

Keywords: PRM, HDLC

APPLICATION NOTE 6505 HANDLING PERFORMANCE REPORT MESSAGES IN THE DS2155

By: Aparna K P

Abstract: This application note discusses transmitting/receiving a PRM as an HDLC message over T1 FDL and time slots. It also gives a detailed explanation on the configuration of HDLC engines in the DS2155.

Introduction

This application note gives a detailed explanation on handling a Performance Report Message (PRM) in the DS2155 and how to transmit or receive a PRM as an HDLC message over a T1 Facilities Data Link (FDL).

The FDL is used to report alarms and performance data. The report is done by passing data or information outside the communication signal. Hence, the performance monitoring data or the maintenance information is gathered and passed along without interfering with the normal operation of the T1 line. The Performance Report Message (PRM) section in this application note defines the PRM as per the ANSI T1.403 standard and explains about mapping HDLC controllers to FDL to transmit and receive PRM using the registers of the DS2155. The Configuration of the HDLC Controllers section in this application note provides the configuration flowcharts for the HDLC engines for the transmit and receive paths.

The HDLC engine configuration described in this application note is specific to DS2155, but it can also be used to configure and initialize the HDLC engines of other devices such as the DS26514, DS26518, DS26521, DS26522, and DS26528 by mapping the registers of the DS2155 to that of these devices.

Acronym	Description
CRC	Cyclic Redundancy Check
ESF	Extended Super Frame
FDL	Facilities Data Link
HDLC	High-Level Data Link Control
PRM	Performance Report Message

Performance Report Message (PRM)

The ANSI T1.403 format offers the transmission of a PRM that permits the actual performance to be compared with established thresholds and generate an alert if abnormal conditions are detected. ANSI T1.403 uses a 4kbps channel called FDL provided by the Extended Super Frame (ESF) framing format.

Table 1. Example of Performar	ice Report Mess	sages for DST Da		
	i = i _o	i = i _o + 1	i = i _o + 2	i = i _o + 3
Flag	01111110	01111110	01111110	01111110
Address Octet 1	00111000	00111000	00111000	00111000
Address Octet 2	00000001	00000001	0000001	0000001
Control	00000011	00000011	00000011	00000011
Message Octet 1	00000001	0000000	1000000	00100000
Message Octet 2	0000000	00000001	00000010	00000011
Message Octet 3	0000000	00000001	00000000	1000000
Message Octet 4	00010011	0000000	0000001	0000010
Message Octet 5	0000000	0000000	0000001	0000000
Message Octet 6	01000010	00010011	00000000	0000001
Message Octet 7	00000010	0000000	0000000	0000001
Message Octet 8	00000001	01000010	00010011	0000000
FCS Octet 1	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX
FCS Octet 2	xxxxxxx	XXXXXXXX	XXXXXXXX	XXXXXXXX

 Table 1. Example of Performance Report Messages for DS1 Data Link

NOTES:

 $i = i_0 - 3$, slip = 1, all other parameters = 0, N(t) = 1 $i = i_0 - 2$, severely-errored framing event = 1, all other parameters = 0, N(t) = 2 $i = i_0 - 1$, CRC error events = 1, all other parameters = 0, N(t) = 3 $i = i_0$, CRC error events = 320, all other parameters = 0, N(t) = 0 $i = i_0 + 1$, CRC error events = 0, all other parameters = 0, N(t) = 1 $i = i_0 + 2$, CRC error events = 6, all other parameters =0, N(t) = 2 $i = i_0 + 3$, CRC error events = 40, all other parameters =0, N(t) = 3

The receive HDLC controllers can be mapped to FDL by setting bit 6 of the HxRC register to 1.

Register N			C, H2RC							
Register D	escriptic			eceive Co						
D				ceive Co	ntrol					
Register A	aaress 7	3in, 6	32h 5	4	3	2	1	0		
Bit #	RHR	RHMS	—	—	—	—	—	RFSD		
Name Default	0	0	0	0	0	0	0	0		
) = norm = Whe vithout h	al operati n a conse ost interv	ion; all Fl cutive Fl rention	ISU's are ISU havin	stored in g the sar	πe BSN t			rted to the host s detected, it is deleted	
v Bits 1to 5 Bit 6/Rec) = norm = Whe vithout h v/Unuse ceive HD) = receiv	al operati n a conse ost interv d, must b LC Mapp ve HDLC	ion; all Fl cutive Fl rention e set to (ing Selections) assigned	ISU's are ISU havin O for proj ct (RHM: I to chan	stored ir ng the sar per opera S) nels	me BSN t	he previo	ous FISÚ		
Bits 1 to 5 Bit 6/Red) = norm = Whe vithout h v/Unuse ceive HD) = receiv	al operati n a conse ost interv d, must b LC Mapp	ion; all Fl cutive Fl rention e set to (ing Selections) assigned	ISU's are ISU havin O for proj ct (RHM: I to chan	stored ir ng the sar per opera S) nels	me BSN t	he previo	ous FISÚ		
v Bits 1to 5 Bit 6/Red) = norm = Whe vithout h /Unuse ceive HD) = recei = recei	al operati n a conse ost interv d, must b LC Mapp ve HDLC ve HDLC	ion; all Fl cutive Fl rention e set to (ing Selec assigned assigned	ISU's are ISU havin D for proj ct (RHM I to chan I to FDL	stored ir og the sar per opera S) nels (T1 mod	me BSN t ation le), Sa bit	he previo s (E1 mo	de)		t be
Bits 1 to 5 Bit 6/Red Bit 7/Red cleared ar) = norm = Whee vithout h //Unused ceive HD) = receive = receive ceive HD nd set ag	al operati n a conse ost interv d, must b LC Mapp ve HDLC ve HDLC LC Reset	ion; all Fl cutive Fl ention e set to (ing Selec assigned assigned RHR). R bsequen	ISU's are ISU havin O for proj ct (RHM d to chan d to FDL esets the	stored ir og the sar per opera S) nels (T1 mod	me BSN t ation le), Sa bit	he previo s (E1 mo	de)	s detected, it is deleted	t be

The transmit HDLC controllers can be mapped to FDL by setting bit 4 of HxTC register to 1.

Register	Descripti Address	HDI		ansmit C ransmit C					
-	7	6	5	4	3	2	1	0	
Bit # Name	NOFS	TEOML	THR	THMS	TFS	TEOM	TZSD	TCRCD	
Default	0	0	0	0	0	0	0	0	
This bit c Bit 4/Tr	an be us 0 = enab ansmit H 0 = trans	RC Defea ed to disa le CRC ge DLC Map smit HDLC ive HDLC	ble the (eneration ping Se Cassign	CRC funct n (normal lect (THN ed to cha	operation operation AS) nnels	0			ened to the outbound message

Configuration of the HDLC Controllers

This device has two enhanced HDLC controllers: HDLC #1 and HDLC #2. Each controller can be configured to use with time slots, Sa4 to Sa8 bits (E1 mode), or the FDL (T1 mode). Each HDLC controller has 128-byte buffers in the transmit and receive paths. The user can select any time slot or multiple time slots besides specific bits within the time slot to assign to the HDLC controllers when used with time slots.

The HDLC controller performs the entire necessary overhead for generating and receiving PRMs as described in ANSI T1.403 and the messages as described in AT&T TR54016. The HDLC controller can automatically generate and detect flags, calculate the CRC checksum, and abort sequences. It can also automatically stuff and destuff zeros and align bytes to the datastream. The 128-byte buffers in the HDLC controller are large enough to allow a full PRM to be received or transmitted without host intervention.

The user must not map both transmit HDLC controllers to the same Sa bits, time slots or, in T1 mode, map both controllers to the FDL. HDLC #1 and HDLC #2 are identical in operation and therefore the following operational description refers only to a singular controller.

The HxTC and HxRC registers perform the basic configuration of the HDLC controllers. Operating features such as CRC generation, zero stuffer, transmit and receive HDLC mapping options, and idle flags are selected here. These registers also reset the HDLC controllers. When receiving or transmitting HDLC messages, the user can choose it to be interrupt driven, or the user can poll the desired status registers or a combination of these can also be used. See the following flowcharts for example routines for using the HDLC receiver (**Figure 1**) and HDLC transceiver (**Figure 2**).

Figure 1. Receive HDLC configuration flowchart.

Figure 2. Transmit HDLC configuration flowchart.

Related Parts	3	
DS2155	T1/E1/J1 Single-Chip Transceiver	Free Samples
DS26514	4-Port T1/E1/J1 Transceiver	Free Samples
DS26518	8-Port T1/E1/J1 Transceiver	Free Samples
DS26521	Single T1/E1/J1 Transceiver	Free Samples
DS26522	Dual T1/E1/J1 Transceiver	Free Samples
DS26528	Octal T1/E1/J1 Transceiver	Free Samples

More Information

For Technical Support: https://www.maximintegrated.com/en/support For Samples: https://www.maximintegrated.com/en/samples Other Questions and Comments: https://www.maximintegrated.com/en/contact

Application Note 6505: https://www.maximintegrated.com/en/an6505 APPLICATION NOTE 6505, AN6505, AN 6505, APP6505, Appnote6505, Appnote 6505 © 2014 Maxim Integrated Products, Inc. The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us.

Additional Legal Notices: https://www.maximintegrated.com/en/legal