

Current Sensor

Issue 2 - July 2006

FEATURES

- Package : mod. DIL-14 (12 pin)
- Double magnetic sensor chip (employing the magnetoresistive effect of thin film permalloy) measures the magnetic field generated by an internal current-carrying conductor
- measurable direct or alternating current I_M up to 10A
- supply voltage 12 V
- no auxiliary field H_X required
- it's possible to overload the conductor (between pin's 8,9,10 and 11,12,13) with 300A for 10 ms at $T_{amb} = 25$ °C

ZMC 10D

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol		Unit
Supply voltage	V _{br}	12	V
Supply current	Ibr	20	mA
Measurable current at DC: absolute value at AC: peak value	Im	10	А
Operating temperature range	T _{amb}	-25 to +100	°C
Storage temperature range	T _{stg}	-25 to +125	°C

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25 °C unless otherwise stated)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions
Input-Output-Insulation (pin 7, 8, 9, 10, 11, 12 shorted together and pin 1, 2, 3, 4, 5, 6 shorted together)	I _{i-o}	-	-	5	nA	test voltage: 2000V DC test time: 1s
Bridge resistance	R _{br}	600	800	1300	Ω	
Temperature coefficient of bridge resistance	T _{crbr}	-	+0.3	-	%/K	$T_{amb} = -25+100^{\circ}C$
Bridge supply current (con- stant current source)	I _{br}	-	13	-	mA	$T_{amb} = -25+100^{\circ}C$
Offset coefficient of V _{outoff1} (current supply rejection ratio)	CSRR	-	±1.5	±2.5	mV/mA	
Offset voltage (static, con- stant)	V _{outoff1}	-	±19	æ32	mV	$I_{br} = 13mA$ and $R_{br} = 0.8k\Omega$
Offset voltage (dynamic, nonlinear)	Voutoff2	-	-	±2	mV	in dependence on I_m and T_{amb}
Temperature coefficient of Voutoff1	T _{cvoff1}	-35	-	+35	μV/K	$I_{br} = 13mA$ and $R_{br} = 0.8k\Omega$
Open circuit sensitivity (absolute V _{out} /I _m , with off- set compensation, no dis- turbing field allowed)	Sa	2.7	3.9	5.1	mV/A	$I_{br} = 13mA \text{ and} \\ R_{br} = 0.8k\Omega$
Resistance of the conductor	R	-	0.7	-	mΩ	$I_m \le 10A$
Operating frequency	f _{max}	0	-	100	kHz	

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25 °C unless otherwise stated)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions
Temparature coefficient of S _a	T _{csi}	-	-	-0.12	%/K	$I_{br} = 13mA \text{ and} \\ R_{br} = 0.8k\Omega$
Output voltage range	V _{out}	-	_	<æ10 0	mV	$I_{br} = 13mA \text{ and} \\ R_{br} = 0.8k\Omega$
Nonlinearity error of Sa	NLE	-	6	_	%	$I_{m1} = 1A; I_{m2} = 2A$
Disturbance signal influence on disturbing field H _d (V _{out} =I _m *S _a + V _{outhd})	Vouthd	-	±0.5	-	mV	$I_{br} = 13m; R_{br} = 0.8k\Omega$ and $H_d = 10A/m$ in 50mm distance to sensor

Equations of condition:

$V_{outoff1} [mV] = CSRR [mV/mA] * I_{br} [mA]$	
CSRR $[mV/mA] = (R_{34} + R_{12} - R_{24} - R_{13}) [\Omega]$	* 0.5 (at $I_m = 0$)
pinning of magnetoresistive resistors:	R ₃₄ : between pin 3 and pin 4
	R_{12} : between pin 1 and pin 2
	R ₂₄ : between pin 2 and pin 4
	R ₁₃ : between pin 1 and pin 3
external connections:	pin 2 shorted to pin 5
	pin 1 shorted to pin 6

Circuit connections:

condition: pin4: +Ibr and pin 1,6: -Ibr

Devices are identified by type on the body of the device:

ZMC10D ZMC10D

Ordering information:

ZMC10D..... in boxes

Europe

Zetex GmbH Streitfeldstraße 19 D-81673 München Germany

Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 europe.sales@zetex.com Americas Zetex Inc 700 Veterans Memorial Highway Hauppauge, NY 11788 USA

Telephone: (1) 631 360 2222 Fax: (1) 631 360 8222 usa.sales@zetex.com

Asia Pacific

Zetex (Asia Ltd) 3701-04 Metroplaza Tower 1 Hing Fong Road, Kwai Fong Hong Kong

Telephone: (852) 26100 611 Fax: (852) 24250 494 asia.sales@zetex.com

Corporate Headquarters

Zetex Semiconductors plc Zetex Technology Park, Chadderton Oldham, OL9 9LL United Kingdom

Telephone: (44) 161 622 4444 Fax: (44) 161 622 4446 hq@zetex.com

For international sales offices visit www.zetex.com/offices

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

Issue 2 - July 2006 © Zetex Semiconductors plc 2006 www.zetex.com