output Power vs Input Power as a Function of Frequency

Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

Figure 17. Gate Current vs Input Power as a Function of Frequency

Rev. 1.0, 2022-8-25

Figure 14. Power Added Eff. vs Input Power as a Function of Frequency

Figure 16. Drain Current vs Input Power as a Function of Frequency

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 260 mA, Pulse Width = 300µs, Duty Cycle = 20%, P_{IN} = 20 dBm, T_{BASE} = +25°C

Figure 18. Output Power vs Input Power as a Function of Temperature

Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

Figure 22. Gate Current vs Input Power as a Function of Temperature

Rev. 1.0, 2022-8-25

Figure 19. Power Added Eff. vs Input Power as a Function of Temperature

Figure 21. Drain Current vs Input Power as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 50 V$, $I_{DQ} = 260 mA$, Pulse Width = $300 \mu s$, Duty Cycle = 20%, $P_{IN} = 20 dBm$, $T_{BASE} = +25^{\circ}C$

Figure 23. Output Power vs Input Power as a Function of I_{DQ}

Figure 25. Large Signal Gain vs Input Power as a Function of $I_{\mbox{\scriptsize DQ}}$

Figure 27. Gate Current vs Input Power as a Function of I_{DQ}

Rev. 1.0, 2022-8-25

Figure 24. Power Added Eff. vs Input Power as a Function of I_{DQ}

Figure 26. Drain Current vs Input Power as a Function of IDO

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 260 mA, Pulse Width = 300µs, Duty Cycle = 20%, P_{IN} = 20 dBm, T_{BASE} = +25°C

Figure 28. 2nd Harmonic vs Frequency as a Function of Temperature

Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

Figure 32. 2nd Harmonic vs Output Power as a Function of I_{DQ}

Figure 29. 3rd Harmonic vs Frequency as a Function of Temperature

Figure 31. 3rd Harmonic vs Output Power as a Function of Frequency

Figure 33. 3rd Harmonic vs Output Power as a Function of I_{DQ}

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 260 mA, P_{IN} = -30 dBm, T_{BASE} = +25°C

Figure 34. Gain vs Frequency as a Function of Temperature

Figure 36. Input RL vs Frequency as a Function of Temperature

Figure 38. Output RL vs Frequency as a Function of Temperature

Figure 35. Gain vs Frequency as a Function of Temperature

Figure 37. Input RL vs Frequency as a Function of Temperature

Figure 39. Output RL vs Frequency as a Function of Temperature

Rev. 1.0, 2022-8-25

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 260 mA, P_{IN} = -30 dBm, T_{BASE} = +25°C

Figure 40. Gain vs Frequency as a Function of Voltage

Figure 42. Input RL vs Frequency as a Function Voltage

Figure 44. Output RL vs Frequency as a Function of Voltage

Figure 41. Gain vs Frequency as a Function of I_{DQ}

Figure 43. Input RL vs Frequency as a Function of I_{DQ}

Figure 45. Output RL vs Frequency as a Function of $I_{\mbox{\scriptsize DQ}}$

Rev. 1.0, 2022-8-25

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

CMPA3135060S-AMP1 Application Circuit

CMPA3135060S-AMP1 Evaluation Board Layout

Rev. 1.0, 2022-8-25

CMPA3135060S-AMP1 Evaluation Board Bill of Materials

Designator	Description	Qty
C1, C2, C3, C4, C5, C6, C7, C8	CAP, 10pF, +/-5%, pF, 200V, 0402	8
C9, C10, C11, C12, C13, C14, C15, C16	AP, 470pF, 5%, 100V, 0603	8
C17, C18, C19, C20, C21, C22, C23, C24	CA, 330000pF, 0805,100V, X7R	8
C25, C26, C27, C28	CAP, 1.0µF, 100V, 10%, X7R, 1210	4
C29	CAP 10µF 16V TANTALUM, 2312	1
C30	CAP, 330µF, +/-20%, 100V, ELECTROLYTIC, CASE SIZE K16	1
R1, R2, R3, R4	RES 15 OHM, +/-1%, 1/16W, 0402	4
R5, R6	RES 0.0 OHM 1/16W 1206 SMD	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	4
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
J3	HEADER RT>PLZ .1CEN LK 9POS	1
W2, W3	WIRE, BLACK, 20 AWG ~ 2.5"	2
W1	WIRE, BLACK, 20 AWG ~ 3.0"	1
	PCB, TEST FIXTURE, RF-35TC, 0.010 THK, 7X7 Overmold QFN SOCKET BOARD	1
	2-56 SOC HD SCREW 3/16 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	CMPA3135060S	1

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1A	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	C1	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Rev. 1.0, 2022-8-25

Product Dimensions CMPA3135060S (Package 7 x 7 QFN)

5×3®0_	MIN.	NOM.	MAX.	N _{OTE}		B O L	MIN.	n LEAD NOM.	PITCH MAX.	No _{te}
A	0.80	0.86	0.91			e		0.50 BSC.		
41	0.00	0.03	0.06			N		48		3
٩3		0.20 REF.				ND		12		
θ	0		12	2	1 4	NE		12		
	-	0.00 1411	12	~		LI	0.35	0.41	0.46	
К		0.20 MIN.			1 1	b	0.19	0.25	0.33	
D		7.0 BSC				D2	5.61	5.72	5.83	
E		7.0 BSC				E2	5.61	5.72	5.83	

PIN	DESC.	PIN	DESC.	PIN	DESC.	PIN	DESC.
1	NC	15	NC	29	NC	43	NC
2	NC	16	NC	30	RFGND	44	VG1A
3	NC	17	VG1B	31	RFOUT	45	NC
4	NC	18	NC	32	RFGND	46	NC
5	RFGND	19	VD1B	33	NC	47	NC
6	RFIN	20	NC	34	NC	48	NC
7	RFGND	21	VG2B	35	NC		
8	NC	22	NC	36	NC		
9	NC	23	VD2B	37	NC		
10	NC	24	NC	38	VD2A		
11	NC	25	NC	39	NC		
12	NC	26	NC	40	VG2A		
13	NC	27	NC	41	NC		
14	NC	28	NC	42	VD1A		

Rev. 1.0, 2022-8-25

Part Number System

Table 1.

Parameter	Parameter Value	
Lower Frequency	3.1	GHz
Upper Frequency	3.5	GHZ
Power Output	60	W
Package	Surface Mount	_

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

Rev. 1.0, 2022-8-25

14

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA3135060S	Packaged GaN MMIC PA	Each	
CMPA3135060S-AMP1	Evaluation Board with GaN MMIC Installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2020-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 1.0, 2022-8-25