

16

RL78/G1E

User's Manual: Hardware

16-Bit Microcontrollers with Smart Analog IC

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics www.renesas.com

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

How to Use This Manual

Readers	This manual is intended for user engineers who wish to understand the functions of the RL78/G1E and design and develop application systems and programs for these devices. The target products are as follows.		
	 64-pin: R5F10FLx (x 80-pin: R5F10FMx (x) 		
Purpose	This manual is intended to Organization below.	give users an understanding of	the functions described in the
Organization	The RL78/G1E manual is sep and the RL78 family softwar	parated into three parts: this ma e user's manual.	nual, RL78/G1A user's manual,
	RL78/G1E User's Manual (This Manual)	RL78/G1A Hardware User's Manual	RL78 family Software User's Manual
	Pin functionsInternal block functionsOn-chip peripheral	 Pin functions Internal block functions Interrupts	CPU functionsInstruction setExplanation of each

functions

• Electrical specifications

- Other on-chip peripheral functions
 - Electrical specifications

instruction

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electrical engineering, logic circuits, and microcontrollers.

- To gain a general understanding of functions:
 - → Read this manual in the order of the **CONTENTS**. The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.
- How to interpret the register format:
 - → For a bit number enclosed in angle brackets, the bit name is defined as a reserved word in the assembler, and is defined as an sfr variable using the #pragma sfr directive in the compiler.
- To know details of the microcontroller block:
 →Refer to the separate document RL78/G1A Hardware User's Manual (R01UH0305E).
- To know details of the RL78 microcontroller instructions:
 → Refer to the separate document RL78 family User's Manual Software (R01US0015E).

Conventions	Data significance:	Higher digits o	n the left and lower digits on the right
	Active low representations:	$\overline{\times\!\!\times\!\!\times}$ (overscore	e over pin and signal name)
	Note:	Footnote for ite	em marked with Note in the text
	Caution:	Information red	quiring particular attention
	Remark:	Supplementar	y information
	Numerical representations:	Binary	···×××× or ××××B
		Decimal	···××××
		Hexadecimal	···××××H

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
RL78/G1E User's Manual Hardware	This manual
RL78/G1A User's Manual Hardware	R01UH0305E
RL78 family User's Manual Software	R01US0015E

Documents Related to Flash Memory Programming

Document Name	Document No.
PG-FP5 Flash Memory Programmer User's Manual	R02UT0008E

Other Documents

Document Name	Document No.
Renesas MPUs & MCUs RL78 Family	R01CS0003E
Semiconductor Package Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E
NEC Semiconductor Device Reliability/Quality Control System	R51ZZ0001E

Note See the "Semiconductor Device Mount Manual" website

(http://www.renesas.com/products/package/manual/index.jsp).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

All trademarks and registered trademarks are the property of their respective owners. EEPROM is a trademark of Renesas Electronics Corporation. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

CONTENTS

CHAPTER 1 OUTLINE	1
1.1 Features	1
1. 1. 1 Microcontroller block	1
1. 1. 2 Analog block	
1. 2 List of Part Numbers	4
1.3 Pin Configuration (Top View)	5
1. 3. 1 64-pin products	5
1. 3. 2 80-pin products	6
1.4 Pin Identification	7
1. 5 Block Diagram	9
1. 5. 1 64-pin products	9
1. 5. 2 80-pin products	12
1. 6 Outline of Functions	15
CHAPTER 2 PIN FUNCTIONS	18
2.1 Pin Functions in Microcontroller Block	18
2. 1. 1 Port functions	22
2. 1. 1. 1 64-pin products	23
2. 1. 1. 2 80-pin products	25
2. 1. 2 Functions other than port functions	27
2. 1. 2. 1 Functions available for each product	27
2. 1. 2. 2 Description of each function	30
2. 2 Pin Functions in Analog Block	32
2. 2. 1 64-pin products	32
2. 2. 2 80-pin products	33
2.3 Connection of Unused Pins	34
2. 4 Block Diagrams of Pins	36
2.5 Instruction of Pin Functions	48
2. 5. 1 Port 0 (P00 to P04)	48
2. 5. 2 Port 1 (P10 to P15)	50
2. 5. 3 Port 2 (P20 to P24)	51
2. 5. 4 Port 4 (P40 to P42)	52
2. 5. 5 Port 5 (P50, P51)	53
2. 5. 6 Port 7 (P70 to P73)	54
2. 5. 7 Port 12 (P121, P122)	55
2. 5. 8 Port 13 (P130, P137)	56
2. 5. 9 Port 14 (P140)	57
2. 5. 10 AVdd, AVss, Vdd, Vss	58

2. 5. 11 RESET	58
2. 5. 12 REGC	58
2. 5. 13 AVDD3	59
2. 5. 14 SC_IN	59
2. 5. 15 CLK_SYNCH	59
2. 5. 16 SYNCH_OUT	59
2. 5. 17 AGND2	59
2. 5. 18 GAINAMP_OUT	59
2. 5. 19 GAINAMP_IN	59
2. 5. 20 MPXIN10, MPXIN11, MPXIN20, MPXIN21, MPXIN30, MPXIN31, MPXIN40, MPXIN41,	
MPXIN50, MPXIN51, MPXIN60, MPXIN61	59
2. 5. 21 AMP1_OUT, AMP2_OUT, AMP3_OUT	59
2. 5. 22 DAC1_OUT, DAC2_OUT, DAC3_OUT, DAC4_OUT	59
2. 5. 23 VREFIN1, VREFIN2, VREFIN3, VREFIN4	
2. 5. 24 AGND1	60
2. 5. 25 AVDD1	60
2. 5. 26 AGND3	60
2. 5. 27 BGR_OUT	60
2. 5. 28 AVDD2	60
2. 5. 29 LDO_OUT	60
2. 5. 30 TEMP_OUT	60
2. 5. 31 ARESET	60
2. 5. 32 DVDD	60
2. 5. 33 SCLK	60
2. 5. 34 SDO	60
2. 5. 35 SDI	61
2. 5. 36 CS	61
2. 5. 37 DGND	61
2. 5. 38 HPF_OUT	61
2. 5. 39 CLK_HPF	61
2. 5. 40 CLK_LPF	61
2. 5. 41 AGND4	61
2. 5. 42 LPF_OUT	61
2. 5. 43 I.C	61
CHAPTER 3 MICROCONTROLLER BLOCK	62
3. 1 Outline of This Chapter	62
3. 2 Comparison of Each Function with RL78/G1A (64-pin products)	
3. 3 CPU Architecture	67
3. 3. 1 Memory space	67
3. 3. 2 Processor registers	67

	3. 3. 2. 1 Control registers	67
	3. 3. 2. 2 General-purpose registers	67
	3. 3. 2. 3 ES and CS registers	67
	3. 3. 2. 4 Special function registers (SFRs)	68
	3. 3. 2. 5 Expanded special function registers (2nd SFRs)	76
	3. 3. 3 Instruction address addressing	88
	3. 3. 4 Addressing for processing data addresses	88
3. 4	Port Functions	89
	3. 4. 1 Port functions	89
	3. 4. 2 Port configuration	89
	3. 4. 2. 1 Port 0	90
	3. 4. 2. 2 Port 1	90
	3. 4. 2. 3 Port 2	90
	3. 4. 2. 4 Port 3	91
	3. 4. 2. 5 Port 4	91
	3. 4. 2. 6 Port 5	91
	3. 4. 2. 7 Port 6	91
	3. 4. 2. 8 Port 7	91
	3. 4. 2. 9 Port 12	92
	3. 4. 2. 10 Port 13	92
	3. 4. 2. 11 Port 14	92
	3. 4. 2. 12 Port 15	92
	3. 4. 3 Registers controlling port function	93
	3. 4. 3. 1 Port mode register (PMxx)	95
	3. 4. 3. 2 Port register (Pxx)	96
	3. 4. 3. 3 Pull-up resistor option register (PUxx)	97
	3. 4. 3. 4 Port input mode register (PIMxx)	97
	3. 4. 3. 5 Port output mode register (POMxx)	98
	3. 4. 3. 6 Port mode control register (PMCxx)	98
	3. 4. 3. 7 A/D port configuration register (ADPC)	99
	3. 4. 3. 8 Peripheral I/O redirection register (PIOR)	101
	3. 4. 3. 9 Global digital input disable register (GDIDIS)	101
	3. 4. 3. 10 Global analog input disable register (GAIDIS)	101
	3. 4. 4 Port function operation	102
	3. 4. 4. 1 Writing to I/O port	102
	3. 4. 4. 2 Reading from I/O port	102
	3. 4. 4. 3 Operation on I/O port	102
	3. 4. 4. 4 Handling different potential (1.8 V, 2.5 V or 3 V) by using EV _{DD} ≤ V _{DD}	102
	3. 4. 4. 5 Handling different potential (1.8 V, 2.5 V or 3V) by using I/O buffers	103
	3. 4. 5 Register settings when using alternate function	105
	3. 4. 6 Cautions when using port function	105

3. 5	Clock Generator	. 106
	3. 5. 1 Functions of clock generator	. 106
	3. 5. 2 Configuration of clock generator	. 108
	3. 5. 3 Registers controlling clock generator	. 111
	3. 5. 3. 1 Clock operation mode control register (CMC)	. 111
	3. 5. 3. 2 System clock control register (CKC)	. 112
	3. 5. 3. 3 Clock operation status control register (CSC)	. 113
	3. 5. 3. 4 Oscillation stabilization time counter status register (OSTC)	. 114
	3. 5. 3. 5 Oscillation stabilization time select register (OSTS)	. 114
	3. 5. 3. 6 Peripheral enable register 0 (PER0)	. 115
	3. 5. 3. 7 Subsystem clock supply mode control register (OSMC)	. 116
	3. 5. 3. 8 High-speed on-chip oscillator frequency select register (HOCODIV)	. 116
	3. 5. 3. 9 High-speed on-chip oscillator trimming register (HIOTRM)	. 116
	3. 5. 4 System clock oscillator	. 117
	3. 5. 5 Clock generator operation	. 117
	3. 5. 6 Controlling clock	. 117
	3. 5. 7 Resonator and oscillator constants	. 118
3.6	Timer Array Unit	122
	3. 6. 1 Functions of timer array unit	. 124
	3. 6. 1. 1 Independent channel operation function	. 124
	3. 6. 1. 2 Simultaneous channel operation function	. 126
	3. 6. 1. 3 8-bit timer operation function (channels 1 and 3 only)	. 127
	3. 6. 1. 4 LIN-bus supporting function (channel 7 of unit 0 only)	. 128
	3. 6. 2 Configuration of timer array unit	. 129
	3. 6. 2. 1 Timer count register mn (TCRmn)	. 133
	3. 6. 2. 2 Timer data register mn (TDRmn)	. 133
	3. 6. 3 Registers controlling timer array unit	. 134
	3. 6. 3. 1 Peripheral enable register 0 (PER0)	. 134
	3. 6. 3. 2 Timer clock select register m (TPSm)	. 134
	3. 6. 3. 3 Timer mode register mn (TMRmn)	. 135
	3. 6. 3. 4 Timer status register mn (TSRmn)	. 140
	3. 6. 3. 5 Timer channel enable status register m (TEm)	. 140
	3. 6. 3. 6 Timer channel start register m (TSm)	. 140
	3. 6. 3. 7 Timer channel stop register m (TTm)	. 140
	3. 6. 3. 8 Timer input select register 0 (TIS0)	. 140
	3. 6. 3. 9 Timer output enable register m (TOEm)	. 141
	3. 6. 3. 10 Timer output register m (TOm)	. 141
	3. 6. 3. 11 Timer output level register m (TOLm)	. 142
	3. 6. 3. 12 Timer output mode register m (TOMm)	. 142
	3. 6. 3. 13 Input switch control register (ISC)	. 143
	3. 6. 3. 14 Noise filter enable register 1 (NFEN1)	. 143

	3. 6. 3. 15 Registers controlling port functions of pins to be used for timer I/O	. 144
	3. 6. 4 Basic rules of timer array unit	. 145
	3. 6. 5 Operation of counter	. 145
	3. 6. 6 Channel output (TOmn pin) control	. 145
	3. 6. 7 Timer input (TImn) control	. 145
	3. 6. 8 Independent channel operation function of timer array unit	. 145
	3. 6. 9 Simultaneous channel operation function of timer array unit	. 145
	3. 6. 10 Cautions when using timer array unit	. 145
3. 7	Real-Time Clock	. 146
3.8	12-bit Interval Timer	. 147
	3. 8. 1 Functions of 12-bit interval timer	. 147
	3. 8. 2 Configuration of 12-bit interval timer	. 147
	3. 8. 3 Registers controlling 12-bit interval timer	. 148
	3. 8. 3. 1 Peripheral enable register0 (PER0)	. 148
	3. 8. 3. 2 Subsystem clock supply mode control register (OSMC)	. 148
	3. 8. 3. 3 Interval timer control register (ITMC)	. 149
	3. 8. 4 12- bit interval timer operation	. 149
3.9	Clock Output/Buzzer Output Controller	. 150
	3. 9. 1 Functions of clock output/buzzer output controller	. 150
	3. 9. 2 Configuration of clock output/buzzer output controller	. 151
	3. 9. 3 Registers controlling clock output/buzzer output controller	. 151
	3. 9. 3. 1 Clock output select register 0 (CKS0)	. 152
	3. 9. 3. 2 Registers controlling port functions of pins to be used for clock or buzzer output	. 153
	3. 9. 4 Operations of clock output/buzzer output controller	. 153
	3. 9. 5 Cautions of clock output/buzzer output controller	. 153
3. 10	Watchdog Timer	. 154
3. 11	A/D Converter	. 155
	3. 11. 1 Function of A/D converter	. 155
	3. 11. 2 Configuration of A/D converter	. 158
	3. 11. 3 Registers used in A/D converter	. 160
	3. 11. 3. 1 Peripheral enable register 0 (PER0)	. 160
	3. 11. 3. 2 A/D converter mode register 0 (ADM0)	. 160
	3. 11. 3. 3 A/D converter mode register 1 (ADM1)	. 161
	3. 11. 3. 4 A/D converter mode register 2 (ADM2)	. 162
	3. 11. 3. 5 12-bit A/D conversion result register (ADCR)	. 162
	3. 11. 3. 6 8-bit A/D conversion result register (ADCRH)	. 162
	3. 11. 3. 7 Analog input channel specification register (ADS)	. 163
	3. 11. 3. 8 Conversion result comparison upper limit setting register (ADUL)	. 167
	3. 11. 3. 9 Conversion result comparison lower limit setting register (ADLL)	. 167
	3. 11. 3. 10 A/D test register (ADTES)	. 167
	3. 11. 3. 11 Registers controlling port function of analog input pins	. 167

	3. 11. 4 A/D converter conversion operations	168
	3. 11. 5 Input voltage and conversion results	168
	3. 11. 6 A/D converter operation modes	168
	3. 11. 7 A/D converter setup flowchart	168
	3. 11. 8 SNOOZE mode function	168
	3. 11. 9 How to read A/D converter characteristics table	168
	3. 11. 10 Cautions for A/D converter	168
3. 12	Serial Array Unit	169
	3. 12. 1 Functions of serial array unit	170
	3. 12. 1. 1 3-wire serial I/O (CSI00, CSI10, CSI20, CSI21)	170
	3. 12. 1. 2 UART (UART0 to UART2)	171
	3. 12. 1. 3 Simplified I ² C (IIC00, IIC10, IIC20)	172
	3. 12. 2 Configuration of serial array unit	173
	3. 12. 2. 1 Shift register	177
	3. 12. 2. 2 Lower 8/9 bits of the serial data register mn (SDRmn)	177
	3. 12. 3 Registers controlling serial array unit	179
	3. 12. 3. 1 Peripheral enable register 0 (PER0)	179
	3. 12. 3. 2 Serial clock select register m (SPSm)	179
	3. 12. 3. 3 Serial mode register mn (SMRmn)	180
	3. 12. 3. 4 Serial communication operation setting register mn (SCRmn)	182
	3. 12. 3. 5 Higher 7 bits of the serial data register mn (SDRmn)	
	3. 12. 3. 6 Serial flag clear trigger register mn (SIRmn)	186
	3. 12. 3. 7 Serial status register mn (SSRmn)	
	3. 12. 3. 8 Serial channel start register m (SSm)	
	3. 12. 3. 9 Serial channel stop register m (STm)	186
	3. 12. 3. 10 Serial channel enable status register m (SEm)	186
	3. 12. 3. 11 Serial output enable register m (SOEm)	186
	3. 12. 3. 12 Serial output register m (SOm)	186
	3. 12. 3. 13 Serial output level register m (SOLm)	187
	3. 12. 3. 14 Serial standby control register 0 (SSC0)	187
	3. 12. 3. 15 Input switch control register (ISC)	187
	3. 12. 3. 16 Noise filter enable register 0 (NFEN0)	187
	3. 12. 3. 17 Registers controlling port functions of serial input/output pins	188
	3. 12. 4 Operation stop mode	189
	3. 12. 5 Operation of 3-Wire serial I/O (CSI00, CSI10, CSI20, CSI21) communication	
	3. 12. 6 Operation of UART (UART0 to UART2) communication	
	3. 12. 7 LIN communication operation	
	3. 12. 8 Operation of simplified I ² C (IIC00, IIC10, IIC20) communication	
	Serial Interface IICA	
	Multiplier and Divider/Multiply-Accumulator	
3. 15	DMA Controller	192

3. 16	Interrupt Functions	193
	3. 16. 1 Interrupt function types	193
	3. 16. 2 Interrupt sources and configuration	193
	3. 16. 3 Registers controlling interrupt functions	199
	3. 16. 3. 1 Interrupt request flag register (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H)	204
	3. 16. 3. 2 Interrupt mask flag register (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H)	206
	3. 16. 3. 3 Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR10L, PR10H,	
	PR11L, PR11H, PR12L, PR12H, PR02L, PR02H)	208
	3. 16. 3. 4 External interrupt rising edge enable register (EGP0), External interrupt falling edge	
	enable register (EGN0)	212
	3. 16. 3. 5 Program status word (PSW)	213
	3. 16. 4 Interrupt servicing operations	213
3. 17	Key Interrupt Function	214
	3. 17. 1 Functions of key interrupt	214
	3. 17. 2 Configuration of key interrupt	215
	3. 17. 3 Register controlling key interrupt	217
	3. 17. 3. 1 Key return control register (KRCTL)	217
	3. 17. 3. 2 Key return mode register 0 (KRM0)	217
	3. 17. 3. 3 Key return flag register (KRF)	217
	3. 17. 3. 4 Port mode registers 0 to 2, 7 (PM0 to PM2, PM7)	218
	3. 17. 3. 5 Peripheral I/O redirection register (PIOR)	219
	3. 17. 4 Key interrupt operation	219
3. 18	Standby Function	220
3. 19	Reset Function	221
3. 20	Power-On-Reset Circuit	222
3. 21	Voltage Detector	223
	3. 21. 1 Functions of voltage detector	223
	3. 21. 2 Configuration of voltage detector	224
	3. 21. 3 Registers controlling voltage detector	225
	3. 21. 3. 1 Voltage detection register (LVIM)	225
	3. 21. 3. 2 Voltage detection level register (LVIS)	225
	3. 21. 4 Operation of voltage detector	228
	3. 21. 5 Cautions for voltage detector	228
3. 22	Safety Functions	229
	3. 22. 1 Overview of safety functions	229
	3. 22. 2 Registers used by safety functions	230
	3. 22. 3 Operation of safety functions	230
	3. 22. 3. 1 Flash memory CRC operation function (high-speed CRC)	230
	3. 22. 3. 2 CRC operation function (general-purpose CRC)	230
	3. 22. 3. 3 RAM parity error detection function	230
	3. 22. 3. 4 RAM guard function	230

3. 22. 3. 5 SFR guard function	230
3. 22. 3. 6 Invalid memory access detection function	230
3. 22. 3. 7 Frequency detection function	
3. 22. 3. 8 A/D test function	
3. 23 Regulator	
3. 24 Option Byte	233
3. 24. 1 Functions of option bytes	233
3. 24. 1. 1 User option byte (000C0H to 000C2H/010C0H to 010C2H)	233
3. 24. 1. 2 On-chip debug option byte (000C3H/010C3H)	
3. 24. 2 Format of user option byte	235
3. 24. 3 Format of on-chip debug option byte	238
3. 24. 4 Setting of option byte	238
3. 25 Flash Memory	239
3. 25. 1 Serial Programming Using Flash Memory Programmer	239
3. 25. 1. 1 Programming environment	
3. 25. 1. 2 Communication mode	
3. 25. 2 Serial programming using external device (that Incorporates UART)	
3. 25. 3 Connection of pins on board	
3. 25. 4 Serial programming method	
3. 25. 5 Processing time for each command when PG-FP5 Is in use (Reference value)	
3. 25. 6 Self-programming	
3. 25. 7 Security Settings	
3. 25. 8 Data flash	241
3. 26 On-chip Debug Function	
3. 26. 1 Connecting E1 on-chip debugging emulator to RL78/G1E	
3. 26. 2 On-chip debug security ID	243
3. 26. 3 Securing of user resources	
3. 27 BCD Correction Circuit	
3. 28 Instruction Set	
CHAPTER 4 ANALOG BLOCK	
4.1 Configurable Amplifier	
4.1.1 Overview of configurable amplifier features	
4. 1. 2 Block diagram	
4.1.3 Registers controlling the configurable amplifiers	
4.1.4 Procedure for operating the configurable amplifiers	268
4. 2 Gain Adjustment Amplifier	
4. 2. 1 Overview of gain adjustment amplifier features	
4. 2. 2 Block diagram	
4. 2. 3 Registers controlling the gain adjustment amplifier	

4. 2. 4 Procedure for operating the gain adjustment amplifier	
4. 3 D/A Converter	
4. 3. 1 Overview of D/A converter features	
4. 3. 2 Block diagram	
4. 3. 3 Registers controlling the D/A converters	
4. 3. 4 Procedure for operating the D/A converters	
4. 3. 5 Notes on using D/A converters	
4. 4 Low-Pass Filter	
4. 4. 1 Overview of low-pass filter features	
4. 4. 2 Block diagram	
4. 4. 3 Registers controlling the low-pass filter	
4. 4. 4 Procedure for operating the low-pass filter	
4. 5 High-Pass Filter	
4. 5. 1 Overview of high-pass filter features	
4. 5. 2 Block diagram	
4. 5. 3 Registers controlling the high-pass filter	
4. 5. 4 Procedure for operating the high-pass filter	
4.6 Temperature Sensor	
4. 6. 1 Overview of temperature sensor features	
4. 6. 2 Block diagram	
4. 6. 3 Registers controlling the temperature sensor	
4. 6. 4 Procedure for operating the temperature sensor	
4. 7 Variable Output Voltage Regulator	
4. 7. 1 Overview of variable output voltage regulator features	306
4. 7. 2 Block diagram	
4.7.3 Registers controlling the variable output voltage regulator	
4.7.4 Procedure for operating the variable output voltage regulator	
4.8 Reference Voltage Generator	
4. 8. 1 Overview of reference voltage generator features	
4. 8. 2 Block diagram	
4.8.3 Registers controlling the reference voltage generator	
4.8.4 Procedure for operating the reference voltage generator	
4. 8. 5 Notes on using the reference voltage generator	
4. 9 SPI	
4. 9. 1 Overview of SPI features	
4. 9. 2 SPI communication	
4. 10 Analog Reset	
4. 10. 1 Overview of analog reset feature	
4. 10. 2 Registers controlling the analog reset	

CHAPTER 5 ELECTRICAL SPECIFICATIONS	319
5. 1 Absolute Maximum Ratings	320
5. 1. 1 Absolute maximum ratings of microcontroller block	
5. 1. 2 Absolute maximum ratings of analog block	
5. 1. 3 Absolute maximum ratings (common to microcontroller block and analog block)	323
5. 2 Electrical Specifications of Microcontroller Block	324
5. 2. 1 Oscillator characteristics	
5. 2. 1. 1 X1 oscillator characteristics	
5. 2. 1. 2 On-chip oscillator characteristics	
5. 2. 2 DC characteristics	
5. 2. 2. 1 Pin characteristics	
5. 2. 2. 2 Supply current characteristics	
5. 2. 3 AC characteristics	
5. 2. 4 Peripheral functions characteristics	
5. 2. 4. 1 Serial array unit	
5. 2. 5 Analog block characteristics	
5. 2. 5. 1 A/D converter characteristics	
5. 2. 5. 2 Temperature sensor, internal reference voltage output characteristics	
5. 2. 5. 3 POR circuit characteristics	
5. 2. 5. 4 LVD circuit characteristics	
5. 2. 5. 5 Supply voltage rise slope characteristics	
5. 2. 6 Data memory STOP mode low supply voltage data retention characteristics	
5. 2. 7 Flash memory programming characteristics	
5. 2. 8 Dedicated flash memory programmer communication (UART)	
5. 2. 9 Timing specs for switching flash memory programming modes	
5. 3 Electrical Specifications of Analog Block	
5. 3. 1 Operating conditions of analog block	
5. 3. 2 Supply current characteristics	
5. 3. 3 Electrical specifications of each block	
5. 3. 3. 1 Configurable amplifier characteristics	
5. 3. 3. 2 Gain adjustment amplifier characteristics	
5. 3. 3. J/A converter characteristics	
5. 3. 3. 4 Low-pass filter characteristics	
5. 3. 3. 5 High-pass filter characteristics	
5. 3. 3. 6 Temperature sensor characteristics	
5. 3. 3. 7 Variable output voltage regulator characteristics	
5. 3. 3. 8 Reference voltage generator characteristics	
5. 3. 3. 9 SPI characteristics	403

CHAPTER 6 PACKAGE DRAWINGS	405
APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE)	407
APPENDIX B REVISION HISTORY	414
B. 1 Major Revisions in This Edition	414
B. 2 Revision History of Preceding Editions	418

RL78/G1E RENESAS MCU

CHAPTER 1 OUTLINE

<R> 1.1 Features

The RL78/G1E is a multi-chip package (MCP) device that integrates a chip of an analog block and a chip of 16-bit microcontroller block in a single package. The chip of analog block features a range of front-end analog circuits for small sensor signal processing such as a configurable gain amplifier, gain adjustment amplifier, filter circuit, D/A converter, and temperature sensor. The chip of 16-bit microcontroller block corresponds to the RL78/G1A (64-pin products).

1.1.1 Microcontroller block

Low power consumption technology by standby function

- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from 0.03125 µs (32 MHz operation with high-speed on-chip oscillator) to 0.05 µs (20 MHz operation with high-speed system clock)
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 2 to 4 KB

Code flash memory

- Code flash memory: 32 to 64 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 4 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD = 1.8 to 5.5 V

High-speed on-chip oscillator

- Select from 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy ± 1.0 % (V_{DD} = 1.8 to 5.5 V, T_A = -20 to +85°C)

Operating ambient temperature

• T_A = -40 to +85°C (A: Consumer applications, D: Industrial applications)

Power supply voltage

- VDD (Power supply for microcontroller block) = 1.6 to 5.5 V
- AV_{DD} (Power supply for A/D converter in microcontroller block) = 1.6 to 3.6 V
- AV_{DDn} (Power supply for analog block) = 3.0 to 5.5 V
- DV_{DD} (Power supply for SPI in analog block) = 3.0 to 5.5 V

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 3 levels)

DMA (Direct Memory Access) controller

- 2 channels
- Number of clocks during transfer between 8/16-bit SFR and internal RAM: 2 clocks

Multiplier and divider/multiply-accumulator

- 16 bits × 16 bits = 32 bits (Unsigned or signed)
- 32 bits ÷ 32 bits = 32 bits (Unsigned)
- 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)

Serial interface

- CSI : 2 channels (64-pin products), 6 channels (80-pin products)
- UART / UART (LIN-bus supported) : 2 channels / 1channel
- I²C/Simplified I²C communication : 1 channel (64-pin products), 3 channels (80-pin products)

Timer

- 16-bit timer : 8 channels
- 12-bit interval timer : 1 channel
- Watchdog timer : 1 channel (operable with the dedicated low-speed on-chip oscillator)

A/D converter

- 8/12-bit resolution A/D converter
- Analog input: 13 channels (64-pin products), 17 channels (80-pin products)
- Internal reference voltage (1.45 V) and temperature sensor^{Note}

Note Can be selected only in HS (high-speed main) mode

Remarks 1. n = 1 to 3

2. The functions mounted depend on the product. See 1.6 Outline of Functions.

I/O port

- I/O port : 24 (64-pin products), 30 (80-pin products)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3 V device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

• On-chip BCD (binary-coded decimal) correction circuit

ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78	/G1E
			64 pins	80 pins
32 KB	4 KB	2 KB	R5F10FLC	R5F10FMC
48 KB	4 KB	3 KB	R5F10FLD	R5F10FMD
64 KB	4 KB	4 KB	R5F10FLE	R5F10FME

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

1.1.2 Analog block

- Configurable amplifier: 3 channels
- Gain adjustment amplifier: 1 channel
- High-pass filter: 1 channel Note
- Low-pass filter: 1 channel
- D/A converter: 4 channels
- Variable output voltage regulator: 1 channel
- Reference voltage generator: 1 channel
- Temperature sensor: 1 channel
- SPI (for analog block): 1 channel

Note 80-pin products only.

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

1.2 List of Part Numbers

Pin count	Package	Data Flash	Part Number
64 pins	64-pin plastic HWQFN	Mounted	R5F10FLCANA#U0, R5F10FLCANA#W0,
	(fine pitch) (9×9)		R5F10FLDANA#U0, R5F10FLDANA#W0,
			R5F10FLEANA#U0, R5F10FLEANA#W0,
			R5F10FLCDNA#U0, R5F10FLCDNA#W0,
			R5F10FLDDNA#U0, R5F10FLDDNA#W0,
			R5F10FLEDNA#U0, R5F10FLEDNA#W0
80 pins	80-pin plastic LFQFP	Mounted	R5F10FMCAFB#V0, R5F10FMCAFB#X0,
	(12 × 12)		R5F10FMDAFB#V0, R5F10FMDAFB#X0,
			R5F10FMEAFB#V0, R5F10FMEAFB#X0,
			R5F10FMCDFB#V0, R5F10FMCDFB#X0,
			R5F10FMDDFB#V0, R5F10FMDDFB#X0,
			R5F10FMEDFB#V0, R5F10FMEDFB#X0

Caution The part number above is valid as of when this manual was issued. For the latest part number, see the web page of the target product on the Renesas Electronics website.

<R> 1.3 Pin Configuration (Top View)

1.3.1 64-pin products

64-pin plastic WQFN (fine pitch) (9×9)

Cautions 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- 2. Make the potential of VDD, AVDD1, AVDD2, AVDD3, and DVDD the same.
- 3. Make the potential of Vss, AGND1, AGND2, AGND3, AGND4, and DGND the same.
- 4. Leave I.C open.
- 5. Connect the LDO_OUT pin to AGND3 via a capacitor (4.7 μ F: recommended).
- 6. Connect the BGR_OUT pin to AGND3 via a capacitor (0.1 μ F: recommended).
- 7. When using Low-pass filter or High-pass filter, connect the DAC4_OUT/VREFIN4 pin to AGND1 via a capacitor (470 pF: recommended).

<R> 1. 3. 2 80-pin products

80-pin plastic LQFP (fine pitch) (12×12)

Cautions 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- 2. Make the potential of VDD, AVDD1, AVDD2, AVDD3, and DVDD the same.
- 3. Make the potential of Vss, AGND1, AGND2, AGND3, AGND4, and DGND the same.
- 4. Connect the LDO_OUT pin to AGND3 via a capacitor (4.7 μ F: recommended).
- 5. Connect the BGR_OUT pin to AGND3 via a capacitor (0.1 μ F: recommended).
- 6. When using Low-pass filter or High-pass filter, connect the DAC4_OUT/VREFIN4 pin to AGND1 via a capacitor (470 pF: recommended).

<R> 1.4 Pin Identification

O Microcontroller Bl	ock		
ANIO-ANI4,	Analog Input	RxD0-RxD2	Receive Data
ANI16-ANI18,		SCK00, SCK10,	Serial Clock Input/Output
ANI20-ANI26,		SCK20, SCK21	
ANI28, ANI30		SCL00, SCL10,	Serial Clock Input/Output
AVREFM	Analog Reference Voltage	SCL20	
	Minus	SDA00, SDA10,	Serial Data Input/Output
AVREFP	Analog Reference Voltage	SDA20	
	Plus	SI00, SI10,	Serial Data Input
EXCLK	External Clock Input	SI20, SI21	
	(Main System Clock)	SO00, SO10	Serial Data Output
INTP0-INTP2	External Interrupt Input	SO20, SO21	
INTP6		TI00, TI04,	Timer Input
KR0-KR7	Key Return	TI07	
P00-P04	Port 0	TO00, TO04,	Timer Output
P10-P15	Port 1	TO07	
P20-P24	Port 2	TOOL0	Data Input/Output for Tool
P40-P42	Port 4	TOOLRxD,	Data Input/Output for External
P50, P51	Port 5		Device
P70-P73	Port 7	TOOLTxD	
P121, P122	Port 12	TxD0-TxD2	Transmit Data
P130, P137	Port 13	Vdd	Power Supply
P140	Port 14	Vss	Ground
PCLBUZ0	Programmable Clock Output/	X1, X2	Crystal Oscillator
	Buzzer Output		(Main System Clock)
REGC	Regulator Capacitance	AVdd	Analog Power Supply
RESET	Reset	AVss	Analog Ground

O Analog Block			
AVDD1	Power supply for configurable	AMP1_OUT,	Configurable amplifier output
	amplifiers	AMP2_OUT,	
AVdd2	Power supply for variable output	AMP3_OUT	
	voltage regulator and reference	DAC1_OUT,	D/A converter output
	voltage generator	DAC2_OUT,	
AVdd3	Power supply for low-pass filter and	DAC3_OUT,	
	high-pass filter	DAC4_OUT	
AGND1	Ground for configurable amplifiers	VREFIN1,	
AGND2	Ground for gain adjustment amplifier	VREFIN2,	
AGND3	Ground for variable output voltage	VREFIN3	Reference voltage input for
	regulator and reference voltage		configurable amplifier
	generator	VREFIN4	Reference voltage input for
AGND4	Ground for low-pass filter and		Gain adjustment amplifier,
	high-pass filter		low-pass filter, and high-pass filter
MPXIN10,	Multiplexer input	SCLK	Serial clock input
MPXIN11,		SDO	Serial data output
MPXIN20,		SDI	Serial data input
MPXIN21,		CS	Chip select input
MPXIN30,		TEMP_OUT	Temperature sensor output
MPXIN31,		ARESET	Reset for analog block
MPXIN40,		DVdd	Power supply for SPI
MPXIN41,		DGND	Ground for SPI
MPXIN50,		HPF_OUT	High-pass filter output
MPXIN51,		CLK_HPF	Pin for inputting high-pass filter
MPXIN60,			control clock
MPXIN61		CLK_LPF	Pin for inputting low-pass filter
SC_IN	Input for filter signal processing		control clock
CLK_SYNCH	Synchronous detector control clock	LPF_OUT	Low-pass filter output
	input	BGR_OUT	Reference voltage generator output
SYNCH_OUT	Synchronous detector output	LDO_OUT	Variable output voltage regulator
GAINAMP_IN	Gain adjustment amplifier input	I.C	Internal connect
GAINAMP_OUT	Gain adjustment amplifier output		

<R> 1.5 Block Diagram

1.5.1 64-pin products

Remark The RL78/G1E (64-pin products) is a multi-chip package (MCP) device that integrates a chip of an analog block and a chip of 16-bit microcontroller block in a single package.

<R> (1) Block diagram in microcontroller block (64-pin products)

Note Connected inside the package.

(2) Block diagram in analog block (64-pin products)

<R> 1. 5. 2 80-pin products

Remark The RL78/G1E (80-pin products) is a multi-chip package (MCP) device that integrates a chip of an analog block and a chip of 16-bit microcontroller block in a single package.

<R> (1) Block diagram in microcontroller block (80-pin products)

Note Connected inside the package.

(2) Block diagram in analog block (80-pin products)

<R> 1.6 Outline of Functions

Table 1-1 Outline of Functions (Microcontroller Block) (1/2)

	Item	64-pin products	80-pin products	
		R5F10FLx	R5F10FMx	
Code flash memory (KB)		32 to 64	32 to 64	
Data flash me	emory (KB)	4	4	
RAM (KB)		2 to 4 ^{Note1}	2 to 4 ^{Note1}	
Memory spac	e	1	MB	
Main system clock	High-speed system clock	SystemX1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)1 to 20 MHz: Vpd = 2.7 to 5.5 V, 1 to 8 MHz: Vpd = 1.8 to 2.7 V, 1 to 4 MHz: Vpd = 1.		
High-speed on-chip oscillator		HS (High-speed main) mode: 1 to 32 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz ($V_{DD} = 1.6$ to 5.5 V)		
Subsystem cl	ock			
	n-chip oscillator	15 kHz	z (TYP.)	
General-purpo	ose register		\times 8) \times 4 banks	
Minimum instruction execution time		0.03125 μ s (High-speed on-chip oscillator: fi $_{H}$ = 32 MHz operation) 0.05 μ s (High-speed system clock: fi $_{MX}$ = 20 MHz operation)		
Instruction set		 Data transfer (8/16 bits) Adder and subtractor / logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 		
I/O port	Total	24	30	
	CMOS I/O	20	26	
	CMOS input	3	3	
	CMOS output	1	1	
	N-ch open-drain I/O (6 V tolerance)			
Timer	16-bit timer	8 ch	annels	
	Watchdog timer	1 channel		
	Real-time clock (RTC)	_		
	12-bit Interval timer (IT)	1 channel		
Timer output RTC output		3 channels (PWM outputs: 2 channels ^{Note2})		
			_	
Clock output / buzzer output		-	1 channel • 2.44 kHz, 4.88 kHz,9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system	
			clock: f _{MAIN} = 20 MHz operation)	

Notes 1. In the case of the 4 KB, this is about 3 KB when the self-programming function and data flash function are used. (For details, see 3.3 CPU Architecture)

 The number of PWM outputs varies depending on the setting of channels in use. (For details, see 3. 6 Timer Array Unit)

Item		64-pin products	80-pin products		
		R5F10FLx	R5F10FMx		
Serial interface	I ² C bus	 64-pin products CSI: 1 channel / simplified I²C: 1 channel / UART: 1 channel UART: 1 channel CSI: 1 channel / UART (LIN-bus supported): 1 channel 80-pin products CSI: 1 channel / simplified I²C: 1 channel / UART: 1 channel CSI: 1 channel / simplified I²C: 1 channel / UART: 1 channel CSI: 2 channels / simplified I²C: 1 channel / UART (LIN-bus supported): 1 channel 			
Multiplier and divider / multip		Multiplier: 16 bits \times 16 bits (Unsigned or signed))		
accumulator	.,	Divider: 32 bits ÷ 32 bits (Unsigned)	7		
		Multiply accumulator: 16 bits \times 16 bits + 32 bits (Unsigned or signed)			
DMA controller		2 cha	2 channels		
Vectored interrupt sources	Internal	25			
	External	2	5		
Key interrupt		4 ch (7) ^{Note 1}	4 ch (8) ^{Note 1}		
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 			
Power-on-reset circuit		Power-on-reset: 1.51 ±0.03 V			
		Power-down-reset: 1.50 ±0.03 V			
Voltage detector		Detection level: 3 stages			
On-chip debug function Provided			ided		

Table 1-1 Outline of Functions	(Microcontroller Block) (2/2)
--------------------------------	-------------------------------

<R>

Notes 1. The number in parentheses is the channels of key interrupt when using the peripheral I/O redirection register (PIOR).

2. The illegal instruction is generated when instruction code FFH is executed. Rest by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Table 1-2 Outline of Functions (Analog Block)

	Item	64-pin products	80-pin products
		R5F10FLx	R5F10FMx
	Sensor interface amplifier	Configurable amp	lifiers: 3 channels
	Gain adjustment amplifier	1 channel	1 channel (with synchronous detector)
	Low-pass filter	1 cha	annel
	High-pass filter	_	1 channel
	8-bit D/A converter	4 cha	nnels
Variable output voltage regulator 1 channel		annel	
	Reference voltage generator	1 cha	annel
<r></r>	Temperature sensor circuit	1 channel	
	Power supply voltage	V _{DD} = 1.6 to 5.5 V, AV _{DD} = 1.6 to 3.6 V,	
		AV _{DDn} = 3.0 to 5.5 V, DV _{DD} = 3.0 to 5.5 V	
	Operating ambient temperature	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	

Remark n = 1 to 3

CHAPTER 2 PIN FUNCTIONS

2.1 Pin Functions in Microcontroller Block

The microcontroller block in the RL78/G1E is the RL78/G1A (64-pin products), but a part of pin functions of them are different from each other. The microcontroller function pins in the RL78/G1E (64-pin and 80-pin products) that differ from those in the RL78/G1A (64-pin products) are shown in the table below.

<R> (1) Comparison of port functions (64-pin products)

			(1/2)
RL78/G1E (64-pin products)		RL78/G1A (64-pin products)	
Function Name	Alternate Function	Function Name	Alternate Function
P00	Same as RL78/G1A (64-pin products)	P00	TI00/(KR0)
P01	Same as RL78/G1A (64-pin products)	P01	TO00/(KR1)
P02	ANI17/TxD1/(KR2)	P02	ANI17/SO10/TxD1/(KR2)
P03	P03/ANI6/RxD1/(KR3)	P03	ANI16/SI10/SDA10/RxD1/(KR3)
		P04	SCK10/SCL10/(KR4)
		P05	TI05/TO05/KR8
		P06	TI06/TO06/KR9
P10	Same as RL78/G1A (64-pin products)	P10	ANI18/SCK00/SCL00/(KR0)
P11	Same as RL78/G1A (64-pin products)	P11	ANI20/SI00/RxD0/TOOLRxD/SDA00/(KR1)
P12	Same as RL78/G1A (64-pin products)	P12	ANI21/SO00/TxD0/TOOLTxD/(KR2)
P13	ANI22/TxD2/(KR3)	P13	ANI22/SO20/TxD2/(KR3)
P14	ANI23/RxD2/(KR4)	P14	ANI23/SI20/SDA20/RxD2/(KR4)
		P15	ANI24/SCK20/SCL20/(KR5)
		P16	TI01/TO01/INTP5
P20	Same as RL78/G1A (64-pin products)	P20	ANI0/AVREFP
P21	Same as RL78/G1A (64-pin products)	P21	ANI1/AVREFM
P22	Same as RL78/G1A (64-pin products)	P22	ANI2/(KR5)
P23	Same as RL78/G1A (64-pin products)	P23	ANI3/(KR6)
		P24	ANI4/(KR7)
		P25	ANI5/(KR8)
		P26	ANI6/(KR9)
		P27	ANI7
		P30	ANI27/SCK11/SCL11/INTP3/RTC1HZ
		P31	ANI29/TI03/TO03/INTP4
P40	Same as RL78/G1A (64-pin products)	P40	TOOL0
P41	Same as RL78/G1A (64-pin products)	P41	ANI30/TI07/TO07
P42	Same as RL78/G1A (64-pin products)	P42	TI04/TO04
		P43	_
		P50	ANI26/SI11/SDA11/INTP1
		P51	ANI25/SO11/INTP2
		P60	SCLA0
		P61	SDAA0
		P62	-
		P63	_

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in **3. 4. 3. 8 Peripheral I/O redirection register (PIOR)**.

~	R	~
~	R	~

R	L78/G1E (64-pin products)		RL78/G1A (64-pin products)		
Function Name	Alternate Function	Function Name	Alternate Function		
P70	ANI28/SCK21/KR0/SCLK Note	P70	ANI28/SCK21/SCL21/KR0		
P71	SI21/KR1/SDO Note	P71	SI21/SDA21/KR1		
P72	SO21/KR2/SDI Note	P72	SO21/KR2		
P73	KR3/CS ^{Note}	P73	SO01/KR3		
		P74	SI01/SDA01/INTP8/KR4		
		P75	SCK01/SCL01/INTP9/KR5		
		P76	INTP10/KR6		
		P77	INTP11/KR7		
		P120	ANI19		
P121	Same as RL78/G1A (64-pin products)	P121	X1		
P122	Same as RL78/G1A (64-pin products)	P122	X2/EXCLK		
		P123	XT1		
		P124	XT2/EXCLKS		
P130	Same as RL78/G1A (64-pin products)	P130	_		
P137	Same as RL78/G1A (64-pin products)	P137	INTP0		
		P140	PCLBUZ0/INTP6		
		P141	PCLBUZ1/INTP7		
		P150	ANI8		
		P151	ANI9/(KR6)		
		P152	ANI10/(KR7)		
		P153	ANI11/(KR8)		
		P154	ANI12/(KR9)		

Note SCLK, SDO, SDI, CS represent the pin functions of analog block. P70 to P73 which are connected to the pins of the chip of analog block inside the package have some alternate functions for analog block.

<R> Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR).

<R> (2) Comparison of port functions (80-pin products)

R	L78/G1E (80-pin products)		RL78/G1A (64-pin products)		
Function Name	Alternate Function	Function Name	Alternate Function		
P00	Same as RL78/G1A (64-pin products)	P00	TI00/(KR0)		
P01	Same as RL78/G1A (64-pin products)	P01	TO00/(KR1)		
P02	Same as RL78/G1A (64-pin products)	P02	ANI17/SO10/TxD1/(KR2)		
P03	Same as RL78/G1A (64-pin products)	P03	ANI16/SI10/SDA10/RxD1/(KR3)		
P04	Same as RL78/G1A (64-pin products)	P04	SCK10/SCL10/(KR4)		
		P05	TI05/TO05/KR8		
		P06	TI06/TO06/KR9		
P10	Same as RL78/G1A (64-pin products)	P10	ANI18/SCK00/SCL00/(KR0)		
P11	Same as RL78/G1A (64-pin products)	P11	ANI20/SI00/RxD0/TOOLRxD/SDA00/(KR1)		
P12	Same as RL78/G1A (64-pin products)	P12	ANI21/SO00/TxD0/TOOLTxD/(KR2)		
P13	Same as RL78/G1A (64-pin products)	P13	ANI22/SO20/TxD2/(KR3)		
P14	Same as RL78/G1A (64-pin products)	P14	ANI23/SI20/SDA20/RxD2/(KR4)		
P15	Same as RL78/G1A (64-pin products)	P15	ANI24/SCK20/SCL20/(KR5)		
		P16	TI01/TO01/INTP5		
P20	Same as RL78/G1A (64-pin products)	P20	ANI0/AVREFP		
P21	Same as RL78/G1A (64-pin products)	P21	ANI1/AVREFM		
P22	Same as RL78/G1A (64-pin products)	P22	ANI2/(KR5)		
P23	Same as RL78/G1A (64-pin products)	P23	ANI3/(KR6)		
P24	Same as RL78/G1A (64-pin products)	P24	ANI4/(KR7)		
		P25	ANI5/(KR8)		
		P26	ANI6/(KR9)		
		P27	ANI7		
		P30	ANI27/SCK11/SCL11/INTP3/RTC1HZ		
		P31	ANI29/TI03/TO03/INTP4		
P40	Same as RL78/G1A (64-pin products)	P40	TOOL0		
P41	Same as RL78/G1A (64-pin products)	P41	ANI30/TI07/TO07		
P42	Same as RL78/G1A (64-pin products)	P42	TI04/TO04		
		P43	_		
P50	ANI26/INTP1	P50	ANI26/SI11/SDA11/INTP1		
P51	ANI25/INTP2	P51	ANI25/SO11/INTP2		
		P60	SCLA0		
		P61	SDAA0		
		P62	-		
		P63	-		

<R> Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR).

R	L78/G1E (80-pin products)	RL78/G1A (64-pin products)		
Function Name Alternate Function		Function Name	Alternate Function	
P70	ANI28/SCK21/KR0/SCLKNote	P70	ANI28/SCK21/SCL21/KR0	
P71	SI21/KR1/SDO Note	P71	SI21/SDA21/KR1	
P72	SO21/KR2/SDI Note	P72	SO21/KR2	
P73	KR3/CS Note	P73	SO01/KR3	
		P74	SI01/SDA01/INTP8/KR4	
		P75	SCK01/SCL01/INTP9/KR5	
		P76	INTP10/KR6	
		P77	INTP11/KR7	
		P120	ANI19	
P121	Same as RL78/G1A (64-pin products)	P121	X1	
P122	Same as RL78/G1A (64-pin products)	P122	X2/EXCLK	
		P123	XT1	
		P124	XT2/EXCLKS	
P130	Same as RL78/G1A (64-pin products)	P130	_	
P137	Same as RL78/G1A (64-pin products)	P137	INTP0	
P140	Same as RL78/G1A (64-pin products)	P140	PCLBUZ0/INTP6	
		P141	PCLBUZ1/INTP7	
		P150	ANI8	
		P151	ANI9/(KR6)	
		P152	ANI10/(KR7)	
		P153	ANI11/(KR8)	
		P154	ANI12/(KR9)	

Note SCLK, SDO, SDI, CS represent the pin functions of analog block. P70 to P73 which are connected to the pins of the chip of analog block inside the package have some alternate functions for analog block.

<R> Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR).

(3) Comparison of functions other than port functions (60-pin products and 80-pin products)

About the comparison of functions other than port pins, See 2. 1. 2. 1 Functions available for each product.

2.1.1 Port functions

The relationship between pin I/O buffer power supplies and the pins is shown below.

Table 2-1. Pin I/O Buffer Power Supplies

(1) 64-pin products

Power Supply	Corresponding Pins
Vdd	Port pins other than P20 to P23
	• RESET, REGC
AV _{DD}	• P20 to P23

(2) 80-pin products

Power Supply	Corresponding Pins			
Vdd	Port pins other than P20 to P24			
	• RESET, REGC			
AVDD	• P20 to P24			

<R> 2. 1. 1. 1 64-pin products

Function Name	Pin Type	I/O	After Reset	Alternate Function	Function
P00	8-1-1	I/O	Input port	TI00/(KR0)	Port 0.
P01				TO00/(KR1)	4-bit I/O port.
P02	7-3-2		Analog input	ANI17/TxD1/(KR2)	Input of P00, P01, and P03 can be set to TTL input buffer.
P03	8-3-2		port	ANI16/RxD1/(KR3)	Output of P02 and P03 can be set to N-ch open-drain output (V _{DD} tolerance). P02 and P03 can be set to analog input. ^{Note1} Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P10	8-3-2	I/O	Analog input port	ANI18/SCK00/SCL00/ (KR0)	Port 1. 5-bit I/O port.
P11		-		ANI20/SI00/RxD0/ TOOLRxD/SDA00/ (KR1)	Input of P10, P11, and P14 can be set to TTL input buffer. Output of P10 to P14 can be set to N-ch open-drain output (VDD tolerance).
P12	7-3-2			ANI21/SO00/TxD0/ TOOLTxD/(KR2)	P10 to P14 can be set to analog input. ^{Note 1} Input/output can be specified in 1-bit units.
P13				ANI22/TxD2/(KR3)	Use of an on-chip pull-up resistor can be specified by a software
P14	8-3-2			ANI23/RxD2/(KR4)	setting at input port.
P20	4-3-1	I/O	Analog input	ANI0/AVREFP	Port 2.
P21			port	ANI1/AVREFM	4-bit I/O port.
P22				ANI2/(KR5)	Can be set to analog input. Note 2
P23				ANI3/(KR6)	Input/output can be specified in 1-bit units.
P40	7-1-1	I/O	Input port	TOOL0	Port 4.
P41	7-3-1		Analog input port	ANI30/TI07/TO07	3-bit I/O port. P41 can be set to analog input. ^{Note 1}
P42	7-1-1		Input port	TI04/TO04	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P70	7-3-1	I/O	Analog input port	ANI28/KR0/SCK21/ SCLK ^{Note3}	Port 7. 4-bit I/O port.
P71	7-1-2		Input port	KR1/SI21/SDO Note3	P70 can be set to analog input. ^{Note 1} Input/output can be specified in 1-bit units.
P72	7-1-1			KR2/SO21/SDI Note3	Use of an on-chip pull-up resistor can be specified by a software

<R> Notes 1. Digital or analog for each pin can be selected with the port mode control register x (PMCx) (can be set in 1-bit units).

- 2. Digital or analog for each pin can be selected with the A/D port configuration register (ADPC).
- **3.** SCLK, SDO, SDI, CS represent the pin functions of analog block. P70 to P73 which are connected to the pins of the chip of analog block inside the package have some alternate functions for analog block.
- <R> Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR).

_						(2/2)
R>	P121	2-2-1	Input	Input port	X1	Port 12.
	P122				X2/EXCLK	2-bit input port.
	P130	1-1-1	Output	Output port	-	Port 13.
	P137	2-1-2	Input	Input port	INTP0	1-bit output port and 1-bit input port.
	RESET	2-1-1	Input	-	-	Input only pin for external reset.
						When external reset is not used, connect this pin to $V_{\mbox{\scriptsize DD}}$ directly or
						via a resistor.

(1/2)

2.1.1.2 80-pin products

<R>

>	Function Name	Pin Type	I/O	After Reset	Alternate Function	Function
	P00	8-1-1	I/O	Input port	TI00/(KR0)	Port 0.
	P01				TO00/(KR1)	5-bit I/O port.
	P02	7-3-2		Analog input	ANI17/SO10/TxD1/(KR2)	Input of P00, P01, P03, and P04 can be set to TTL input
ſ	P03	8-3-2		port	ANI16/SI10/RxD1/	buffer.
					SDA10/(KR3)	Output of P02 to P04 can be set to N-ch open-drain output
	P04	8-1-2		Input port	SCK10/SCL10/(KR4)	(Vob tolerance).
						P02 and P03 can be set to analog input. ^{Note 1}
						Input/output can be specified in 1-bit units.
						Use of an on-chip pull-up resistor can be specified by a
	D 10	0.0.0	1/0	Analog input	ANI/18/80/200/	software setting at input port.
	P10	8-3-2	I/O	Analog input	ANI18/SCK00/	Port 1.
F				port	SCL00/(KR0)	6-bit I/O port. Input of P10, P11, P14, and P15 can be set to TTL input
	P11				ANI20/SI00/RxD0/	buffer.
ŀ			-		TOOLRxD/SDA00/(KR1)	Output of P10 to P15 can be set to N-ch open-drain output
	P12	7-3-2			ANI21/SO00/TxD0/	$(V_{DD} \text{ tolerance}).$
-					TOOLTxD/(KR2)	P10 to P15 can be set to analog input. Note 1
F	P13				ANI22/TxD2/SO20/(KR3)	Input/output can be specified in 1-bit units.
	P14	8-3-2			ANI23/RxD2/SI20/	Use of an on-chip pull-up resistor can be specified by a
					SDA20/(KR4)	software setting at input port.
	P15				ANI24/SCK20/	
L					SCL20/(KR5)	
ŀ	P20	4-3-1	I/O	Analog input	ANIO/AVREFP	Port 2.
L	P21			port	ANI1/AVREFM	5-bit I/O port.
L	P22				ANI2/(KR5)	Can be set to analog input. Note 2
L	P23				ANI3/(KR6)	Input/output can be specified in 1-bit units.
	P24				ANI4/(KR7)	
L	P40	7-1-1	I/O	Input port	TOOL0	Port 4.
	P41	7-3-1		Analog input	ANI30/TI07/TO07	3-bit I/O port.
L				port		P41 can be set to analog input. Note 1
I	P42	7-1-1		Input port	TI04/TO04	Input/output can be specified in 1-bit units.
						Use of an on-chip pull-up resistor can be specified by a
						software setting at input port.

<R> Notes 1. Digital or analog for each pin can be selected with the port mode control register x (PMCx) (can be set in 1-bit units).

2. Digital or analog for each pin can be selected with the A/D port configuration register (ADPC).

<R> Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR).

(2/2)

<	R	>

					(2
Function	Pin	I/O	After Reset	Alternate Function	Function
Name	Туре				
P50	7-3-2	I/O	Analog input	ANI26/INTP1	Port 5.
P51	7-3-1		port	ANI25/INTP2	2-bit I/O port.
					Output of P50 can be set to N-ch open-drain output (V_{DD}
					tolerance).
					P50 and P51 can be set to analog input. Note 1
					Input/output can be specified in 1-bit units.
					Use of an on-chip pull-up resistor can be specified by software
					setting at input port.
P70	7-3-1	I/O	Analog input	ANI28/KR0/	Port 7.
			port	SCK21/SCLK ^{Note2}	4-bit I/O port.
P71	7-1-2		Input port	KR1/SI21/SDO ^{Note2}	P70 can be set to analog input. Note 1
P72	7-1-1			KR2/SO21/SDI ^{Note2}	Input/output can be specified in 1-bit units.
P73				KR3/CS ^{Note2}	Use of an on-chip pull-up resistor can be specified by software
					setting at input port.
P121	2-2-1	Input	Input port	X1	Port 12.
P122				X2/EXCLK	2-bit input port.
P130	1-1-1	Output	Output port	_	Port 13.
P137	2-1-2	Input	Input port	INTP0	1-bit output port and 1-bit input port.
P140	7-1-1	I/O	Input port	PCLBUZ0/INTP6	Port 14.
					1-bit I/O port.
					Input/output can be specified in 1-bit units.
					Use of an on-chip pull-up resistor can be specified by a software
					setting at input port.
RESET	2-1-1	Input	-	-	Input only pin for external reset.
					When external reset is not used, connect this pin to $V_{\mbox{\scriptsize DD}}$ directly
					or via a resistor.

<R> Notes 1. Digital or analog for each pin can be selected with the port mode control register x (PMCx) (can be set in 1-bit units).

2. SCLK, SDO, SDI, CS represent the pin functions of analog block. P70 to P73 which are connected to the pins of the chip of analog block inside the package have some alternate functions for analog block.

2. 1. 2 Functions other than port functions

2. 1. 2. 1 Functions available for each product

			(1/3)
Function Name	RL78/G1E (64-pin)	RL78/G1E (80-pin)	RL78/G1A (64-pin)
ANI0	√	√ √	$\sqrt{1-1}$
ANI1		V	
ANI2		V	
ANI3			
ANI4	_		
ANI5	_	_	
ANI6	_	_	\checkmark
ANI7	_	_	\checkmark
ANI8	-	_	
ANI9	-	_	
ANI10	-	_	\checkmark
ANI11	-	_	\checkmark
ANI12	_	-	\checkmark
ANI16			
ANI17			
ANI18			\checkmark
ANI19	-	_	
ANI20			
ANI21		\checkmark	\checkmark
ANI22		\checkmark	\checkmark
ANI23		\checkmark	\checkmark
ANI24	_	\checkmark	\checkmark
ANI25	-	\checkmark	\checkmark
ANI26	_	\checkmark	\checkmark
ANI27	-	-	\checkmark
ANI28		\checkmark	\checkmark
ANI29	-	-	\checkmark
ANI30		\checkmark	\checkmark
INTP0		\checkmark	\checkmark
INTP1	_	\checkmark	\checkmark
INTP2	_	\checkmark	\checkmark
INTP3	_	_	
INTP4	_	_	\checkmark
INTP5		_	
INTP6	_	\checkmark	
INTP7	_	_	\checkmark
INTP8	_	_	\checkmark
INTP9	_	_	\checkmark
INTP10	_	_	\checkmark
INTP11	_	_	\checkmark

			(2/3)
Function Name	RL78/G1E	RL78/G1E	RL78/G1A
	(64-pin)	(80-pin)	(64-pin)
KR0	\checkmark		
KR1	\checkmark	\checkmark	
KR2	\checkmark		
KR3	\checkmark	\checkmark	
KR4	(√)	(√)	\checkmark
KR5	(√)	(√)	\checkmark
KR6	(√)	(√)	\checkmark
KR7	_	(√)	\checkmark
KR8	_	_	\checkmark
KR9	-	_	\checkmark
PCLBUZ0	_		
PCLBUZ1	_	_	
REGC	\checkmark		
RTC1HZ	_	_	
RESET	\checkmark		
RXD0	\checkmark		
RXD1	\checkmark		
RXD2	\checkmark		
SCK00			
SCK01	_	_	
SCK10	_		
SCK11	_	_	
SCK20	_		
SCK21			
SCLA0	_	_	
SCL00			
SCL01	_	_	
SCL10	_		
SCL11	_	_	
SCL20	_		
SCL21	_	_	
SDAA0	_	_	
SDA00			
SDA01	_	_	
SDA10	_		
SDA11	_	_	
SDA20	_		
SDA21	_	_	
SI00	\checkmark		
SI01	_	_	
SI10	_	√	
SI11	_	_	 √
SI20	_		 √
SI21		√ √	
0121	Y	, v	1

<R> Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Function Name	RL78/G1E	RL78/G1E	RL78/G1A
8000	(64-pin)	(80-pin)	(64-pin)
SO00 SO01	√	√	
SO10	_	- √	√
SO10		V	√ √
SO20		- 	N √
SO20		√ √	√ √
TI00			√ √
TI01	·	_	√ √
TI03	_	_	√ √
TI04			√ √
TI05	_	· ·	√ √
TI06	_	_	√ √
TI07			√ √
TO00			
TO01	_	_	
TO03	_	_	
TO04			
TO05	_	_	
TO06	_	_	
TO07			\checkmark
TxD0	\checkmark		
TxD1	\checkmark		
TxD2	\checkmark		
X1	\checkmark		
X2	\checkmark		
EXCLK	\checkmark		
EXCLKS	_	_	
XT1	_	_	
XT2	_	_	\checkmark
V _{DD}	\checkmark		
EVDD0	_Note	_Note	\checkmark
AVdd	\checkmark		\checkmark
AVREFP			\checkmark
AVREFM	\checkmark		\checkmark
Vss	\checkmark		\checkmark
EVsso	_Note	_Note	\checkmark
AVss	\checkmark		\checkmark
TOOLRxD	\checkmark		\checkmark
TOOLTxD	\checkmark		\checkmark
TOOL0	\checkmark		\checkmark

(3/3)

Note EVDD0 is connected to VDD, and EVSS0 is connected to VSS inside the package.

2.1.2.2 Description of each function

The functions of RL78/G1E (64-pin products and 80-pin products) are described below.

	Function Name	I/O	Function
	ANIO- ANI4, ANI16- ANI18, ANI20- ANI26, ANI28, ANI30	Input	A/D converter analog input
	INTP0- INTP2, INTP6	Input	External interrupt request input
Ī	KR0- KR7	Input	Key interrupt input
Ī	PCLBUZ0	Output	Clock output / buzzer output
	REGC	-	Pin for connecting to regulator output stabilization capacitance for internal operation. Connect this pin to V _{ss} via a capacitor (0.47 to 1 μ F). Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.
	RESET	Input	External reset signal input for the functions of microcontroller block
Ī	RxD0- RxD2	Input	Serial data input pins of serial interface UART0 to UART2
Ī	TxD0-TxD2	Output	Serial data output pins of serial interface UART0 to UART2
>	SCK00, SCK10, SCK20, SCK21	I/O	Serial clock I/O pins of serial interface CSI00, CSI10, CSI20 and CSI21
_	SCL00, SCL10, SCL20	Output	Serial clock output pins of serial interface IIC00, IIC10 and IIC20
_	SDA00, SDA10, SDA20	I/O	Serial data I/O pins of serial interface IIC00, IIC10 and IIC20
_	SI00, SI10, SI20, SI21	Input	Serial data input pins of serial interface CSI00, CSI10, CSI20 and CSI21
	SO00, SO10, SO20, SO21	Output	Serial data output pins of serial interface CSI00, CSI10, CSI20 and CSI21
	TI00, TI04, TI07	Input	The pins for inputting an external count clock/capture trigger to 16-bit timers 00, 04 and 07
ľ	TO00, TO04, TO07	Output	Timer output pins of 16-bit timers 00, 04 and 07
	X1, X2	_	Resonator connection for main system clock
Ē	EXCLK	Input	External clock input for main system clock

(2/2)

Function Name	I/O	Function
Vdd	_	< 64-pin products >
		Positive power supply for port pins other than P20 to P23
		and also for RESET, REGC pin.
		< 80-pin products >
		Positive power supply for port pins other than P20 to P24
		and also for RESET, REGC pin.
AVdd	_	Positive power supply for P20 to P24 and A/D converter
AVREFP	Input	A/D converter reference potential (+ side) input
AVREFM	Input	A/D converter reference potential (- side) input
		Make the potential of AV_{REFM} pin the same as AV_{SS} pin and V_{SS} pin.
Vss	-	< 64-pin products >
		Ground potential for port pins other than P20 to P23
		and also for RESET, REGC pin.
		< 80-pin products >
		Ground potential for port pins other than P20 to P24
		and also for RESET, REGC pin.
AVss	-	Ground potential for P20 to P24 and A/D converter
		Make the potential of AV_{SS} pin the same as V_{SS} pin.
TOOLRxD	Input	UART reception pin for the external device connection used during
		flash memory programming
TOOLTxD	Output	UART transmission pin for the external device connection used
		during flash memory programming
TOOL0	I/O	Data I/O for flash memory programmer / debugger

<R> Caution After reset release, the relationships between P40/TOOL0 and the operating mode are as follows.

Table 2-2. Relationshi	p Between P40/TOOL0 and Operation Mode After Reset Release

P40/TOOL0	Operating Mode	
Vdd	Normal operation mode	
0 V	Flash memory programming mode	

For details, see **3. 25. 4** Serial programming method.

<R> Remark Use bypass capacitors (about 0.1 µF) as noise and latch up countermeasures with relatively thick wires at the shortest distance to VDD to Vss line.

2. 2 Pin Functions in Analog Block

<R> About I/O circuit type, see 2. 4 Block Diagrams of Pins.

<R> 2. 2. 1 64-pin products

AVints - - Power supply pin for filter AGND2 - - GND pin for gain adjustment amplifier MPXINS0 ANALOG6 Input Multiplexer 6 input pin 0 (Configurable amplifier Ch3 input pin 0 (-)) AMP3_OUT ANALOG6 U/U Configurable amplifier Ch3 output pin 0 (-)) AMP3_OUT ANALOG6 U/U D/A converter Ch3 output pin 0 configurable amplifier Ch3 reference voltage input pin VREFIN3 AMP_OUT ANALOG1 Output Configurable amplifier Ch1 output pin AMP2_OUT ANALOG1 Output Configurable amplifier Ch1 output pin AVer - - GND pin for configurable amplifier Ch1 output pin AVer - - Power supply pin for configurable amplifier Ch1 to Ch3. AVer - - Power supply pin for configurable amplifier Ch1 oc Ch3. AVer - - Power supply pin for configurable amplifier Ch1 oCh3. DAC2_OUT/ ANALOG2 U/O D/A converter Ch1 output pin/configurable amplifier Ch1 oCh3. DAC3_OUT/ ANALOG6 U/A O/A converter Ch1 output pin/configurable amplifier Ch1 input pin 1 (-)) MEXIN31 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (-)) MULTIPLEXY ANALOG6 Multiplexer 1 input pin 0 (Configurable ampl	Function Name	I/O Circuit Type	I/O	Function	
AGND2 - GND pin for gain adjustment ampilfier MPXIN80 ANALOG6 Input Multiplexer 6 input pin 0 (Configurable ampilfier Ch3 input pin 0 (-)) MPXIN50 ANALOG6 Multiplexer 6 input pin 0 (Configurable ampilfier Ch3 input pin 0 (-)) MP3_OUT ANALOG10 Output Configurable ampilfier Ch3 output pin DAG3_OUT/ ANALOG11 Output Configurable ampilfier Ch3 output pin AMP2_OUT ANALOG11 Output Configurable ampilfier Ch1 output pin AGND1 - - GND pin for configurable ampilfier Ch1 output pin AVon - - Power supply pin for configurable ampilfier Ch1 ch2 AMP1_OUT ANALOG2 I/O D/A converter Ch2 output pin/configurable ampilfier Ch1 ch3 DAC2_OUT/ ANALOG2 I/O D/A converter Ch1 output pin/configurable ampilfier Ch1 reference voltage input pin VREFIN2 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable ampilfier Ch2 input pin 1 (-)) MPXIN31 ANALOG6 Multiplexer 1 input pin 1 (Configurable ampilfier Ch2 input pin 0 (-)) MPXIN30 ANALOG6 Multiplexer 1 input pin 1 (Configurable ampilfier Ch1 input pin 0 (-)) MPXIN31 ANALOG6 Multiplexer 1 input pin 0 (Configurable ampilfier Ch1 input pin 0 (-)) MPXIN30 ANALOG6 Multiplexer 1 input pin 1 (Configurab		- Type	_	Power supply pip for filter	
MPXIN60 ANALOG6 Input Multiplexer 5 input pin 0 (Configurable amplifier Ch3 input pin 0 (-)) MMP3_OUT ANALOG10 Output Configurable amplifier Ch3 output pin 0 (-)) AMP3_OUT ANALOG2 VO D/A converter Ch3 output pin DAC3_OUT/ ANALOG1 Output Configurable amplifier Ch2 output pin AGND1 ANALOG1 Output Configurable amplifier Ch2 output pin AGND1 - GND pin for configurable amplifiers Ch1 to Ch3. AMP1_OUT ANALOG2 VO D/A converter Ch2 output pin/configurable amplifier Ch1 to Ch3. AVon - Power supply pin for configurable amplifiers Ch1 to Ch3. AVEFIN2 ANALOG2 VO D/A converter Ch1 output pin/configurable amplifier Ch2 reference voltage input pin VREFIN2 NALOG6 Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN31 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN31 ANALOG6 Multiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN1					
MPXINSO ANALOG6 Multiplexer 5 input pin 0 (Configurable amplifier Ch3 input pin 0 ()) AMP3_QUT ANALOG10 Output Configurable amplifier Ch3 output pin MCS_QUT/ ANALOG2 I/O D/A converter Ch3 output pin/configurable amplifier Ch3 reference voltage input pin AMP3_QUT ANALOG1 Output Configurable amplifier Ch2 output pin AMP1_QUT ANALOG11 Output Configurable amplifier Ch1 output pin AMP1_QUT ANALOG1 Output Configurable amplifier Ch1 output pin AV001 - - GND pin for configurable amplifier Ch1 to Ch3. AV001 - - Power supply pin for configurable amplifier Ch1 to Ch3. AV001 - - Power supply pin for configurable amplifier Ch1 to Ch3. DAC2_OUT/ ANALOG2 I/O D/A converter Ch1 output pin/configurable amplifier Ch2 input pin 1 (+) MPXIN40 ANALOG6 Input Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN20 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input					
AMP3_OUT ANALOG10 Output Configurable amplifier Ch3 output pin DAG3_OUT/ ANALOG2 I/O D/A converter Ch3 output pin/configurable amplifier Ch3 reference voltage input pin AMP3_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AMP1_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AVpon - - GND pin for configurable amplifier Ch1 output pin AVpon - - Power supply pin for configurable amplifier Ch1 to Ch3 DAC2_OUT/ ANALOG2 I/O D/A converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin VREFIN2 NANLOG2 I/O D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin MPXIN11 ANALOG6 Input Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-)) MPXIN12 ANALOG6 Multiplexer 3 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6			input		
DAC3_OUT/ VREFIN3 ANALOG2 I/O D/A converter Ch3 output pin/onfigurable amplifier Ch3 reference voltage input pin AMP2_OUT ANALOG1 Output Configurable amplifier Ch2 output pin AGND1 - GND pin for configurable amplifier Ch1 output pin AMP1_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AGND1 - - RND pin for configurable amplifier Ch1 output pin AVeon - - Power supply pin for configurable amplifier Ch1 to Ch3 DAC2_OUT/ ANALOG2 I/O D/A converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin VREFIN2 - Power supply pin for configurable amplifier Ch2 input pin 1 (+) MPXIN41 ANALOG6 I/O D/A converter Ch1 output pin/configurable amplifier Ch2 input pin 1 (+) MPXIN40 ANALOG6 I/O Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-)) MPXIN30 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MUltiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) M			Outrout		
VREFIN3 Image Description AMP2_OUT ANALOG11 Output Configurable amplifier Ch2 output pin AGND1 - - GND pin for configurable amplifier Ch1 output pin AMP1_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AVoor - Power supply pin for configurable amplifier Ch1 to Ch3 DAC2_OUT/ ANALOG2 I/O D/A converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin OAC1_OUT/ ANALOG2 I/O D/A converter Ch1 output pin/configurable amplifier Ch2 input pin 1 (+)) MPXIN41 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN41 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN30 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN41 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN30					
AGND1 - - GND pin for configurable amplifiers Ch1 to Ch3. AMP1_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AVon - - Power supply pin for configurable amplifiers Ch1 to Ch3 DAC2_OUT/ ANALOG2 VO D/A converter Ch2 output pin/configurable amplifier Ch2 reference voltage input pin VREFIN2 VV D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin VREFIN1 D/A converter Ch1 output pin/configurable amplifier Ch2 input pin 1 (+)) MPXIN41 ANALOG6 Input MPXIN43 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch2 input pin 0 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN11 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MUltiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MSIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MUltiplexer 2 input pin 0 Configurable amplifier Ch1 input pin 0 (-)) Mul		ANALOGZ	1/0	D/A converter Ch3 output pin/configurable amplifier Ch3 reference voltage input pin	
AMP1_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AVcon - - Power supply pin for configurable amplifiers Ch1 to Ch3 DAC2_OUT/ VREFIN2 ANALOG2 I/O Power supply pin for configurable amplifier Ch1 to Ch3 DAC1_OUT/ VREFIN1 ANALOG2 I/O I/O converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin MPXIN40 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN40 ANALOG6 Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 4 input pin 0 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN41 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN20 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (-)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT	AMP2_OUT	ANALOG11	Output	Configurable amplifier Ch2 output pin	
Avos - Power supply pin for configurable amplifiers Ch1 to Ch3 DAC2_OUT/ VREFIN2 ANALOG2 I/O D/A converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin VREFIN2 ANALOG6 D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin MPXIN41 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 4 input pin 0 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (+)) MPXIN11 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 1 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GR_OUT ANALOG9 Output Reference voltage regulator output pin Avoco - - Power supply pin for variable output voltage regulator and reference voltage generator LD_O	AGND1	_	-	GND pin for configurable amplifiers Ch1 to Ch3.	
DAC2_OUT/ VREFIN2 ANALOG2 I/A D/A converter Ch2 output pin/configurable amplifier Ch2 reference voltage input pin DAC1_OUT/ VREFIN1 ANALOG2 D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin MPXIN41 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (-)) MPXIN31 ANALOG6 Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (-)) MPXIN30 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MUItiplexer 2 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - GND pin for variable output voltage regulator and reference voltage generator Do_cOUT ANALOG3 Output Reference voltage generator output pin TEMP_OUT ANALOG3 Output Te	AMP1_OUT	ANALOG11	Output	Configurable amplifier Ch1 output pin	
VREFIN2 ANALOG2 DAC1_OUT/ VREFIN1 ANALOG6 D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin MPXIN41 ANALOG6 MPXIN41 ANALOG6 MPXIN40 ANALOG6 MPXIN30 ANALOG6 MPXIN30 ANALOG6 MPXIN30 ANALOG6 MPXIN30 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN20 ANALOG6 Output Reference voltage generator output pin AVDDD2 - Power s	AV _{DD1}	-	-	Power supply pin for configurable amplifiers Ch1 to Ch3	
VREFIN1ANALOG6InputMultiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+))MPXIN41ANALOG6Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-))MPXIN30ANALOG6Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (+))MPXIN30ANALOG6Multiplexer 3 input pin 0 (Configurable amplifier Ch1 input pin 0 (-))MPXIN11ANALOG6Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (+))MPXIN10ANALOG6Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (+))MUltiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+))Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+))MPXIN10ANALOG6Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-))AGND3GND pin for variable output voltage regulator and reference voltage generatorBGR_OUTANALOG3OutputReference voltage generator output pinAVoz2Power supply pin for variable output voltage regulator and reference voltage generatorLDO_OUTANALOG3OutputVariable output voltage regulator output pinTEMP_OUTANALOG8InputExternal reset signal input for The functions of analog blockDVopPower supply in for SPISCLKANALOG3InputSerial data output pin for SPISDIANALOG3InputSerial data output pin for SPIDGNDGND pin for SPIDAC4_OUT/ANALOG3I/OD/A converter Ch4 output pin/gain adj	_	ANALOG2	I/O	D/A converter Ch2 output pin/configurable amplifier Ch2 reference voltage input pin	
MPXIN41 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (-)) MPXIN30 ANALOG6 Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 0 (-)) MPXIN30 ANALOG6 Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (-)) MPXIN21 ANALOG6 Multiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN20 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT ANALOG9 Output Reference voltage generator output pin AVooz - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Temperature sensor output pin	_	ANALOG2		D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin	
MPXIN40 ANALOG6 MPXIN30 ANALOG6 MPXIN30 ANALOG6 MPXIN21 ANALOG6 MPXIN21 ANALOG6 MPXIN21 ANALOG6 MPXIN20 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MVItiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - MUtiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - Power supply pin for variable output voltage regulator and reference voltage generator LDQ_OUT ANALOG3 Output Temperature sensor output pin TEMP_OUT ANALOG5	MPXIN41	ANALOG6	Input	Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+))	
MPXIN40 ANALOG6 MPXIN30 ANALOG6 MPXIN30 ANALOG6 MPXIN21 ANALOG6 MPXIN21 ANALOG6 MPXIN21 ANALOG6 MPXIN20 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MUtiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Mutiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Mutiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Mutiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Mutot Power supply pin for variable o	MPXIN31	ANALOG6		Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-))	
MPXIN30 ANALOG6 MPXIN21 ANALOG6 MPXIN21 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MVItiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - ANALOG9 Output Reference voltage generator output pin AVooz - ANALOG3 Output Reference voltage generator output pin AVooz - AVALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG3 Notu Temperature sensor output pin ARESET ANALOG5 Input External reset signal input for the functions of analog block DVoo - - SCLK ANALOG3 Input Strial data output pin f	MPXIN40	ANALOG6		Multiplexer 4 input pin 0 (Configurable amplifier Ch2 input pin 0 (+))	
MPXIN21 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG9 AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT ANALOG3 AVoto2 - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Utput ARESET ANALOG5 Input SCLK ANALO68 Input SOD ANALO68 Input SCLK ANALO68 Input SOD ANALO68 Input Sol ANALO68 Input Sol ANALO68 Input Sol ANALO68 Input Soli	MPXIN30	ANALOG6			
MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MUltiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT ANALOG9 AVoto2 - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Reference voltage generator output pin TEMP_OUT ANALOG3 ARESET ANALOG5 Input External reset signal input for the functions of analog block DVo0 - - Power supply pin for SPI SCLK ANALOG8 Input Serial clock input pin for SPI SD0 ANALOG8 Input Serial data output pin for SPI SD1 ANALOG8 Input Serial data input pin for SPI DGND -	MPXIN21	ANALOG6			
MPXIN20 ANALOG6 Multiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT ANALOG9 Output Reference voltage generator output pin AVod2 - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output Temperature sensor output pin ARESET ANALOG5 Input External reset signal input for the functions of analog block DVod - - Power supply pin for SPI SCLK ANALOG8 Input Serial data output pin for SPI SD0 ANALOG8 Input Serial data input pin for SPI SD1 ANALOG8 Input Serial data input pin for SPI SD1 ANALOG8 Input Serial data input pin for SPI SD1 ANALOG8 Input Chip select input pin for SPI DGND -	MPXIN11	ANALOG6			
MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT ANALOG9 Output Reference voltage generator output pin AVoo2 - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output Temperature sensor output pin ARESET ANALOG5 Input External reset signal input for the functions of analog block DVoo - - Power supply pin for SPI SCLK ANALOG8 Input Serial clock input pin for SPI SDO ANALOG8 Input Serial data output pin for SPI SDI ANALOG8 Input Chip select input pin for SPI SDI ANALOG8 Input Chip select input pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filte	MPXIN20	ANALOG6			
AGND3GND pin for variable output voltage regulator and reference voltage generatorBGR_OUTANALOG9OutputReference voltage generator output pinAVoo2Power supply pin for variable output voltage regulator and reference voltage generatorLDO_OUTANALOG3OutputVariable output voltage regulator output pinTEMP_OUTANALOG4OutputTemperature sensor output pinARESETANALOG5InputExternal reset signal input for the functions of analog blockDVooPower supply pin for SPISCLKANALOG8InputSerial clock input pin for SPISDOANALOG8InputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPIDGNDGND pin for SPIDGNDGND pin for SPIDAC4_OUT/ANALOG13I/OD/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pinVREFIN4GND pin for inputting low-pass filter control clockAGND4GND pin for filter	MPXIN10	ANALOG6			
BGR_OUT ANALOG9 Output Reference voltage generator output pin AV _{DD2} - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output Temperature sensor output pin ARESET ANALOG5 Input External reset signal input for the functions of analog block DVop - - Power supply pin for SPI SCLK ANALOG8 Input Serial clock input pin for SPI SDO ANALOG8 Input Serial data output pin for SPI SDI ANALOG8 Input Serial data input pin for SPI GS ANALOG8 Input Serial data input pin for SPI DGND - - GND pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 - - GND pin for filter Cutput pin for filter	AGND3	-	-		
AV _{DD2} - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output Temperature sensor output pin ĀRESET ANALOG5 Input External reset signal input for the functions of analog block DVpp - - Power supply pin for SPI SCLK ANALOG8 Input Serial clock input pin for SPI SDO ANALOG8 Input Serial data output pin for SPI SDI ANALOG8 Input Serial data input pin for SPI CS ANALOG8 Input Serial data input pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 - - GND pin for filter	BGR OUT	ANALOG9	Output		
LDO_OUTANALOG3OutputVariable output voltage regulator output pinTEMP_OUTANALOG4OutputTemperature sensor output pinARESETANALOG5InputExternal reset signal input for the functions of analog blockDVobPower supply pin for SPISCLKANALOG8InputSerial clock input pin for SPISDOANALOG12OutputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPICSANALOG8InputChip select input pin for SPIDGNDGND pin for SPIDAC4_OUT/ VREFIN4ANALOG7InputPin for inputting low-pass filter control clockAGND4GND pin for filter		_	_		
TEMP_OUTANALOG4OutputTemperature sensor output pinARESETANALOG5InputExternal reset signal input for the functions of analog blockDVopPower supply pin for SPISCLKANALOG8InputSerial clock input pin for SPISDOANALOG12OutputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPICSANALOG8InputSerial data input pin for SPIDGNDGND pin for SPIDAC4_OUT/ANALOG13I/OD/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4CLK_LPFANALOG7InputPin for inputting low-pass filter control clockAGND4GND pin for filter	LDO OUT	ANALOG3	Output		
ARESETANALOG5InputExternal reset signal input for the functions of analog blockDV_DDPower supply pin for SPISCLKANALOG8InputSerial clock input pin for SPISDOANALOG12OutputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPICSANALOG8InputChip select input pin for SPIDGNDGND pin for SPIDAC4_OUT/ VREFIN4ANALOG7InputDif or inputting low-pass filter control clockAGND4GND pin for filter					
DV_DDPower supply pin for SPISCLKANALOG8InputSerial clock input pin for SPISDOANALOG12OutputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPICSANALOG8InputChip select input pin for SPIDGNDGND pin for SPIDAC4_OUT/ANALOG13I/OD/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4CLK_LPFANALOG7InputPin for inputting low-pass filter control clockAGND4GND pin for filter		ANALOG5			
SCLKANALOG8InputSerial clock input pin for SPISDOANALOG12OutputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPICSANALOG8InputChip select input pin for SPIDGNDGND pin for SPIDAC4_OUT/ VREFIN4ANALOG7InputDif or inputting low-pass filter control clockAGND4GND pin for filter		_	_		
SDO ANALOG12 Output Serial data output pin for SPI SDI ANALOG8 Input Serial data input pin for SPI CS ANALOG8 Input Chip select input pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 - - GND pin for inputting low-pass filter control clock AGND4 - - GND pin for filter	SCLK	ANALOG8	Input		
CS ANALOG8 Input Chip select input pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 D/A Pin for inputting low-pass filter control clock AGND4 - - GND pin for filter		ANALOG12			
CS ANALOG8 Input Chip select input pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 D/A D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin CLK_LPF ANALOG7 Input Pin for inputting low-pass filter control clock AGND4 - - GND pin for filter	SDI	ANALOG8	Input		
DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin CLK_LPF ANALOG7 Input Pin for inputting low-pass filter control clock AGND4 - - GND pin for filter		ANALOG8	Input		
DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 CLK_LPF ANALOG7 Input Pin for inputting low-pass filter control clock AGND4 - - GND pin for filter		_	_		
CLK_LPF ANALOG7 Input Pin for inputting low-pass filter control clock AGND4 - - GND pin for filter	DAC4_OUT/	ANALOG13	I/O		
AGND4 – – GND pin for filter		ANALOG7	Input	Pin for inputting low-pass filter control clock	
		_			
	LPF_OUT	ANALOG1	Output	Low-pass filter output pin	

<R> 2. 2. 2 80-pin products

Function Name	I/O Circuit Type	I/O	Function	
AVdd3	-	-	Power supply pin for filter	
SC_IN	ANALOG6	Input	Input pin for filter signal processing	
CLK_SYNCH	ANALOG7	Input	Pin for inputting synchronous detector control clock	
SYNCH_OUT	ANALOG11	Output	Synchronous detector output pin	
AGND2	-	-	GND pin for gain adjustment amplifier	
GAINAMP_OUT	ANALOG10	Output	Output pin for gain adjustment amplifier	
GAINAMP_IN	ANALOG6	Input	Input pin for gain adjustment amplifier	
MPXIN61	ANALOG6	Input	Multiplexer 6 input pin 1 (Configurable amplifier Ch3 input pin 1 (+))	
MPXIN51	ANALOG6		Multiplexer 5 input pin 1 (Configurable amplifier Ch3 input pin 1 (-))	
MPXIN60	ANALOG6		Multiplexer 6 input pin 0 (Configurable amplifier Ch3 input pin 0 (+))	
MPXIN50	ANALOG6		Multiplexer 5 input pin 0 (Configurable amplifier Ch3 input pin 0 (-))	
AMP3_OUT	ANALOG10	Output	Configurable amplifier Ch3 output pin	
DAC3_OUT/ VREFIN3	ANALOG2	I/O	D/A converter Ch3 output pin/configurable amplifier Ch3 reference voltage input pin	
AMP2_OUT	ANALOG11	Output	Configurable amplifier Ch2 output pin	
AGND1	-	_	GND pin for configurable amplifiers Ch1 to Ch3	
AMP1_OUT	ANALOG11	Output	Configurable amplifier Ch1 output pin	
AV _{DD1}	_	-	Power supply pin for configurable amplifiers Ch1 to Ch3	
DAC2_OUT/ VREFIN2	ANALOG2	I/O	D/A converter Ch2 output pin/configurable amplifier Ch2 reference voltage input pin	
DAC1_OUT/ VREFIN1	ANALOG2		D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin	
MPXIN41	ANALOG6	Input	Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+))	
MPXIN31	ANALOG6		Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-))	
MPXIN40	ANALOG6		Multiplexer 4 input pin 0 (Configurable amplifier Ch2 input pin 0 (+))	
MPXIN30	ANALOG6		Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (-))	
MPXIN21	ANALOG6		Multiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 1 (+))	
MPXIN11	ANALOG6		Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-))	
MPXIN20	ANALOG6		Multiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+))	
MPXIN10	ANALOG6		Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-))	
AGND3	-	-	GND pin for variable output voltage regulator and reference voltage generator	
BGR_OUT	ANALOG9	Output	Reference voltage generator output pin	
AV _{DD2}	-	-	Power supply pin for variable output voltage regulator and reference voltage generator	
LDO_OUT	ANALOG3	Output	Variable output voltage regulator output pin	
TEMP_OUT	ANALOG4	Output	Temperature sensor output pin	
ARESET	ANALOG5	Input	External reset signal input for the functions of analog block	
DVDD	-	-	Power supply pin for SPI	
SCLK	ANALOG8	Input	Serial clock input pin for SPI	
SDO	ANALOG12	Output	Serial data output pin for SPI	
SDI	ANALOG8	Input	Serial data input pin for SPI	
CS	ANALOG8	Input	Chip select input pin for SPI	
DGND	-		GND pin for SPI	
DAC4_OUT/ VREFIN4	ANALOG13	I/O	D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin	
HPF_OUT	ANALOG1	Output	t High-pass filter output pin	
CLK_HPF	ANALOG7	Input	Pin for inputting high-pass filter control clock	
CLK_LPF	ANALOG7	Input	Pin for inputting low-pass filter control clock	
AGND4	-	-	GND pin for filter	
LPF_OUT	ANALOG1	Output	Low-pass filter output pin	

2.3 Connection of Unused Pins

Table 2-3 shows the recommended connections of unused pins.

Remark The provided pins differ depending on the products. See 1. 3 Pin Configuration (Top View), 2. 1 Pin Functions in Microcontroller Block, and 2. 2 Pin Functions in Analog Block.

Table 2-3. Con	nections of	Unused Pins
----------------	-------------	--------------------

(1/2)

Pin Name	I/O	Recommended Connection of Unused Pins
P00	I/O	Input: Independently connect to VDD or VSS via a resistor.
P01	I/O	Output: Leave open
P02	I/O	
P03	I/O	
P04	I/O	
P10	I/O	
P11	I/O	
P12	I/O	
P13	I/O	
P14	I/O	
P15	I/O	
P20	I/O	Input: Independently connect to AV _{DD} or AV _{SS} via a resistor.
P21	I/O	Output: Leave open
P22	I/O	
P23	I/O	
P24	I/O	
P40	I/O	Input: Independently connect to VDD via a resistor, or leave open.
		Output: Leave open
P41	I/O	Input: Independently connect to VDD or Vss via a resistor.
P42	I/O	Output: Leave open
P50	I/O	
P51	I/O	
P70	I/O	
P71	I/O	
P72	I/O	
P73	I/O	
P121	Input	Independently connect to VDD or Vss via a resistor.
P122	Input	
P130	Output	Leave open
P137	Input	Independently connect to VDD or Vss via a resistor.
P140	I/O	Input: Independently connect to VDD or Vss via a resistor.
		Output: Leave open
RESET	Input	Connect directly or via a resistor to VDD.

Pin Name	1/0	(2/2)
Pin Name SC_IN	I/O	Recommended Connection of Unused Pins Connect to AGND4.
	Input	
	Input	Leave open
SYNCH_OUT	Output	-
GAINAMP_OUT	Output	
GAINAMP_IN	Input	Connect to AGND2.
MPXIN61	Input	Connect to AGND1.
MPXIN51	Input	-
MPXIN60	Input	-
MPXIN50	Input	
AMP3_OUT	Output	Leave open
DAC3_OUT/ VREFIN3	I/O	Leave open
AMP2_OUT	Output	Leave open
AMP1_OUT	Output	Connect to AGND1.
DAC2_OUT/ VREFIN2	I/O	Leave open
DAC1_OUT/VREFIN1	I/O	
MPXIN41	Input	Connect to AGND1.
MPXIN31	Input	
MPXIN40	Input	
MPXIN30	Input	
MPXIN21	Input	
MPXIN11	Input	
MPXIN20	Input	
MPXIN10	Input	
TEMP_OUT	Output	Leave open
SCLK	Input	
SDO	Output	1
SDI	Input	1
CS	Input	1
DAC4_OUT/	I/O	1
VREFIN4		
HPF_OUT	Output	1
 CLK_HPF	Input	1
 CLK_LPF	Input	1
 LPF_OUT	Output	1
LDO_OUT	Output	1
BGR_OUT	Output	1
I.C	-	1
ARESET	Input	Note

<R> Note

When the resource pin for ARESET is to be Hi-Z, connect ARESET to DGND via a resistor. For details of functions, see **2.5.31** ARESET.

<R> 2.4 Block Diagrams of Pins

Figures 2-1 to 2-12 show the block diagrams of the pins described in **2. 1. 1 Port functions**. Figure 2-13 shows the I/O circuit type described in **2. 2 Pin Functions in Analog Block**.

Figure 2-1. Pin Block Diagram for Pin Type 1-1-1

Figure 2-3. Pin Block Diagram for Pin Type 2-1-2

Remark For alternate functions, see 2. 1. 1 Port functions.

Figure 2-4. Pin Block Diagram for Pin Type 2-2-1

Remark For alternate functions, see 2. 1. 1 Port functions.

Figure 2-5. Pin Block Diagram for Pin Type 4-3-1

Figure 2-6. Pin Block Diagram for Pin Type 7-1-1

Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

Figure 2-7. Pin Block Diagram for Pin Type 7-1-2

Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

Figure 2-8. Pin Block Diagram for Pin Type 7-3-1

Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

Figure 2-9. Pin Block Diagram for Pin Type 7-3-2

Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

Figure 2-10. Pin Block Diagram for Pin Type 8-1-1

Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

Figure 2-11. Pin Block Diagram for Pin Type 8-1-2

Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

Figure 2-12. Pin Block Diagram for Pin Type 8-3-2

Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

2.5 Instruction of Pin Functions

Remark The pins mounted depend on the product. See 1. 3 Pin Configuration (Top View), 2. 1 Pin Functions in Microcontroller Block, and 2. 2 Pin Functions in Analog Block.

2.5.1 Port 0 (P00 to P04)

(1) Port mode

P00 to P04 function as an I/O port. P00 to P04 can be set to input or output port in 1-bit units using port mode register 0 (PM0).

(2) Control mode

P00 to P04 function as A/D converter analog input, serial interface data I/O, clock I/O, and key return input.

(a) ANI16, ANI17

These are the analog input pins of A/D converter.

(b) SI10

This is a serial data input pin of serial interface CSI10.

(c) SO10

This is a serial data output pin of serial interface CSI10.

(d) SCK10

This is a serial clock I/O pin of serial interface CSI10.

(e) TxD1

This is a serial data output pin of serial interface UART1.

(f) RxD1

This is a serial data input pin of serial interface UART1.

(g) SDA10

This is a serial data I/O pin of serial interface IIC10.

(h) SCL10

This is a serial clock output pin of serial interface IIC10.

(i) TI00

This is a pin for inputting an external count clock/capture trigger to 16-bit timer 00.

(j) TO00

This is the timer output pin of 16-bit timer 00.

(k) KR0 to KR4

These are the key interrupt input pins.

2. 5. 2 Port 1 (P10 to P15)

(1) Port mode

P10 to P15 function as an I/O port. P10 to P15 can be set to input or output port in 1-bit units using port mode register 1 (PM1).

(2) Control mode

P10 to P15 function as A/D converter analog input, serial interface data I/O, clock I/O, and programming UART I/O.

(a) ANI18, ANI20 to ANI24

These are the analog input pins of A/D converter.

(b) TxD0, TxD2

These are the serial data output pins of serial interface UART0 and UART2.

(c) RxD0, RxD2

These are the serial data input pins of serial interface UART0 and UART2.

<R> (d) SCK00, SCK20

These are the serial clock I/O pins of serial interface CSI00 and CSI20.

(e) SI00, SI20

These are the serial data input pins of serial interface CSI00 and CSI20.

(f) SO00, SO20

These are the serial data output pins of serial interface CSI00 and CSI20.

(g) TOOLTxD

This UART serial data output pin for an external device connection is used during flash memory programming.

(h) TOOLRxD

This UART serial data input pin for an external device connection is used during flash memory programming.

(i) SDA00, SDA20

These are the serial data I/O pins of serial interface IIC00 and IIC20.

(j) SCL00, SCL20

These are the serial clock output pins of serial interface IIC00 and IIC20.

(k) KR0 to KR5

These are the key interrupt input pins.

2.5.3 Port 2 (P20 to P24)

(1) Port mode

P20 to P24 function as an I/O port. P20 to P24 can be set to input or output port in 1-bit units using port mode register 2 (PM2).

(2) Control mode

P20 to P24 function as A/D converter analog input, and reference voltage input.

(a) ANI0 to ANI4

These are the analog input pins of A/D converter.

(b) AVREFP

This is a pin that inputs the A/D converter reference potential (+ side).

(C) AVREFM

This is a pin that inputs the A/D converter reference potential (- side).

(d) KR5 to KR7

These are the key interrupt input pins.

2.5.4 Port 4 (P40 to P42)

(1) Port mode

P40 to P42 function as an I/O port. P40 to P42 can be set to input or output port in 1-bit units using port mode register 4 (PM4).

(2) Control mode

P40 to P42 function as A/D converter analog input, data I/O for a flash memory programmer/debugger, and timer I/O.

(a) TI04, TI07

These are the pins for inputting an external count clock/capture trigger to 16-bit timers 04 and 07.

(b) TO04, TO07

These are the timer output pins from 16-bit timers 04 and 07.

(c) TOOL0

This is a data I/O pin for a flash memory programmer/debugger. Be sure to pull up this pin externally when on-chip debugging is enabled (pulling it down is prohibited).

(d) ANI30

This is an analog input pin of A/D converter.

2. 5. 5 Port 5 (P50, P51)

(1) Port mode

P50 and P51 function as an I/O port. P50 and P51 can be set to input or output port in 1-bit units using port mode register 5 (PM5).

(2) Control mode

P50 and P51 function as A/D converter analog input, and external interrupt request input.

(a) ANI25, ANI26

These are the analog input pins of A/D converter.

(b) INTP1, INTP2

These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

2.5.6 Port 7 (P70 to P73)

(1) Port mode

P70 to P73 function as an I/O port. P70 to P73 can be set to input or output port in 1-bit units using port mode register 7 (PM7).

(2) Control mode

P70 to P73 function as key interrupt input, A/D converter analog input, serial interface data I/O, and clock I/O.

(a) ANI28

This is the analog input pin of A/D converter.

(b) KR0 to KR2

These are the key interrupt input pins.

(c) SI21

This is the serial data input pin of serial interface CSI21.

(d) SO21

This is the serial data output pin of serial interface CSI21.

<R> (e) SCK21

This is the serial clock I/O pin of serial interface CSI21.

2. 5. 7 Port 12 (P121, P122)

(1) Port mode

P121 and P122 function as an input port.

(2) Control mode

P121 and P122 function as connecting resonator for main system clock, and external clock input for main system clock.

(a) X1, X2

These are the pins for connecting a resonator for main system clock.

(c) EXCLK

This is an external clock input pin for main system clock.

2. 5. 8 Port 13 (P130, P137)

(1) Port mode

P130 functions as an output port.

P137 functions as an input port.

(2) Control mode

P137 functions as external interrupt request input.

(a) INTP0

This is an external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

2.5.9 Port 14 (P140)

(1) Port mode

P140 functions as an I/O port. P140 can be set to input or output port in 1-bit units using port mode register 14 (PM14).

(2) Control mode

P140 functions as clock/buzzer output, and external interrupt request input.

(a) INTP6

This is the external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(b) PCLBUZ0

This is the clock/buzzer output pin.

2. 5. 10 AVDD, AVSS, VDD, VSS

(a) AVDD

This is the A/D converter reference voltage input pin and the positive power supply pin of P20 to P24, and A/D converter.

(b) AVss

This is the A/D converter ground potential pin. Even when the A/D converter is not used, always use this pin with the same potential as the Vss pin.

(c) VDD

This is the positive power supply pin.

(d) Vss

This is the ground potential pin.

Remark Use bypass capacitors (about 0.1 μF) as noise and latch up countermeasures with relatively thick wires at the shortest distance to V_{DD} to V_{SS} line.

2. 5. 11 RESET

This is the active-low system reset input pin for the functions of microcontroller block. When the external reset pin is not used, connect this pin directly or via a resistor to V_{DD}. When the external reset pin is used, design the circuit based on V_{DD}. For details of the functions, see **3. 5. 5** Clock generator operation, **3. 19** Reset Function, **3. 20** Power-On-Reset Circuit.

2.5.12 REGC

This is the pin for connecting regulator output stabilization capacitance for internal operation. Connect this pin to Vss via a capacitor (0.47 to 1 μ F).

Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.

Caution Keep the wiring length as short as possible for the broken-line part in the above figure.

2.5.13 AVDD3

This is the power supply pin for high-pass filter.^{Note} and low-pass filter.

2. 5. 14 SC_IN

This is the input pin for filter signal processing.

2. 5. 15 CLK_SYNCH

This is the pin for inputting synchronous detector control clock.

2. 5. 16 SYNCH_OUT

This is the synchronous detector output pin.

2. 5. 17 AGND2

This is the ground pin for gain adjustment amplifier.

2. 5. 18 GAINAMP_OUT

This is the output pin for gain adjustment amplifier.

2.5.19 GAINAMP_IN

This is the input pin for gain adjustment amplifier.

2. 5. 20 MPXIN10, MPXIN11, MPXIN20, MPXIN21, MPXIN30, MPXIN31, MPXIN40, MPXIN41, MPXIN50, MPXIN51, MPXIN60, MPXIN61

These are the input pins for multiplexer.

2. 5. 21 AMP1_OUT, AMP2_OUT, AMP3_OUT

These are the output pins for configurable amplifiers Ch1 to Ch3.

2. 5. 22 DAC1_OUT, DAC2_OUT, DAC3_OUT, DAC4_OUT

These are the output pins for D/A converters Ch1 to Ch4.

2. 5. 23 VREFIN1, VREFIN2, VREFIN3, VREFIN4

These are the reference voltage input pins for configurable amplifiers Ch1 to Ch3, gain adjustment amplifier, low-pass filter, and high-pass filter^{Note}.

Note 80-pin products only

2.5.24 AGND1

This is the ground pin for configurable amplifiers Ch1 to Ch3.

2. 5. 25 AVDD1

This is the power supply pin for configurable amplifiers Ch1 to Ch3.

2.5.26 AGND3

This is the GND pin for variable output voltage regulator and reference voltage generator.

2. 5. 27 BGR_OUT

This is the output pin for reference voltage generator.

2.5.28 AVDD2

This is the power supply pin for variable output voltage regulator and reference voltage generator.

2. 5. 29 LDO_OUT

This is the output pin for variable output voltage regulator.

2.5.30 TEMP_OUT

This is the output pin for temperature sensor.

2. 5. 31 ARESET

This is the active-low system reset input pin for the function of analog block. After turning on DV_{DD}, it is necessary to input the external reset signal to this pin before starting SPI communication. When controlling the external reset signal by the microcontroller block of this package, it is recommended to directly connect this pin to P130 which is to be a low-level output port on reset. If the resource pin of ARESET is to be Hi-Z at a short moment, this pin must be connected to DGND via a resistor. For details of the functions, see **4.10** Analog Reset.

2.5.32 DVDD

This is the power supply pin for SPI.

2. 5. 33 SCLK

This is the serial clock input pin for SPI.

2.5.34 SDO

This is the serial data output pin for SPI.

2. 5. 35 SDI

This is the serial data input pin for SPI.

2.5.36 CS

This is the chip select input pin for SPI.

2. 5. 37 DGND

This is the GND pin for SPI.

2. 5. 38 HPF_OUT

This is the output pin for high-pass filter.

2.5.39 CLK_HPF

This is the control clock input pin for high-pass filter.

2. 5. 40 CLK_LPF

This is the control clock input pin for low-pass filter.

2. 5. 41 AGND4

This is the GND pin for low-pass filter and high-pass filter.

2. 5. 42 LPF_OUT

This is the output pin for low-pass filter.

2. 5. 43 I.C

The I.C (internally connected) pin has no function and is simply connected inside the chip. This pin must always be left open.

CHAPTER 3 MICROCONTROLLER BLOCK

3.1 Outline of This Chapter

The 16-bit microcontroller block in the RL78/G1E corresponds to the RL78/G1A (64-pin products). For the details of each function in microcontroller block, see the **RL78/G1A Hardware User's Manual (R01UH0305E)**.

Not all of the functions of the RL78/G1A are available to be used in the RL78/G1E package because not all pins of function are drawn out of the package. In this chapter, the differences in functions and registers between the RL78/G1A and the RL78/G1E are described.

3. 2 Comparison of Each Function with RL78/G1A (64-pin products)

The differences of each function between RL78/G1E (64-pin products, 80-pin products) and RL78/G1A (64-pin products) are as follows. For details, see the section showed in column of Remarks in the tables below.

ltem		RL78/G1E		RL78/G1A	Remarks
		64-pin products	80-pin products	(64-pin products)	
Code flash	n memory (KB)	32 to 64	32 to 64	32 to 64	See the section 3.3
Data flash	memory (KB)	4	4	4	about details.
RAM (KB)		2 to 4	2 to 4	2 to 4]
Memory s	pace	11	ИB	1 MB]
Processor	registers	Control registers; PC	C, PSW, SP	Control registers; PC, PSW, SP	
		General-purpose reg	gister;	General-purpose register;	
		(8-bit register $ imes$ 8) $ imes$	4 banks	(8-bit register \times 8) \times 4 banks	
		Special function regi	sters (SFRs)	Special function registers (SFRs)	Some differences.
		Extended special fur	nction registers	Extended special function registers	See the section 3.3
		(2nd SFRs)		(2nd SFRs)	about details.
I/O port	Total	24	30	56	Some differences.
	COMS I/O	20	26	46	See the section 3. 4
	COMS input	3		5	about details.
	COMS output	1		1	
	N-ch open-	_		4	
	drain I/O (6 V				
	tolerance)				
Main	High-speed	X1 (crystal/ceramic)	oscillation,	X1 (crystal/ceramic) oscillation, external	There are some
system	system clock	external main system	m clock input	main system clock input (EXCLK)	differences betwee
clock		(EXCLK)		1 to 20 MHz: V _{DD} = 2.7 to 3.6 V,	RL78/G1E and
		1 to 20 MHz: V _{DD} = 2		1 to 8 MHz: $V_{DD} = 1.8$ to 2.7 V,	RL78/G1A. See the section 3.5
		1 to 8 MHz: VDD = 1		1 to 4 MHz: V _{DD} = 1.6 to 1.8 V	
		1 to 4 MHz: V _{DD} = 1			about details.
	High-speed	HS (High-speed ma	,	HS (High-speed main) mode:	
	on-chip oscillator		z = 2.7 to 5.5 V),	1 to 32 MHz (V_{DD} = 2.7 to 3.6 V),	Subsystem clock is
	OSCIIIAIOI	HS (High-speed ma	,	HS (High-speed main) mode:	not available for
		LS (Low-speed main	DD = 2.4 to 5.5 V),	1 to 16 MHz ($V_{DD} = 2.4$ to 3.6 V),	RL78/G1E.
		、 ·	p = 1.8 to 5.5 V),	LS (Low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 3.6 V),	
		LV (Low-voltage ma		LV (Low-voltage main) mode:	
		1 to 4 MHz (Vot		1 to 4 MHz ($V_{DD} = 1.6$ to 3.6 V)	
Subsyster	n clock		-	XT1 (crystal) oscillation, external	4
Jubbyold				subsystem clock input (EXCLKS)	
				32.768 kHz (TYP.): V _{DD} = 1.6 to 3.6 V	

					(2/4)
Item		RL78	/G1E	RL78/G1A	Remarks
		64-pin products	80-pin products	(64-pin products)	
Low-speed	on-chip	15 kHz (TYP.): VDD	= 1.6 to 5.5 V	15 kHz (TYP.): VDD = 1.6 to 3.6 V	Some differences.
oscillator					See the section 3. 5
Minimum in	struction	0.03125 <i>μ</i> s (High-sp	beed on-chip	0.03125 μ s (High-speed on-chip	about details.
execution ti	me	oscillator: fiH = 32 M	Hz operation)	oscillator: f⊮ = 32 MHz operation)	Subsystem clock is
		0.05 μ s (High-speed	d system clock:	0.05 μ s (High-speed system clock:	not available for
		fмx = 20 MHz operat	tion)	f _{MX} = 20 MHz operation)	RL78/G1E.
		-		30.5 µs (Subsystem clock:	
	1			fsuв = 32.768 kHz operation)	
Timer	16-bit timer	8 cha	nnels	8 channels	Some differences.
					See the section 3. 6
					about details.
	Watchdog	1 cha	annel	1 channel	See the section 3. 10
	Timer				about details.
	Real-time clock	-	-	1 channel	RTC is not provided
	(RTC)				in RL78/G1E.
					(See 3. 7)
	12-bit Interval	1 cha	annel	1 channel	See the section 3.8
	timer (IT)				about details.
	Timer output 3 channels (PWM outputs: 2 Note)		itputs: 2 ^{Note})	7 channels (PWM outputs: 6 ^{Note})	See the section 3.6
					about details.
	RTC output	-	-	1 channel	RTC is not provided
				• 1 Hz (subsystem clock:	in RL78/G1E.
				f _{SUB} = 32.768 kHz)	(See 3. 7)

Note The number of PWM outputs varies depending on the setting of channels in use.

		1		1	(3/4)
lt	em	RL78	3/G1E	RL78/G1A	Remarks
		64-pin products	80-pin products	(64-pin products)	
Clock output		_	1 channel	2 channels	There are some
/ Buzzer out	out		•2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation)	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 	differences between RL78/G1E and RL78/G1A. See the section 3. 9 about details.
				16.384 kHz, 32.768 kHz (Subsystem clock: fsuв = 32.768 kHz operation)	
8/12-bit reso A/D converte (AV _{DD} = 1.6 t	er	13 channels	17 channels	28 channels	Some differences. See the section 3. 11 about details.
Serial array u		<unit 0=""> • CSI: 1 channel/ simplified I²C: 1 channel/ UART: 1 channel • UART: 1 channel <unit 1=""> • CSI: 1 channel/ UART: 1 channel (LIN-bus supported)</unit></unit>	<unit 0=""> • CSI: 1 channel/ simplified I²C: 1 channel/ UART: 1 channel • CSI: 1 channel/ simplified I²C: 1 channel/ UART: 1 channel <unit 1=""> • CSI: 2 channel/ simplified I²C: 1 channel/ UART: 1 channel (LIN-bus supported)</unit></unit>	<unit 0=""> • CSI: 2 channel/ simplified I²C: 2 channel/ UART: 1 channel • CSI: 2 channel/ simplified I²C: 2 channel/ UART: 1 channel <unit 1=""> • CSI: 2 channel/ simplified I²C: 2 channel/ UART: 1 channel (LIN-bus supported)</unit></unit>	Some differences. See the section 3. 12 about details.
	I ² C bus		_	1 channel	Not provided in RL78/G1E. (See 3. 13)
Multiplier and divider/ multiply accumulator		5 fund (Multiplier, divider, m		5 functions (Multiplier, divider, multiply accumulator)	See the section 3. 14 about details.
DMA controller		2 cha	nnels	2 channels	See the section 3. 15 about details.
Vectored interrupt	Internal External	2	5	27	Some differences. See the section 3. 16
sources Key interrupt		4 (7) ^{Note} channels	4 (8) ^{Note} channels	10 channels	about details. Some differences. See the section 3. 17 about details.

Note Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

		1	(4/4)
Item	RL78/G1E	RL78/G1A	Remarks
	64-pin products 80-pin products	(64-pin products)	
Standby function	HALT, STOP, SNOOZE mode	HALT, STOP, SNOOZE mode	See 3. 18.
Reset function	7 reset source	7 reset source	See 3. 19.
Power-on-reset circuit	Power-on-reset: 1.51 +/- 0.03V	Power-on-reset: 1.51 +/- 0.03V	See 3. 20.
	Power-down-reset: 1.50 +/- 0.03V	Power-down-reset: 1.50 +/- 0.03V	
Voltage detector	Detection level: 3 stages	Detection level: 12 stages	Some differences.
			See the section 3. 21
			about details.
Safety functions	- Flash memory CRC operation function	- Flash memory CRC operation function	Some differences.
	- CRC operation function	- CRC operation function	See the section 3. 22
	- RAM parity error detection function	- RAM parity error detection function	about details.
	- RAM guard function	- RAM guard function	
	- SFR guard function	- SFR guard function	
	- Invalid memory access detection	- Invalid memory access detection	
	function	function	
	- Frequency detection function	- Frequency detection function	
	- A/D test function	- A/D test function	
Regulator	1 channel	1 channel	See 3. 23
Option byte	Available	Available	Some differences.
			See the section 3. 24
			about details.
Flash memory	Available	Available	Some differences.
			See the section 3.25
			about details.
On-chip debug function	Available	Available	See 3. 26
BCD correction circuit	Available	Available	See 3. 27
Instruction set	Data transfer (8/16 bits)	Data transfer (8/16 bits)	See 3. 28
	 Adder and subtractor/logical operation 	Adder and subtractor / logical operation	
	(8/16 bits)	(8/16 bits)	
	 Multiplication (8 bits × 8 bits) 	• Multiplication (8 bits × 8 bits)	
	Rotate, barrel shift,	 Rotate, barrel shift, and bit 	
	and bit manipulation (Set, reset, test,	manipulation (Set, reset, test, and	
	and Boolean operation), etc.	Boolean operation), etc.	
Power supply voltage	V _{DD} = 1.6 to 5.5 V	V _{DD} = 1.6 to 3.6 V	VDD range is
			different.

(4/4)

3.3 CPU Architecture

In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 3 CPU ARCHITECURE in RL78/G1A Hardware User's Manual (R01UH0305E).

3.3.1 Memory space

See 3.1 Memory Space in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 3. 2 Processor registers

3. 3. 2. 1 Control registers

See 3. 2. 1 Control registers in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 3. 2. 2 General-purpose registers

See 3. 2. 2 General-purpose registers in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 3. 2. 3 ES and CS registers

See 3. 2. 3 ES and CS registers in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 3. 2. 4 Special function registers (SFRs)

The differences in special function registers (SFRs) between RL78/G1E (64-pin products, 80-pin products) and RL78/G1A (64-pin products) are shown in the tables below.

(1) 64-pin products

Table 3-1. List of Differences in Special Function Registers (SFRs) (1/4)

Address	RL78/G1E (64-pin products)		RL78/G1A (64-pin proc	lucts)	
	SFRs Name	Symbol	SFRs Name	Symbol	
FFF00H	Port register 0 Note	P0	Port register 0	P0	
FFF01H	Port register 1 Note	P1	Port register 1	P1	
FFF02H	Port register 2 Note	P2	Port register 2	P2	
FFF03H			Port register 3	P3	
FFF04H	Port register 4 Note	P4	Port register 4	P4	
FFF05H			Port register 5	P5	
FFF06H			Port register 6	P6	
FFF07H	Port register 7 Note	P7	Port register 7	P7	
FFF0CH	Port register 12 Note	P12	Port register 12	P12	
FFF0DH	Same as RL78/G1A (64-pin products)	P13	Port register 13	P13	
FFF0EH			Port register 14	P14	
FFF0FH			Port register 15	P15	
FFF10H	Same as RL78/G1A (64-pin products)	TXD0/ SDR00 SIO00	Serial data register 00	TXD0/ SDR00 SIO00	
FFF11H		_		_	
FFF12H	Same as RL78/G1A (64-pin products)	RXD0/ SDR01 SIO01	Serial data register 01	RXD0/ SDR01 SIO01	
FFF13H	-	_		_	
FFF18H	Same as RL78/G1A (64-pin products)	TDR00	Timer data register 00	TDR00	
FFF19H					
FFF1AH	Same as RL78/G1A (64-pin products)	TDR01L TDR01	Timer data register 01	TDR01L TDR01	
FFF1BH	· · · · · · · · · · · · · · · · · · ·	TDR01H		TDR01H	
FFF1EH	Same as RL78/G1A (64-pin products)	ADCR	12-bit A/D conversion result register	ADCR	
FFF1FH	Same as RL78/G1A (64-pin)	ADCRH	8-bit A/D conversion result register	ADCRH	
FFF20H	Port mode register 0 Note	PM0	Port mode register 0	PM0	
FFF21H	Port mode register 1 Note	PM1	Port mode register 1	PM1	
FFF22H	Port mode register 2 Note	PM2	Port mode register 2	PM2	
FFF23H			Port mode register 3	PM3	
FFF24H	Port mode register 4 Note	PM4	Port mode register 4	PM4	
FFF25H			Port mode register 5	PM5	
FFF26H	Port mode register 6 Note	PM6	Port mode register 6	PM6	
FFF27H	Port mode register 7 Note	PM7	Port mode register 7	PM7	
FFF2CH			Port mode register 12	PM12	
FFF2EH	Port mode register 14 Note	PM14	Port mode register 14	PM14	
FFF2FH	Port mode register 15 Note	PM15	Port mode register 15	PM15	
FFF30H	Same as RL78/G1A (64-pin products)	ADM0	A/D converter mode register 0	ADM0	
FFF31H	Analog input channel specification register ^{Note}	ADS	Analog input channel specification register	ADS	
FFF32H	A/D converter mode register 1 Note	ADM1	A/D converter mode register 1	ADM1	

Note The bit setting is different from that of RL78/G1A (64-pin products).

Address	RL78/G1E (64-pin prod	ucts)		RL78/G1A (64-pin pro	ducts)	
	SFRs Name	Sy	mbol	SFRs Name	Syr	nbol
FFF34H	Same as RL78/G1A (64-pin products)	KRCTL		Key return control register	KRCTL	
FFF35H	Same as RL78/G1A (64-pin products)	KRF		Key return flag register	KRF	
FFF36H				Key return mode control register 1	KRM1	
FFF37H	Key return mode control register 0 Note	KRM0		Key return mode control register 0	KRM0	
FFF38H	External interrupt rising edge	EGP0		External interrupt rising edge	EGP0	
	enable register 0 Note			enable register 0		
FFF39H	External interrupt falling edge	EGN0		External interrupt falling edge	EGN0	
	enable register 0 Note			enable register 0		
FFF3AH				External interrupt rising edge	EGP1	
				enable register 1		
FFF3BH				External interrupt falling edge	EGN1	
			1	enable register 1		n
FFF44H	Same as RL78/G1A (64-pin products)	TXD1/	SDR02	Serial data register 02	TXD1/	SDR02
	-	SIO10	_		SIO10	_
FFF45H		_				
FFF46H	Same as RL78/G1A (64-pin products)	RXD1/	SDR03	Serial data register 03	RXD1/	SDR03
	-	SIO11			SIO11	_
FFF47H		_				
FFF48H	Same as RL78/G1A (64-pin products)	TXD2/	SDR10	Serial data register 10	TXD2/	SDR10
	-	SIO20	_		SIO20	_
FFF49H			000044	Operiod states as sinters 44	-	000044
FFF4AH	Same as RL78/G1A (64-pin products)	RXD2/ SIO21	SDR11	Serial data register 11	RXD2/ SIO21	SDR11
		51021	_		31021	_
FFF4BH		-	l		-	
FFF50H				IICA shift register 0	IICA0	
FFF51H				IICA status register 0	IICS0	
FFF52H		TDDOO		IICA flag register 0 Timer data register 02	IICF0	
FFF64H	Same as RL78/G1A (64-pin products)	TDR02			TDR02	
FFF65H FFF66H	Some as PI 70/C1A (64 sis products)	TDR03L	TDR03	Timer data register 03	TDR03L	TDR03
	Same as RL78/G1A (64-pin products)	TDR03H	IDRUS		TDR03H	IDRUS
FFF67H FFF68H	Same as RL78/G1A (64-pin products)	TDR04	1	Timer data register 04	TDR04	1
-						
FFF69H	Same as PL 78/G14 (64 pip products)	TDR05		Timer data register 05	TDR05	
FFF6AH	Same as RL78/G1A (64-pin products)					
FFF6BH	Same as PL 78/G14 (64 pip products)	TDR06		Timer data register 06	TDR06	
FFF6CH FFF6DH	Same as RL78/G1A (64-pin products)					
	Some on PL 79/C14 (64 pin products)	TDR07		Timer data register 07	TDR07	
FFF6EH	Same as RL78/G1A (64-pin products)					
FFF6FH						

Table 3-1. List of Differences in Special Function Registers (SFRs) (2/4)

Note The bit setting is different from that of RL78/G1A (64-pin products).

Address	RL78/G1E (64-pin products)	RL78/G1A (64-pin products)		
	SFRs Name	Symbol	SFRs Name	Symbol	
FFF90H	Same as RL78/G1A (64-pin products)	ITMC	Interval timer control register	ITMC	
FFF91H	*				
FFF92H			Second count register	SEC	
FFF93H			Minute count register	MIN	
FFF94H			Hour count register	HOUR	
FFF95H			Week count register	WEEK	
FFF96H			Day count register	DAY	
FFF97H			Month count register	MONTH	
FFF98H			Year count register	YEAR	
FFF99H			Watch error correction register	SUBCUD	
FFF9AH			Alarm minute register	ALARMWM	
FFF9BH			Alarm hour register	ALARMWH	
FFF9CH			Alarm week register	ALARMWW	
FFF9DH			Real-time clock control register 0	RTCC0	
FFF9EH			Real-time clock control register 1	RTCC1	
FFFA0H	Clock operation mode control register Note	CMC	Clock operation mode control register	СМС	
FFFA1H	Clock operation status control register Note	CSC	Clock operation status control register	CSC	
FFFA2H	Same as RL78/G1A (64-pin products)	OSTC	Oscillation stabilization time	OSTC	
FFFA3H	Same as RL78/G1A (64-pin products)	OSTS	counter status register Oscillation stabilization time select register	OSTS	
FFFA4H	System clock control register Note	СКС	System clock control register	СКС	
FFFA5H			Clock output select register 0	CKS0	
FFFA6H			Clock output select register 1	CKS1	
FFFA8H	Same as RL78/G1A (64-pin products)	RESF	Reset control flag register	RESF	
FFFA9H	Same as RL78/G1A (64-pin products)	LVIM	Voltage detection register	LVIM	
FFFAAH	Same as RL78/G1A (64-pin products)	LVIS	Voltage detection level register	LVIS	
FFFABH	Same as RL78/G1A (64-pin products)	WDTE	Watchdog timer enable register	WDTE	
FFFACH	Same as RL78/G1A (64-pin products)	CRCIN	CRC input register	CRCIN	

Table 3-1. List of Differences in Special Function Registers (SFRs) (3/4)

Note The bit setting is different from that of RL78/G1A (64-pin products).

Address	RL78/G1E (64-pin product	s)		RL78/G1A (64-pin produ	cts)	
	SFRs Name	Sym	bol	SFRs Name	Syn	nbol
FFFB0H	Same as RL78/G1A (64-pin products)	DSA0		DMA SFR address register 0	DSA0	
FFFB1H	Same as RL78/G1A (64-pin products)	DSA1		DMA SFR address register 1	DSA1	
FFFB2H	Same as RL78/G1A (64-pin products)	DRA0L	DRA0	DMA RAM address register 0L	DRA0L	DRA0
FFFB3H	Same as RL78/G1A (64-pin products)	DRA0H	-	DMA RAM address register 0H	DRA0H	
FFFB4H	Same as RL78/G1A (64-pin products)	DRA1L	DRA1	DMA RAM address register 1L	DRA1L	DRA1
FFFB5H	Same as RL78/G1A (64-pin products)	DRA1H	-	DMA RAM address register 1H	DRA1H	
FFFB6H	Same as RL78/G1A (64-pin products)	DBC0L	DBC0	DMA byte count register 0L	DBC0L	DBC0
FFFB7H	Same as RL78/G1A (64-pin products)	DBC0H	-	DMA byte count register 0H	DBC0H	
FFFB8H	Same as RL78/G1A (64-pin products)	DBC1L	DBC1	DMA byte count register 1L	DBC1L	DBC1
FFFB9H	Same as RL78/G1A (64-pin products)	DBC1H	-	DMA byte count register 1H	DBC1H	
FFFBAH	Same as RL78/G1A (64-pin products)	DMC0		DMA mode control register 0	DMC0	
FFFBBH	Same as RL78/G1A (64-pin products)	DMC1		DMA mode control register 1	DMC1	
FFFBCH	Same as RL78/G1A (64-pin products)	DRC0		DMA operation control register 0	DRC0	
FFFBDH	Same as RL78/G1A (64-pin products)	DRC1		DMA operation control register 1	DRC1	
FFFD0H	Interrupt mask flag register 2L Note	IF2L	IF2	Interrupt mask flag register 2L	IF2L	IF2
FFFD1H	Interrupt mask flag register 2H Note	IF2H	-	Interrupt mask flag register 2H	IF2H	_
FFFD4H	Interrupt mask flag register 0L Note	MK2L	MK2	Interrupt mask flag register 0L	MK2L	MK2
FFFD5H	Interrupt mask flag register 2H Note	MK2H	-	Interrupt mask flag register 2H	MK2H	_
FFFD8H	Priority specification flag register 02L Note	PR02L	PR02	Priority specification flag register 02L	PR02L	PR02
FFFD9H	Priority specification flag register 02H Note	PR02H		Priority specification flag register 02H	PR02H	
FFFDCH	Priority specification flag register 12L ^{Note}	PR12L	PR12	Priority specification flag register 12L	PR12L	PR12
FFFDDH	Priority specification flag register 12H Note	PR12H		Priority specification flag register 12H	PR12H	
FFFE0H	Interrupt mask flag register 0L Note	IF0L	IF0	Interrupt mask flag register 0L	IF0L	IF0
FFFE1H	Interrupt mask flag register 0H Note	IF0H		Interrupt mask flag register 0H	IF0H	
FFFE2H	Interrupt mask flag register 1L Note	IF1L	IF1	Interrupt mask flag register 1L	IF1L	IF1
FFFE3H	Interrupt mask flag register 1H Note	IF1H		Interrupt mask flag register 1H	IF1H	
FFFE4H	Interrupt mask flag register 0L Note	MK0L	MK0	Interrupt mask flag register 0L	MK0L	MK0
FFFE5H	Interrupt mask flag register 0H Note	MK0H		Interrupt mask flag register 0H	MK0H	
FFFE6H	Interrupt mask flag register 1L Note	MK1L	MK1	Interrupt mask flag register 1L	MK1L	MK1
FFFE7H	Interrupt mask flag register 1H Note	MK1H		Interrupt mask flag register 1H	MK1H	
FFFE8H	Priority specification flag register 00L Note	PR00L	PR00	Priority specification flag register 00L	PR00L	PR00
FFFE9H	Priority specification flag register 00H Note	PR00H		Priority specification flag register 00H	PR00H	
FFFEAH	Priority specification flag register 01L Note	PR01L	PR01	Priority specification flag register 01L	PR01L	PR01
FFFEBH	Priority specification flag register 01H Note	PR01H		Priority specification flag register 01H	PR01H	
FFFECH	Priority specification flag register 10L Note	PR10L	PR10	Priority specification flag register 10L	PR10L	PR10
FFFEDH	Priority specification flag register 10H Note	PR10H		Priority specification flag register 10H	PR10H	
FFFEEH	Priority specification flag register 11L Note	PR11L	PR11	Priority specification flag register 11L	PR11L	PR11
FFFEFH	Priority specification flag register 11H Note	PR11H		Priority specification flag register 11H	PR11H	
FFFF0H	Same as RL78/G1A (64-pin products)	MDAL		Multiplication/division data	MDAL	
FFFF1H				register A (L)		
FFFF2H	Same as RL78/G1A (64-pin products)	MDAH		Multiplication/division data	MDAH	
FFFF3H				register A (H)		
FFFF4H	Same as RL78/G1A (64-pin products)	MDBH		Multiplication/division data	MDBH	
FFFF5H		MDBi		register B (L)	MDBi	
FFFF6H	Same as RL78/G1A (64-pin products)	MDBL		Multiplication/division data register B (H)	MDBL	
FFFF7H	Some on PL 79/C4A (64 pin and turte)	PMC		Processor mode control register	PMC	
FFFFEH	Same as RL78/G1A (64-pin products)					

Table 3-1. List of Differences in Special Function Registers (SFRs) (4/4)

(2) 80-pin products

Address	RL78/G1E (80-pin produ	ucts)		RL78/G1A (64-pin products)		
	SFRs Name	Syr	nbol	SFRs Name	Symbol	
FFF00H	Port register 0 Note	P0		Port register 0	P0	
FFF01H	Port register 1 Note	P1		Port register 1	P1	
FFF02H	Port register 2 Note	P2		Port register 2	P2	
FFF03H				Port register 3	P3	
FFF04H	Port register 4 Note	P4		Port register 4	P4	
FFF05H	Same as RL78/G1A (64-pin products)	P5		Port register 5	P5	
FFF06H				Port register 6	P6	
FFF07H	Port register 7 Note	P7		Port register 7	P7	
FFF0CH	Port register 12 Note	P12		Port register 12	P12	
FFF0DH	Same as RL78/G1A (64-pin products)	P13		Port register 13	P13	
FFF0EH	Port register 14 Note	P14		Port register 14	P14	
FFF0FH				Port register 15	P15	
FFF10H	Same as RL78/G1A (64-pin products)	TXD0/ SIO00	SDR00	Serial data register 00	TXD0/ SIO00	SDR00
FFF11H		_			_	_
FFF12H	Same as RL78/G1A (64-pin products)	RXD0/ SIO01	SDR01	Serial data register 01	RXD0/ SIO01	SDR01
FFF13H		_			_	-
FFF18H	Same as RL78/G1A (64-pin products)	TDR00		Timer data register 00	TDR00	
FFF19H						
FFF1AH	Same as RL78/G1A (64-pin products)	TDR01L	TDR01	Timer data register 01	TDR01L	TDR01
FFF1BH]	TDR01H			TDR01H	
FFF1EH	Same as RL78/G1A (64-pin products)	ADCR		12-bit A/D conversion result register	ADCR	
FFF1FH	Same as RL78/G1A (64-pin)	ADCRH		8-bit A/D conversion result register	ADCRH	
FFF20H	Port mode register 0 Note	PM0		Port mode register 0	PM0	
FFF21H	Port mode register 1 Note	PM1		Port mode register 1	PM1	
FFF22H	Port mode register 2 Note	PM2		Port mode register 2	PM2	
FFF23H				Port mode register 3	PM3	
FFF24H	Port mode register 4 Note	PM4		Port mode register 4	PM4	
FFF25H	Same as RL78/G1A (64-pin products)	PM5		Port mode register 5	PM5	
FFF26H	Port mode register 6 Note	PM6		Port mode register 6	PM6	
FFF27H	Port mode register 7 Note	PM7		Port mode register 7	PM7	
FFF2CH				Port mode register 12	PM12	
FFF2EH	Port mode register 14 Note	PM14		Port mode register 14	PM14	
FFF2FH	Port mode register 15 Note	PM15		Port mode register 15	PM15	
FFF30H	Same as RL78/G1A (64-pin products)	ADM0		A/D converter mode register 0	ADM0	
FFF31H	Analog input channel	ADS		Analog input channel	ADS	
	specification register Note	_		specification register		
FFF32H	A/D converter mode register 1 Note	ADM1		A/D converter mode register 1	ADM1	

Note The bit setting is different from that of RL78/G1A (64-pin products).

Address	RL78/G1E (80-pin prod	ucts)		RL78/G1A (64-pin products)		
	SFRs Name	Sy	mbol	SFRs Name	Syr	nbol
FFF34H	Same as RL78/G1A (64-pin products)	KRCTL		Key return control register	KRCTL	
FFF35H	Same as RL78/G1A (64-pin products)	KRF		Key return flag register	KRF	
FFF36H				Key return mode control register 1	KRM1	
FFF37H	Same as RL78/G1A (64-pin products)	KRM0		Key return mode control register 0	KRM0	
FFF38H	External interrupt rising edge	EGP0		External interrupt rising edge	EGP0	
	enable register 0 Note			enable register 0		
FFF39H	External interrupt falling edge enable register 0 ^{Note}	EGN0		External interrupt falling edge enable register 0	EGN0	
FFF3AH				External interrupt rising edge enable register 1	EGP1	
FFF3BH				External interrupt falling edge enable register 1	EGN1	
FFF44H	Same as RL78/G1A (64-pin products)	TXD1/	SDR02	Serial data register 02	TXD1/	SDR02
		SIO10		, , , , , , , , , , , , , , , , , , ,	SIO10	
FFF45H	-	_	-		_	
FFF46H	Same as RL78/G1A (64-pin products)	RXD1/	SDR03	Serial data register 03	RXD1/	SDR03
		SIO11			SIO11	
FFF47H		_			_	
FFF48H	Same as RL78/G1A (64-pin products)	TXD2/ SIO20	SDR10	Serial data register 10	TXD2/ SIO20	SDR10
FFF49H		_	-		_	-
FFF4AH	Same as RL78/G1A (64-pin products)	RXD2/	SDR11	Serial data register 11	RXD2/	SDR11
		SIO21			SIO21	
FFF4BH		_			_	
FFF50H				IICA shift register 0	IICA0	•
FFF51H				IICA status register 0	IICS0	
FFF52H				IICA flag register 0	IICF0	
FFF64H	Same as RL78/G1A (64-pin products)	TDR02		Timer data register 02	TDR02	
FFF65H						
FFF66H	Same as RL78/G1A (64-pin products)	TDR03L	TDR03	Timer data register 03	TDR03L	TDR03
FFF67H		TDR03H			TDR03H	
FFF68H	Same as RL78/G1A (64-pin products)	TDR04		Timer data register 04	TDR04	
FFF69H						
FFF6AH	Same as RL78/G1A (64-pin products)	TDR05		Timer data register 05	TDR05	
FFF6BH						
FFF6CH	Same as RL78/G1A (64-pin products)	TDR06		Timer data register 06	TDR06	
FFF6DH						
FFF6EH	Same as RL78/G1A (64-pin products)	TDR07		Timer data register 07	TDR07	
FFF6FH						

Table 3-2. List of Differences in Special Function Registers (SFRs) (2/4)

Note The bit setting is different from that of RL78/G1A (64-pin products).

Address	RL78/G1E (80-pin products)	RL78/G1A (64-pin products)		
	SFRs Name	Symbol	SFRs Name	Symbol	
FFF90H	Same as RL78/G1A (64-pin products)	ITMC	Interval timer control register	ITMC	
FFF91H					
FFF92H			Second count register	SEC	
FFF93H			Minute count register	MIN	
FFF94H			Hour count register	HOUR	
FFF95H			Week count register	WEEK	
FFF96H			Day count register	DAY	
FFF97H			Month count register	MONTH	
FFF98H			Year count register	YEAR	
FFF99H			Watch error correction register	SUBCUD	
FFF9AH			Alarm minute register	ALARMWM	
FFF9BH			Alarm hour register	ALARMWH	
FFF9CH			Alarm week register	ALARMWW	
FFF9DH			Real-time clock control register 0	RTCC0	
FFF9EH			Real-time clock control register 1	RTCC1	
FFFA0H	Clock operation mode control register Note	CMC	Clock operation mode control register	СМС	
FFFA1H	Clock operation status control register Note	CSC	Clock operation status control register	CSC	
FFFA2H	Same as RL78/G1A (64-pin products)	OSTC	Oscillation stabilization time	OSTC	
			counter status register		
FFFA3H	Same as RL78/G1A (64-pin products)	OSTS	Oscillation stabilization time	OSTS	
			select register		
FFFA4H	System clock control register Note	СКС	System clock control register	СКС	
FFFA5H	Clock output select register 0 Note	CKS0	Clock output select register 0	CKS0	
FFFA6H			Clock output select register 1	CKS1	
FFFA8H	Same as RL78/G1A (64-pin products)	RESF	Reset control flag register	RESF	
FFFA9H	Same as RL78/G1A (64-pin products)	LVIM	Voltage detection register	LVIM	
FFFAAH	Same as RL78/G1A (64-pin products)	LVIS	Voltage detection level register	LVIS	
FFFABH	Same as RL78/G1A (64-pin products)	WDTE	Watchdog timer enable register	WDTE	
FFFACH	Same as RL78/G1A (64-pin products)	CRCIN	CRC input register	CRCIN	

Table 3-2. List of Differences in Special Function Registers (SFRs) (3/4)

Note The bit setting is different from that of RL78/G1A (64-pin products).

Address	RL78/G1E (80-pin products)		RL78/G1A (64-pin products)			
	SFRs Name	Symbol		SFRs Name	ame Symbol	
FFFB0H	Same as RL78/G1A (64-pin products)	DSA0		DMA SFR address register 0	DSA0	
FFFB1H	Same as RL78/G1A (64-pin products)	DSA1		DMA SFR address register 1	DSA1	
FFFB2H	Same as RL78/G1A (64-pin products)	DRA0L	DRA0	DMA RAM address register 0L	DRA0L	DRA0
FFFB3H	Same as RL78/G1A (64-pin products)	DRA0H		DMA RAM address register 0H	DRA0H	
FFFB4H	Same as RL78/G1A (64-pin products)	DRA1L	DRA1	DMA RAM address register 1L	DRA1L	DRA1
FFFB5H	Same as RL78/G1A (64-pin products)	DRA1H	-	DMA RAM address register 1H	DRA1H	
FFFB6H	Same as RL78/G1A (64-pin products)	DBC0L	DBC0	DMA byte count register 0L	DBC0L	DBC0
FFFB7H	Same as RL78/G1A (64-pin products)	DBC0H	-	DMA byte count register 0H	DBC0H	-
FFFB8H	Same as RL78/G1A (64-pin products)	DBC1L	DBC1	DMA byte count register 1L	DBC1L	DBC1
FFFB9H	Same as RL78/G1A (64-pin products)	DBC1H	-	DMA byte count register 1H	DBC1H	-
FFFBAH	Same as RL78/G1A (64-pin products)	DMC0		DMA mode control register 0	DMC0	
FFFBBH	Same as RL78/G1A (64-pin products)	DMC1		DMA mode control register 1	DMC1	
FFFBCH	Same as RL78/G1A (64-pin products)	DRC0		DMA operation control register 0	DRC0	
FFFBDH	Same as RL78/G1A (64-pin products)	DRC1		DMA operation control register 1	DRC1	
FFFD0H	Interrupt mask flag register 2L Note	IF2L	IF2	Interrupt mask flag register 2L	IF2L	IF2
FFFD1H	Interrupt mask flag register 2H Note	IF2H	" 2	Interrupt mask flag register 2H	IF2H	
FFFD4H	Interrupt mask flag register 0L Note	MK2L	MK2	Interrupt mask flag register 0L	MK2L	MK2
FFFD5H	Interrupt mask flag register 2H Note	MK2H	IVITAL	Interrupt mask flag register 2H	MK2H	IVITAL
FFFD8H	Priority specification flag register 02L Note	PR02L	PR02	Priority specification flag register 02L	PR02L	PR02
FFFD9H	Priority specification flag register 02H ^{Note}	PR02H	11102	Priority specification flag register 02L	PR02L	11102
FFFDCH	Priority specification flag register 12L ^{Note}	PR12L	PR12	Priority specification flag register 12L	PR12L	PR12
FFFDDH	Priority specification flag register 12L	PR12L	FNIZ	Priority specification flag register 12L	PR12L	
FFFE0H	Interrupt mask flag register 0L Note	IFOL	IF0	Interrupt mask flag register 0L	IFOL	IF0
FFFE1H	Interrupt mask flag register 0H Note	IF0H		Interrupt mask flag register 0L	IFOH	
FFFE2H	Interrupt mask flag register 1L Note	IF1L	IF1	Interrupt mask flag register 1L	IF1L	IF1
FFFE3H	Interrupt mask flag register 1H Note	IF1L		1 0 0	IF1L	
	bl		MKO	Interrupt mask flag register 1H	MKOL	MKO
FFFE4H	Interrupt mask flag register 0L Note	MKOL MKOH	MK0	Interrupt mask flag register OL		MK0
FFFE5H FFFE6H	Interrupt mask flag register 1L Note		MK1	Interrupt mask flag register 0H	MKOH	MK1
		MK1L	IVIK 1	Interrupt mask flag register 1L	MK1L	IVIK 1
FFFE7H	Interrupt mask flag register 1H Note	MK1H		Interrupt mask flag register 1H	MK1H	
FFFE8H	Priority specification flag register 00L Note	PR00L	PR00	Priority specification flag register 00L	PR00L	PR00
FFFE9H	Priority specification flag register 00H Note	PR00H	DD04	Priority specification flag register 00H	PR00H	DD04
FFFEAH	Priority specification flag register 01L Note	PR01L	PR01	Priority specification flag register 01L	PR01L	PR01
FFFEBH	Priority specification flag register 01H Note	PR01H	DD 40	Priority specification flag register 01H	PR01H	DD 40
FFFECH	Priority specification flag register 10L Note	PR10L	PR10	Priority specification flag register 10L	PR10L	PR10
FFFEDH	Priority specification flag register 10H Note	PR10H	0044	Priority specification flag register 10H	PR10H	0044
FFFEEH	Priority specification flag register 11L Note	PR11L	PR11	Priority specification flag register 11L	PR11L	PR11
FFFEFH	Priority specification flag register 11H Note	PR11H MDAL		Priority specification flag register 11H Multiplication/division data	PR11H MDAL	
FFFF0H	Same as RL78/G1A (64-pin products)	NDAL		register A (L)	NDAL	
FFFF1H	Same as RL78/G1A (64-pin products)	MDAH		Multiplication/division data	MDAH	
FFFF2H FFFF3H	Same as NETO/GTA (04-pin products)			register A (H)		
FFFF4H	Same as RL78/G1A (64-pin products)	MDBH		Multiplication/division data	MDBH	
FFFF5H				register B (L)		
FFFF6H	Same as RL78/G1A (64-pin products)	MDBL		Multiplication/division data	MDBL	
FFFF7H				register B (H)		
FFFFEH	Same as RL78/G1A (64-pin products)	PMC		Processor mode control register	PMC	

Table 3-2. List of Differences in Special Function Registers (SFRs) (4/4)

3. 3. 2. 5 Expanded special function registers (2nd SFRs)

The differences in expanded special function registers (2nd SFRs) between RL78/G1E (64-pin products, 80-pin products) and RL78/G1A (64-pin products) are shown in the tables below.

(1) 64-pin products

Address	RL78/G1E (64-pin product	ts)	RL78/G1A (64-pin products)		
	2nd SFRs Name	Symbol	2nd SFRs Name	Symbol	
F0010H	Same as RL78/G1A (64-pin products)	ADM2	A/D converter mode register 2	ADM2	
F0011H	Same as RL78/G1A (64-pin products)	ADUL	Conversion result comparison	ADUL	
			upper limit setting register		
F0012H	Same as RL78/G1A (64-pin products)	ADLL	Conversion result comparison	ADLL	
			lower limit setting register		
F0013H	Same as RL78/G1A (64-pin products)	ADTES	A/D test register	ADTES	
=0030H	Pull-up resistor option register 0 Note	PU0	Pull-up resistor option register 0	PU0	
F0031H	Pull-up resistor option register 1 Note	PU1	Pull-up resistor option register 1	PU1	
F0033H			Pull-up resistor option register 3	PU3	
F0034H	Pull-up resistor option register 4 Note	PU4	Pull-up resistor option register 4	PU4	
F0035H			Pull-up resistor option register 5	PU5	
F0037H	Pull-up resistor option register 7 Note	PU7	Pull-up resistor option register 7	PU7	
F003CH			Pull-up resistor option register 12	PU12	
F003EH			Pull-up resistor option register 14	PU14	
F0040H	Port input mode register 0 Note	PIM0	Port input mode register 0	PIM0	
F0041H	Port input mode register 1 Note	PIM1	Port input mode register 1	PIM1	
F0050H	Port output mode register 0 Note	POM0	Port output mode register 0	POM0	
F0051H	Port output mode register 1 Note	POM1	Port output mode register 1	POM1	
F0055H			Port output mode register 5	POM5	
F0057H			Port output mode register 7	POM7	
=0060H	Same as RL78/G1A (64-pin products)	PMC0	Port mode control register 0	PMC0	
=0061H	Port mode control register 1 Note	PMC1	Port mode control register 1	PMC1	
=0063H			Port mode control register 3	PMC3	
F0064H	Same as RL78/G1A (64-pin products)	PMC4	Port mode control register 4	PMC4	
F0065H			Port mode control register 5	PMC5	
=0067H	Same as RL78/G1A (64-pin products)	PMC7	Port mode control register 7	PMC7	
F006CH			Port mode control register 12	PMC12	
=0070H	Same as RL78/G1A (64-pin products)	NFEN0	Noise filter enable register 0	NFEN0	
F0071H	Noise filter enable register 1 Note	NFEN1	Noise filter enable register 1	NFEN1	

Table 3-3. List of Differences in Expanded Special Function Registers (2nd SFRs) (1/6)

Note The bit setting is different from that of RL78/G1A (64-pin products).

<R>

Address	RL78/G1E (64-pin products)			RL78/G1A (64-pin products)			
	2nd SFRs Name	Syr	nbol	2nd SFRs Name	Syı	nbol	
F0073H	Same as RL78/G1A (64-pin products)	ISC		Input switch control register	ISC		
F0074H	Timer input select register 0 ^{Note}	TIS0		Timer input select register 0	TIS0		
F0076H	A/D port configuration register Note	ADPC		A/D port configuration register	ADPC		
F0077H	Peripheral I/O redirection register Note	PIOR		Peripheral I/O redirection register	PIOR		
F0078H	Same as RL78/G1A (64-pin products)	IAWCTL	_	Invalid memory access	IAWCTL		
				detection control register			
F007CH	Same as RL78/G1A (64-pin products)	GAIDIS		Global analog input disable register	GAIDIS		
F007DH				Global digital input disable register	GDIDIS		
F0090H	Same as RL78/G1A (64-pin products)	DFLCTL	-	Data flash control register	DFLCTL		
F00A0H	Same as RL78/G1A (64-pin products)	HIOTRN	Λ	High-speed on-chip oscillator	HIOTRM		
				trimming register			
F00A8H	Same as RL78/G1A (64-pin products)	HOCOD	VIV	High-speed on-chip oscillator	HOCODI	V	
				frequency select register			
F00E0H	Same as RL78/G1A (64-pin products)	MDCL		Multiplication/division	MDCL		
				data register C (L)			
F00E2H	Same as RL78/G1A (64-pin products)	MDCH		Multiplication/division	MDCH		
				data register C (H)			
F00E8H	Same as RL78/G1A (64-pin products)	MDUC		Multiplication/division control register	MDUC		
F00F0H	Peripheral enable register 0 Note	PER0		Peripheral enable register 0	PER0		
F00F3H	Subsystem clock supply mode	OSMC		Subsystem clock supply mode	OSMC		
	control register Note			control register			
F00F5H	Same as RL78/G1A (64-pin products)	RPECTI	L	RAM parity error control register	RPECTL		
F00FEH	Same as RL78/G1A (64-pin products)	BCDAD	J	BCD adjust result register	BCDADJ		
F0100H	Same as RL78/G1A (64-pin products)	SSR00L	SSR00	Serial status register 00	SSR00L	SSR00	
F0101H		—			-		
F0102H	Same as RL78/G1A (64-pin products)	SSR01L	SSR01	Serial status register 01	SSR01L	SSR01	
F0103H		—			-		
F0104H	Same as RL78/G1A (64-pin products)	SSR02L	SSR02	Serial status register 02	SSR02L	SSR02	
F0105H		—			-		
F0106H	Same as RL78/G1A (64-pin products)	SSR03L	SSR03	Serial status register 03	SSR03L	SSR03	
F0107H		_			-		
F0108H	Same as RL78/G1A (64-pin products)	SIR00L	SIR00	Serial flag clear trigger register 00	SIR00L	SIR00	
F0109H]	_			—		
F010AH	Same as RL78/G1A (64-pin products)	SIR01L	SIR01	Serial flag clear trigger register 01	SIR01L	SIR01	
F010BH		-]		_]	
F010CH	Same as RL78/G1A (64-pin products)	SIR02L	SIR02	Serial flag clear trigger register 02	SIR02L	SIR02	
F010DH		-]		_]	
F010EH	Same as RL78/G1A (64-pin products)	SIR03L	SIR03	Serial flag clear trigger register 03	SIR03L	SIR03	
F010FH	1 ,	—	1		-	1	

Table 3-3. List of Differences in Expanded Special Function Registers (2nd SFRs) (2/6)

Note The bit setting is different from that of RL78/G1A (64-pin products).

Address	RL78/G1E (64-pin produ	cts)	RL78/G1A (64-pin products)			
	2nd SFRs Name	Syr	nbol	2nd SFRs Name	Syr	nbol
F0110H	Same as RL78/G1A (64-pin products)	SMR00		Serial mode register 00	SMR00	
F0111H						
F0112H	Serial mode register 01 Note	SMR01		Serial mode register 01	SMR01	
F0113H						
F0114H	Serial mode register 02 Note	SMR02		Serial mode register 02	SMR02	
F0115H						
F0116H	Serial mode register 03 Note	SMR03		Serial mode register 03	SMR03	
F0117H						
F0118H	Same as RL78/G1A (64-pin products)	SCR00		Serial communication operation	SCR00	
F0119H				setting register 00		
F011AH	Serial communication operation	SCR01		Serial communication operation	SCR01	
F011BH	setting register 01 Note			setting register 01		
F011CH	Serial communication operation	SCR02		Serial communication operation	SCR02	
F011DH	setting register 02 Note			setting register 02		
F011EH	Serial communication operation	SCR03		Serial communication operation	SCR03	
F011FH	setting register 03 Note		- r	setting register 03		1
F0120H	Same as RL78/G1A (64-pin products)	SE0L	SE0	Serial channel enable status register 0	SE0L	SE0
F0121H		_			—	
F0122H	Same as RL78/G1A (64-pin products)	SS0L	SS0	Serial channel start register 0	SS0L	SS0
F0123H						
F0124H	Same as RL78/G1A (64-pin products)	STOL	ST0	Serial channel stop register 0	ST0L	ST0
F0125H					-	
F0126H	Same as RL78/G1A (64-pin products)	SPS0L	SPS0	Serial clock select register 0	SPS0L	SPS0
F0127H					_	
F0128H	Same as RL78/G1A (64-pin products)	SO0		Serial output register 0	SO0	
F0129H						I
F012AH	Same as RL78/G1A (64-pin products)	SOE0L	SOE0	Serial output enable register 0	SOE0L	SOE0
F012BH		-	0.01.0		-	0.01.0
F0134H	Same as RL78/G1A (64-pin products)	SOLOL	SOL0	Serial output level register 0	SOLOL	SOL0
F0135H		-	0000		-	0000
F0138H	Same as RL78/G1A (64-pin products)	SSC0L	SSC0	Serial standby control register 0	SSCOL	SSC0
F0140H	Same as RL78/G1A (64-pin products)	SSR10L	SSR10	Serial status register 10	SSR10L	SSR10
F0141H		_			_	
F0142H	Same as RL78/G1A (64-pin products)	SSR11L	SSR11	Serial status register 11	SSR11L	SSR11
F0143H		—				

Address	RL78/G1E (64-pin produc	RL78/G1A (64-pin products)				
	2nd SFRs Name	Symbol		2nd SFRs Name	Symbol	
F0148H	Same as RL78/G1A (64-pin products)	SIR10L	SIR10	Serial flag clear trigger register 10	SIR10L	SIR10
F0149H		—			-	
F014AH	Same as RL78/G1A (64-pin products)	SIR11L	SIR11	Serial flag clear trigger register 11	SIR11L	SIR11
F014BH		—			_	
F0150H	Serial mode register 10 Note	SMR10		Serial mode register 10	SMR10	
F0151H						
F0152H	Serial mode register 11 Note	SMR11		Serial mode register 11	SMR11	
F0153H						
F0158H	Serial communication operation setting	SCR10		Serial communication operation setting	SCR10	
F0159H	register 10 ^{Note}			register 10		
F015AH	Serial communication operation setting	SCR11		Serial communication operation setting	SCR11	
F015BH	register 11 ^{Note}			register 11		
F0160H	Same as RL78/G1A (64-pin products)	SE1L	SE1	Serial channel enable status register 1	SE1L	SE1
F0161H		_			_]
F0162H	Same as RL78/G1A (64-pin products)	SS1L	SS1	Serial channel start register 1	SS1L	SS1
F0163H		—			_]
F0164H	Same as RL78/G1A (64-pin products)	ST1L	ST1	Serial channel stop register 1	ST1L	ST1
F0165H		—			_	
F0166H	Same as RL78/G1A (64-pin products)	SPS1L	SPS1	Serial clock select register 1	SPS1L	SPS1
F0167H		_			_	
F0168H	Same as RL78/G1A (64-pin products)	SO1		Serial output register 1	SO1	
F0169H						
F016AH	Same as RL78/G1A (64-pin products)	SOE1L	SOE1	Serial output enable register 1	SOE1L	SOE1
F016BH		—			_	
F0174H	Same as RL78/G1A (64-pin products)	SOL1L	SOL1	Serial output level register 1	SOL1L	SOL1
F0175H		—			—	

Table 3-3. List of Differences in Expanded Special Function Registers (2nd SFRs) (4/6)

Address	RL78/G1E (64-pin products)			RL78/G1A (64-pin products)			
	2nd SFRs Name	Symbol	1	2nd SFRs Name	Sym	nbol	
F0180H	Same as RL78/G1A (64-pin products)	TCR00		Timer counter register 00	TCR00		
F0181H	· · · · · · · · · · · · · · · · · · ·						
F0182H	Same as RL78/G1A (64-pin products)	TCR01		Timer counter register 01	TCR01		
F0183H							
F0184H	Same as RL78/G1A (64-pin products)	TCR02		Timer counter register 02	TCR02		
F0185H							
F0186H	Same as RL78/G1A (64-pin products)	TCR03		Timer counter register 03	TCR03		
F0187H							
F0188H	Same as RL78/G1A (64-pin products)	TCR04		Timer counter register 04	TCR04		
F0189H							
F018AH	Same as RL78/G1A (64-pin products)	TCR05		Timer counter register 05	TCR05		
F018BH							
F018CH	Same as RL78/G1A (64-pin products)	TCR06		Timer counter register 06	TCR06		
F018DH							
F018EH	Same as RL78/G1A (64-pin products)	TCR07		Timer counter register 07	TCR07		
F018FH							
F0190H	Same as RL78/G1A (64-pin products)	TMR00		Timer mode register 00	TMR00		
F0191H							
F0192H	Timer mode register 01 Note	TMR01		Timer mode register 01	TMR01		
F0193H							
F0194H	Timer mode register 02 Note	TMR02		Timer mode register 02	TMR02		
F0195H							
F0196H	Timer mode register 03 Note	TMR03		Timer mode register 03	TMR03		
F0197H							
F0198H	Same as RL78/G1A (64-pin products)	TMR04		Timer mode register 04	TMR04		
F0199H							
F019AH	Timer mode register 05 Note	TMR05		Timer mode register 05	TMR05		
F019BH							
F019CH	Timer mode register 06 Note	TMR06		Timer mode register 06	TMR06		
F019DH				_			
F019EH	Same as RL78/G1A (64-pin products)	TMR07		Timer mode register 07	TMR07		
F019FH				_			
F01A0H	Same as RL78/G1A (64-pin products)	TSR00L TSF	K00	Timer status register 00	TSR00L	ISR00	
F01A1H			DOA	Time an effettion as wis from 0.4	-	TODAY	
F01A2H	Same as RL78/G1A (64-pin products)	TSR01L TSF	R01	Timer status register 01	TSR01L	TSR01	
F01A3H			D00	Timor status register 00		TODAC	
F01A4H	Same as RL78/G1A (64-pin products)	TSR02L TSF	R02	Timer status register 02	TSR02L	TSR02	
F01A5H			Doo	Tim on status na sistan 02	-	TODOO	
F01A6H	Same as RL78/G1A (64-pin products)	TSR03L TSF	R03	Timer status register 03	TSR03L	TSR03	
F01A7H			DO 4	Tim on status na sistan 0.4	-	TODA	
F01A8H	Same as RL78/G1A (64-pin products)	TSR04L TSF	R04	Timer status register 04	TSR04L	TSR04	
F01A9H		TSR05L TSF	DOF	Timor status register 05		TSR05	
F01AAH	Same as RL78/G1A (64-pin products)		R05	Timer status register 05	TSR05L	13505	
F01ABH			POG	Timor status register 00		TODAC	
F01ACH	Same as RL78/G1A (64-pin products)	TSR06L TSF	R06	Timer status register 06	TSR06L	TSR06	
F01ADH			D07	Timor status register 07		TODAT	
F01AEH	Same as RL78/G1A (64-pin products)		R07	Timer status register 07	TSR07L	TSR07	
F01AFH		—			—		

Table 3-3. List of Differences in Expanded Special Function Registers (2nd SFRs) (5/6)

Address	RL78/G1E (64-pin produc	RL78/G1A (64-pin products)				
	2nd SFRs Name	Symbol		2nd SFRs Name	Symbol	
F01B0H	Same as RL78/G1A (64-pin products)	TE0L	TE0	Timer channel enable status register 0	TE0L	TE0
F01B1H		-	1		_	
F01B2H	Same as RL78/G1A (64-pin products)	TS0L	TS0	Timer channel start register 0	TS0L	TS0
F01B3H		-			-	
F01B4H	Same as RL78/G1A (64-pin products)	TTOL	TT0	Timer channel stop register 0	TTOL	TT0
F01B5H		-	1		-	
F01B6H	Same as RL78/G1A (64-pin products)	TPS0		Timer clock select register 0	TPS0	
F01B7H						
F01B8H	Timer output register 0 Note	TOOL	TO0	Timer output register 0	TO0L	TO0
F01B9H		-			-	
F01BAH	Timer output enable register 0 Note	TOE0L	TOE0	Timer output enable register 0	TOE0L	TOE0
F01BBH		-	1		-	
F01BCH	Timer output level register 0 Note	TOLOL	TOL0	Timer output level register 0	TOLOL	TOL0
F01BDH		-			-	
F01BEH	Timer output mode register 0 Note	TOMOL	TOM0	Timer output mode register 0	TOMOL	TOM0
F01BFH		-			-	
F0230H				IICA control register 00	IICCTL0	C
F0231H				IICA control register 01	IICCTL0	1
F0232H				IICA low-level width setting register 0	IICWL0	
F0233H				IICA high-level width setting register 0	IICWH0	
F0234H				Slave address register 0	SVA40	
F02F0H	Same as RL78/G1A (64-pin products)	CRC0CTL		Flash memory CRC control register	CRC0CTL	
F02F2H	Same as RL78/G1A (64-pin products)	PGCRCL	_	Flash memory CRC operation	PGCRCL	
				result register		
F02FAH	Same as RL78/G1A (64-pin products)	CRCD		CRC data register	CRCD	

Note The bit setting is different from that of RL78/G1A (64-pin products).

(2) 80-pin products

Address	RL78/G1E (80-pin product	ts)	RL78/G1A (64-pin products)		
	2nd SFRs Name	Symbol	2nd SFRs Name	Symbol	
=0010H	Same as RL78/G1A (64-pin products)	ADM2	A/D converter mode register 2	ADM2	
F0011H	Same as RL78/G1A (64-pin products)	ADUL	Conversion result comparison	ADUL	
			upper limit setting register		
F0012H	Same as RL78/G1A (64-pin products)	ADLL	Conversion result comparison	ADLL	
			lower limit setting register		
=0013H	Same as RL78/G1A (64-pin products)	ADTES	A/D test register	ADTES	
=0030H	Pull-up resistor option register 0 Note	PU0	Pull-up resistor option register 0	PU0	
=0031H	Pull-up resistor option register 1 Note	PU1	Pull-up resistor option register 1	PU1	
F0033H			Pull-up resistor option register 3	PU3	
F0034H	Pull-up resistor option register 4 Note	PU4	Pull-up resistor option register 4	PU4	
F0035H	Same as RL78/G1A (64-pin products)	PU5	Pull-up resistor option register 5	PU5	
F0037H	Pull-up resistor option register 7 Note	PU7	Pull-up resistor option register 7	PU7	
F003CH			Pull-up resistor option register 12	PU12	
F003EH	Pull-up resistor option register 14 Note	PU14	Pull-up resistor option register 14	PU14	
F0040H	Same as RL78/G1A (64-pin products)	PIM0	Port input mode register 0	PIM0	
F0041H	Port input mode register 1 Note	PIM1	Port input mode register 1	PIM1	
F0050H	Same as RL78/G1A (64-pin products)	POM0	Port output mode register 0	POM0	
F0051H	Same as RL78/G1A (64-pin products)	POM1	Port output mode register 1	POM1	
F0055H	Same as RL78/G1A (64-pin products)	POM5	Port output mode register 5	POM5	
F0057H			Port output mode register 7	POM7	
F0060H	Same as RL78/G1A (64-pin products)	PMC0	Port mode control register 0	PMC0	
F0061H	Same as RL78/G1A (64-pin products)	PMC1	Port mode control register 1	PMC1	
F0063H			Port mode control register 3	PMC3	
F0064H	Same as RL78/G1A (64-pin products)	PMC4	Port mode control register 4	PMC4	
F0065H	Same as RL78/G1A (64-pin products)	PMC5	Port mode control register 5	PMC5	
F0067H	Same as RL78/G1A (64-pin products)	PMC7	Port mode control register 7	PMC7	
F006CH			Port mode control register 12	PMC12	
F0070H	Same as RL78/G1A (64-pin products)	NFEN0	Noise filter enable register 0	NFEN0	
F0071H	Noise filter enable register 1 Note	NFEN1	Noise filter enable register 1	NFEN1	

Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (1/6)

Note The bit setting is different from that of RL78/G1A (64-pin products).

<R>

Address	RL78/G1E (80-pin produ	RL78/G1A (64-pin products)				
	2nd SFRs Name	Syr	mbol	2nd SFRs Name	Syı	mbol
F0073H	Same as RL78/G1A (64-pin products)	ISC		Input switch control register	ISC	
F0074H	Timer input select register 0 Note	TIS0		Timer input select register 0	TIS0	
F0076H	A/D port configuration register Note	ADPC		A/D port configuration register	ADPC	
F0077H	Peripheral I/O redirection register Note	PIOR		Peripheral I/O redirection register	PIOR	
F0078H	Same as RL78/G1A (64-pin products)	IAWCTL	-	Invalid memory access	IAWCTL	
				detection control register		
F007CH	Same as RL78/G1A (64-pin products)	GAIDIS		Global analog input disable register	GAIDIS	
F007DH				Global digital input disable register	GDIDIS	
F0090H	Same as RL78/G1A (64-pin products)	DFLCTL	_	Data flash control register	DFLCTL	
F00A0H	Same as RL78/G1A (64-pin products)	HIOTRN	Λ	High-speed on-chip oscillator	HIOTRM	
				trimming register		
F00A8H	Same as RL78/G1A (64-pin products)	HOCOD	лv	High-speed on-chip oscillator	HOCODI	V
				frequency select register		
F00E0H	Same as RL78/G1A (64-pin products)	MDCL		Multiplication/division	MDCL	
				data register C (L)		
F00E2H	Same as RL78/G1A (64-pin products)	MDCH		Multiplication/division	MDCH	
				data register C (H)		
F00E8H	Same as RL78/G1A (64-pin products)	MDUC		Multiplication/division control register	MDUC	
F00F0H	Peripheral enable register 0 Note	PER0		Peripheral enable register 0	PER0	
F00F3H	Subsystem clock supply mode	OSMC		Subsystem clock supply mode	OSMC	
	control registerr ^{Note}			control register		
F00F5H	Same as RL78/G1A (64-pin products)	RPECT		RAM parity error control register	RPECTL	
F00FEH	Same as RL78/G1A (64-pin products)	BCDAD		BCD adjust result register	BCDADJ	-
F0100H	Same as RL78/G1A (64-pin products)	SSR00L	SSR00	Serial status register 00	SSR00L	SSR00
F0101H		—			—	
F0102H	Same as RL78/G1A (64-pin products)	SSR01L	SSR01	Serial status register 01	SSR01L	SSR01
F0103H		—			—	
F0104H	Same as RL78/G1A (64-pin products)	SSR02L	SSR02	Serial status register 02	SSR02L	SSR02
F0105H		—			_	
F0106H	Same as RL78/G1A (64-pin products)	SSR03L	SSR03	Serial status register 03	SSR03L	SSR03
F0107H		—			—	
F0108H	Same as RL78/G1A (64-pin products)	SIR00L	SIR00	Serial flag clear trigger register 00	SIR00L	SIR00
F0109H		—			—	
F010AH	Same as RL78/G1A (64-pin products)	SIR01L	SIR01	Serial flag clear trigger register 01	SIR01L	SIR01
F010BH		-			—]
F010CH	Same as RL78/G1A (64-pin products)	SIR02L	SIR02	Serial flag clear trigger register 02	SIR02L	SIR02
F010DH		_			-	1
F010EH	Same as RL78/G1A (64-pin products)	SIR03L	SIR03	Serial flag clear trigger register 03	SIR03L	SIR03
F010FH		—	1		—	1

Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (2/6)

Note The bit setting is different from that of RL78/G1A (64-pin products).

Address	RL78/G1E (80-pin produ	cts)	RL78/G1A (64-pin products)			
	2nd SFRs Name	Symbol	2nd SFRs Name	Symbol		
F0110H	Same as RL78/G1A (64-pin products)	SMR00	Serial mode register 00	SMR00		
F0111H						
F0112H	Serial mode register 01 Note	SMR01	Serial mode register 01	SMR01		
F0113H						
F0114H	Same as RL78/G1A (64-pin products)	SMR02	Serial mode register 02	SMR02		
F0115H						
F0116H	Serial mode register 03 Note	SMR03	Serial mode register 03	SMR03		
F0117H						
F0118H	Same as RL78/G1A (64-pin products)	SCR00	Serial communication operation	SCR00		
F0119H			setting register 00			
F011AH	Serial communication operation	SCR01	Serial communication operation	SCR01		
F011BH	setting register 01 Note		setting register 01			
F011CH	Same as RL78/G1A (64-pin products)	SCR02	Serial communication operation	SCR02		
F011DH			setting register 02			
F011EH	Serial communication operation	SCR03	Serial communication operation	SCR03		
F011FH	setting register 03 Note		setting register 03			
F0120H	Same as RL78/G1A (64-pin products)	SEOL SEO	Serial channel enable status register 0	SEOL SEO		
F0121H				_		
F0122H	Same as RL78/G1A (64-pin products)	SSOL SSO	Serial channel start register 0	SSOL SSO		
F0123H				_		
F0124H	Same as RL78/G1A (64-pin products)	STOL STO	Serial channel stop register 0	STOL STO		
F0125H		-		-		
F0126H	Same as RL78/G1A (64-pin products)	SPS0L SPS0	Serial clock select register 0	SPS0L SPS0		
F0127H				-		
F0128H	Same as RL78/G1A (64-pin products)	SO0	Serial output register 0	SO0		
F0129H			Carial autaut anable register 0			
F012AH	Same as RL78/G1A (64-pin products)	SOE0L SOE0	Serial output enable register 0	SOE0L SOE0		
F012BH		SOLOL SOLO	Sorial output loval register 0	SOLOL SOLO		
F0134H	Same as RL78/G1A (64-pin products)	SOLOL SOLO	Serial output level register 0	30101 3010		
F0135H		SSCOL SSCO	Serial standby control register 0	SSCOL SSCO		
F0138H	Same as RL78/G1A (64-pin products)	SSCOL SSCO	Senar standby control register o	<u>–</u>		
F0140H	Same as RL78/G1A (64-pin products)	SSR10L SSR10) Serial status register 10	SSR10L SSR10		
F0141H						
F0142H	Same as RL78/G1A (64-pin products)	SSR11L SSR17	I Serial status register 11	SSR11L SSR11		
F0143H				-		

Table 3-4. List of Differences in Ex	cpanded Special Function	Registers (2nd SFRs) (3/6)
--------------------------------------	--------------------------	----------------------------

Address	ldress RL78/G1E (80-pin produ			RL78/G1A (64-pin products)		
	2nd SFRs Name	Symbol		2nd SFRs Name	Symbol	
F0148H	Same as RL78/G1A (64-pin products)	SIR10L	SIR10	Serial flag clear trigger register 10	SIR10L	SIR10
F0149H		—			-	
F014AH	Same as RL78/G1A (64-pin products)	SIR11L	SIR11	Serial flag clear trigger register 11	SIR11L	SIR11
F014BH		_			—	
F0150H	Same as RL78/G1A (64-pin products)	SMR10		Serial mode register 10	SMR10	
F0151H						
F0152H	Serial mode register 11 Note	SMR11		Serial mode register 11	SMR11	
F0153H						
F0158H	Same as RL78/G1A (64-pin products)	SCR10		Serial communication operation setting	SCR10	
F0159H				register 10		
F015AH	Serial communication operation setting	SCR11		Serial communication operation setting	SCR11	
F015BH	register 11 ^{Note}			register 11		
F0160H	Same as RL78/G1A (64-pin products)	SE1L	SE1	Serial channel enable status register 1	SE1L	SE1
F0161H		—			—	
F0162H	Same as RL78/G1A (64-pin products)	SS1L	SS1	Serial channel start register 1	SS1L	SS1
F0163H		_			_	
F0164H	Same as RL78/G1A (64-pin products)	ST1L	ST1	Serial channel stop register 1	ST1L	ST1
F0165H					_	
F0166H	Same as RL78/G1A (64-pin products)	SPS1L	SPS1	Serial clock select register 1	SPS1L	SPS1
F0167H		_			-	
F0168H	Same as RL78/G1A (64-pin products)	SO1		Serial output register 1	SO1	
F0169H			1			
F016AH	Same as RL78/G1A (64-pin products)	SOE1L	SOE1	Serial output enable register 1	SOE1L	SOE1
F016BH		_				
F0174H	Same as RL78/G1A (64-pin products)	SOL1L	SOL1	Serial output level register 1	SOL1L	SOL1
F0175H		—			—	

Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (4/6)

Address	RL78/G1E (80-pin products)			RL78/G1A (64-pin products)			
	2nd SFRs Name Symbol			2nd SFRs Name	Sym	nbol	
F0180H	Same as RL78/G1A (64-pin products)	TCR00	Timer co	unter register 00	TCR00		
F0181H							
F0182H	Same as RL78/G1A (64-pin products)	TCR01	Timer co	unter register 01	TCR01		
F0183H	· · · · · · · · · · · · · · · · · · ·						
F0184H	Same as RL78/G1A (64-pin products)	TCR02	Timer co	unter register 02	TCR02		
F0185H							
F0186H	Same as RL78/G1A (64-pin products)	TCR03	Timer co	unter register 03	TCR03		
F0187H							
F0188H	Same as RL78/G1A (64-pin products)	TCR04	Timer co	unter register 04	TCR04		
F0189H]						
F018AH	Same as RL78/G1A (64-pin products)	TCR05	Timer co	unter register 05	TCR05		
F018BH]						
F018CH	Same as RL78/G1A (64-pin products)	TCR06	Timer co	unter register 06	TCR06		
F018DH							
F018EH	Same as RL78/G1A (64-pin products)	TCR07	Timer co	unter register 07	TCR07		
F018FH							
F0190H	Same as RL78/G1A (64-pin products)	TMR00	Timer mo	ode register 00	TMR00		
F0191H							
F0192H	Timer mode register 01 Note	TMR01	Timer mo	ode register 01	TMR01		
F0193H							
F0194H	Timer mode register 02 Note	TMR02	Timer mo	ode register 02	TMR02		
F0195H							
F0196H	Timer mode register 03 Note	TMR03	Timer mo	ode register 03	TMR03		
F0197H				The second second second second			
F0198H	Same as RL78/G1A (64-pin products)	TMR04	Timer mo	ode register 04	TMR04		
F0199H							
F019AH	Timer mode register 05 Note	TMR05	Timer mo	ode register 05	TMR05		
F019BH							
F019CH	Timer mode register 06 Note	TMR06	Timer mo	ode register 06	TMR06		
F019DH			T				
F019EH	Same as RL78/G1A (64-pin products)	TMR07	i imer mo	ode register 07	TMR07		
F019FH					TODOOL	TODOO	
F01A0H	Same as RL78/G1A (64-pin products)	TSR00L TSF	ROU Timer sta	atus register 00	TSR00L	ISRUU	
F01A1H		TSR01L TSF		atus register 01	 TSR01L	TSR01	
F01A2H	Same as RL78/G1A (64-pin products)	ISKUIL ISP			ISKUL	ISKUI	
F01A3H		TSR02L TSF	202 Timer sta	atus register 02	TSR02L	TSR02	
F01A4H	Same as RL78/G1A (64-pin products)	TOROZE TOP			TOROZE	101(02	
F01A5H		TSR03L TSF	203 Timer sta	atus register 03	 TSR03L	TSR03	
F01A6H	Same as RL78/G1A (64-pin products)					. 51.05	
F01A7H	Come ee DI 78/C1A (64 pin producto)	TSR04L TSF	R04 Timer sta	atus register 04	TSR04L	TSR04	
F01A8H	Same as RL78/G1A (64-pin products)					10110-1	
F01A9H	Samo as PL 78/G1A (64 pin products)	TSR05I TSF	R05 Timer sta	itus register 05	TSR05	TSR05	
	Same as RE70/GTA (04-pin products)						
	Samo as PL 78/G1A (64 pin products)	TSR06I TSF	R06 Timer sta	itus register 06	TSR06	TSR06	
						1 0.000	
	Some as PL 79/C1A /G4 sin products)	TSR07I TSF	R07 Timer sta	itus register 07	TSR07	TSR07	
	Same as RL/0/GTA (64-pin products)					101.07	
F01A9H F01ABH F01ACH F01ACH F01AEH F01AEH	Same as RL78/G1A (64-pin products) Same as RL78/G1A (64-pin products) Same as RL78/G1A (64-pin products)	TSR05L TSF TSR06L TSF TSR07L TSF 	R06 Timer sta	atus register 05 atus register 06 atus register 07	TSR05L — TSR06L — TSR07L —		

Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (5/6)

Address	RL78/G1E (80-pin products)			RL78/G1A (64-pin products)			
	2nd SFRs Name	Symbol		2nd SFRs Name	Symbol		
F01B0H	Same as RL78/G1A (64-pin products)	TE0L	TE0	Timer channel enable status register 0	TE0L	TE0	
F01B1H		-	1		_		
F01B2H	Same as RL78/G1A (64-pin products)	TS0L	TS0	Timer channel start register 0	TS0L	TS0	
F01B3H		_			-		
F01B4H	Same as RL78/G1A (64-pin products)	TT0L	TT0	Timer channel stop register 0	TTOL	TT0	
F01B5H		_	1		-		
F01B6H	Same as RL78/G1A (64-pin products)	TPS0		Timer clock select register 0	TPS0		
F01B7H							
F01B8H	Timer output register 0 Note	TO0L	TO0	Timer output register 0	TO0L	TO0	
F01B9H		-			-		
F01BAH	Timer output enable register 0 Note	TOE0L	TOE0	Timer output enable register 0	TOE0L	TOE0	
F01BBH		_	1		-		
F01BCH	Timer output level register 0 Note	TOLOL	TOL0	Timer output level register 0	TOLOL	TOL0	
F01BDH		_			-		
F01BEH	Timer output mode register 0 Note	TOMOL	TOM0	Timer output mode register 0	TOMOL	TOM0	
F01BFH		_			-		
F0230H				IICA control register 00	IICCTL0	0	
F0231H				IICA control register 01	IICCTL01		
F0232H				IICA low-level width setting register 0	IICWL0		
F0233H				IICA high-level width setting register 0	IICWH0		
F0234H				Slave address register 0	SVA40		
F02F0H	Same as RL78/G1A (64-pin products)	CRC0CTL		Flash memory CRC control register	CRC0CTL		
F02F2H	Same as RL78/G1A (64-pin products)	,		Flash memory CRC operation	PGCRCL		
				result register			
F02FAH	Same as RL78/G1A (64-pin products)	CRCD		CRC data register	CRCD		

Note The bit setting is different from that of RL78/G1A (64-pin products).

3. 3. 3 Instruction address addressing

See 3.3 Instruction Address Addressing in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 3. 4 Addressing for processing data addresses

See 3. 4 Addressing for Processing Data Addresses in RL78/G1A Hardware User's Manual (R01UH0305E).

3.4 Port Functions

In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 4 PORT FUNCTIONS in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 4. 1 Port functions

The RL78/G1E microcontrollers (64-pin products, 80-pin products) are provided with digital I/O ports, which enable variety of control operations. In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the alternate functions, see **CHAPTER 2 PIN FUNCTIONS**.

3. 4. 2 Port configuration

Ports include the following hardware.

Item	Configuration				
Control registers	Port mode registers (PM0 to PM2, PM4 to PM7, PM14, PM15)				
	Port registers (P0 to P2, P4, P5, P7, P12 to P14)				
	Pull-up resistor option registers (PU0, PU1, PU4, PU5, PU7, PU14)				
	Port input mode registers (PIM0, PIM1)				
	Port output mode registers (POM0, POM1, POM5)				
	Port mode control registers (PMC0, PMC1, PMC3, PMC5, PMC7)				
	A/D port configuration register (ADPC)				
	Peripheral I/O redirection register (PIOR)				
	Global analog input disable register (GAIDIS)				
Port	· 64-pin products				
	Total: 24 (CMOS I/O: 20, CMOS input: 3, CMOS output: 1)				
	80-pin products				
	Total: 30 (CMOS I/O: 26, CMOS input: 3, CMOS output: 1)				
Pull-up resistor	· 64-pin products Total: 16				
	· 80-pin products Total: 21				

Table 3-5. Port Configuration

For details of each port, also see 4.2 Port Configuration in RL78/G1A Hardware User's Manual (R01UH0305E).

3.4.2.1 Port 0

Port 0 is an I/O port with an output latch. Port 0 can be set to the input mode or output mode in 1-bit units using port mode register 0 (PM0). When the P00 to P04 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 0 (PU0). Input to the P00, P01, P03 and P04 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units using port input mode register 0 (PIM0). Output from the P02 to P04 pins can be specified as normal CMOS output or N-ch open-drain output (V_{DD} tolerance) in

1-bit units using port output mode register 0 (POM0). The P02 and P03 pins can be specified as digital input/output or analog input in 1-bit units, using port mode control register 0 (PMC0). This port can be also used for timer I/O, A/D converter analog input, serial interface data I/O, clock I/O, and key interrupt input.

When reset signal is generated, the following configuration will be set.

- $\cdot\,$ P00, P01 and P04 pins \cdots Input mode
- P02 and P03 pins ··· Analog input

3.4.2.2 Port 1

Port 1 is an I/O port with an output latch. Port 1 can be set to the input mode or output mode in 1-bit units using port mode register 1 (PM1). When the P10 to P15 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 1 (PU1). Input to the P10, P11, P14 to P15 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units using port input mode register 1 (PIM1). Output from the P10 to P15 pins can be specified as normal CMOS output or N-ch open-drain output (V_{DD} tolerance) in

<R>

1-bit units using port output mode register 1 (POM1). The P10 to P15 pins can be specified as digital input/output or analog input in 1-bit units, using port mode control register 1 (PMC1). This port can be also used for A/D converter analog input, serial interface data I/O, programming UART I/O, and key return input.

When reset signal is generated, the P10 to P15 pins will be set to analog input.

3.4.2.3 Port 2

Port 2 is an I/O port with an output latch. Port 2 can be set to the input mode or output mode in 1-bit units using port mode register 2 (PM2). This port can be also used for A/D converter analog input and reference voltage input, and key return input pin. Setting digital or analog to each pin can be done in A/D port configuration register (ADPC). When reset signal is generated, the P20/ANI0 to P24/ANI4 pins will be set to analog input.

3.4.2.4 Port 3

Port 3 is not available for RL78/G1E.

3. 4. 2. 5 Port 4

<R>

Port 4 is an I/O port with an output latch. Port 4 can be set to the input mode or output mode in 1-bit units using port mode register 4 (PM4). When the P40 to P42 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 4 (PU4). The P41 pin can be specified as digital input/output or analog input, using port mode control register 4 (PMC4). This port can be also used for A/D converter analog input, data I/O for a flash memory programmer/debugger, and timer I/O. Be sure to connect an external pull-up resistor to the P40 pins when on-chip debugging is enabled to P40 (by using an option byte). When reset signal is generated, the P40 to P42 pins will be set to input mode.

3. 4. 2. 6 Port 5

<R>

Port 5 is an I/O port with an output latch. Port 5 can be set to the input mode or output mode in 1-bit units using port mode register 5 (PM5). When the P50 and P51 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 5 (PU5). Output from the P50 pins can be specified as normal CMOS output or N-ch open-drain output (V_{DD} tolerance) in 1-bit units using port output mode register 5 (POM5). The P50 and P51 pins can be specified as digital input/output or analog input in 1-bit units, using port mode control register 5 (PMC5). This port can be also used for A/D converter analog input, and external interrupt request input. When reset signal is generated, the P50 and P51 pins will be set to input mode.

3.4.2.7 Port 6

Port 6 is not available for RL78/G1E.

3. 4. 2. 8 Port 7

<R>

Port 7 is an I/O port with an output latch. Port 7 can be set to the input mode or output mode in 1-bit units using port mode register 7 (PM7). When the P70 to P73 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 7 (PU7). The P70 pin can be specified as digital input/output or analog input, using port mode control register 7 (PMC7). This port can be also used for A/D converter analog input, serial interface data I/O, and clock I/O.

When reset signal is generated, the P70 to P73 pins will be set to input mode.

3. 4. 2. 9 Port 12

P121 and P122 pins are specified as an input-only port. This port can be also used for the pin connecting resonator for main system clock, and external clock input for main system clock.

When reset signal is generated, the P121 and P122 pins will be set to input mode.

3. 4. 2. 10 Port 13

P130 pin is specified as a 1-bit output-only port with an output latch. P137 pin is specified as a 1-bit input-only port and can be also used for external interrupt request input.

3. 4. 2. 11 Port 14

Port 14 is an I/O port with an output latch. Port 14 can be set to the input mode or output mode in 1-bit units using port mode register 14 (PM14). When the P140 pin is used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 14 (PU14). This port can be also used for clock/buzzer output, and external interrupt request input.

When reset signal is generated, the P140 pin will be set to input mode.

3. 4. 2. 12 Port 15

Port 15 is not available for RL78/G1E.

<R>

3. 4. 3 Registers controlling port function

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see **4.3** Registers Controlling Port Function in RL78/G1A Hardware User's Manual (R01UH0305E).

				Bit N	lame			RL78	3/G1E	RL78/G1A
Port		PMxx	Pxx	PUxx	PIMxx	POMxx	PMCxx	(64-pin	(80-pin	(64-pin
		Register	Register	Register	Register	Register	Register	products)	products)	products)
Port 0	0	PM00	P00	PU00	PIM00	-	_	\checkmark	\checkmark	\checkmark
	1	PM01	P01	PU01	PIM01	_	_	\checkmark	\checkmark	
	2	PM02	P02	PU02	_	POM02	PMC02	\checkmark	\checkmark	\checkmark
	3	PM03	P03	PU03	PIM03	POM03	PMC03	\checkmark	\checkmark	
	4	PM04	P04 ^{Note 2}	PU04 Note 2	PIM04 Note2	POM04 ^{Note 2}	_	*	\checkmark	\checkmark
	5	PM05	P05 Note 1	PU05 Note1	-	-	-	*	*	
	6	PM06	P06 ^{Note 1}	PU06 Note 1	_	-	_	*	*	
Port 1	0	PM10	P10	PU10	PIM10	POM10	PMC10	\checkmark	\checkmark	
	1	PM11	P11	PU11	PIM11	POM11	PMC11	\checkmark	\checkmark	
	2	PM12	P12	PU12	-	POM12	PMC12	\checkmark	\checkmark	
	3	PM13	P13	PU13	-	POM13	PMC13	\checkmark	\checkmark	
	4	PM14	P14	PU14	PIM14	POM14	PMC14	\checkmark	\checkmark	
	5	PM15	P15	PU15	PIM15	POM15	PMC15	-	\checkmark	
	6	PM16	P16 ^{Note 1}	PU16 Note 1	PIM16 Note 1	-	-	*	*	
Port 2	0	PM20	P20	_	_	_	_	\checkmark		
	1	PM21	P21	_	_	_	_	\checkmark		
	2	PM22	P22	_	_	_	_	\checkmark	\checkmark	\checkmark
	3	PM23	P23	_	_	_	_	\checkmark		
	4	PM24	P24 Note 2	_	_	_	_	*	\checkmark	
	5	PM25	P25 Note 1	_	_	_	_	*	*	
	6	PM26	P26 Note 1	_	_	_	_	*	*	
	7	PM27	P27 Note 1	_	_	_	_	*	*	

<R> Notes 1.

Not supported by RL78/G1E(Both 64-pin products and 80-pin products) Not supported by RL78/G1E(64-pin products)

<R> **Remark** $\sqrt{}$: Mounted

2.

*: Mounted but there are some differences between RL78/G1E and RL78/G1A

-: Not mounted

<R>

				Bit N	lame			RL78	3/G1E	RL78/G1A
Port		PMxx	Pxx	PUxx	PIMxx	POMxx	PMCxx	(64-pin	(80-pin	(64-pin
		Register	Register	Register	Register	Register	Register	products)	products)	products)
Port 3	0	PM30	P30	PU30	_	-	PMC30	-	-	
	1	PM31	P31	PU31	-	-	PMC31	-	-	
Port 4	0	PM40	P40	PU40	-	-	-	\checkmark		\checkmark
	1	PM41	P41	PU41	_	-	PMC41	\checkmark		
	2	PM42	P42	PU42	_	-	_	\checkmark		
	3	PM43	P43 ^{Note 1}	PU43 ^{Note 1}	-	-	-	*	*	
Port 5	0	PM50	P50	PU50	-	POM50	PMC50	-		
	1	PM51	P51	PU51	_	-	PMC51	-		\checkmark
Port 6	0	PM60	P60 ^{Note 1}	-	_	-	-	*	*	
	1	PM61	P61 ^{Note 1}	_	_	-	-	*	*	
	2	PM62	P62 ^{Note 1}	_	_	-	-	*	*	
	3	PM63	P63 ^{Note 1}	_	_	-	-	*	*	
Port 7	0	PM70	P70	PU70	_	_	PMC70		\checkmark	
	1	PM71	P71	PU71	_	POM71 ^{Note 1}	-	*	*	
	2	PM72	P72	PU72	_	_	_			
	3	PM73	P73	PU73	_	-	-			
	4	PM74	P74 ^{Note 1}	PU74 ^{Note 1}	_	POM74 ^{Note 1}	-	*	*	
	5	PM75	P75 ^{Note 1}	PU75 ^{Note 1}	_	-	-	*	*	
	6	PM76	P76 ^{Note 1}	PU76 ^{Note 1}	_	-	-	*	*	\checkmark
	7	PM77	P77 ^{Note 1}	PU77 ^{Note 1}	_	_	_	*	*	\checkmark
Port 12	0	PM120	P120	PU120	_	-	PMC120	-	-	
	1	_	P121	_	_	-	-	\checkmark		
	2	-	P122	_	_	-	-	\checkmark		\checkmark
	3	-	P123	_	_	-	-	-	_	\checkmark
	4	_	P124	_	_	_	_	_	_	\checkmark
Port 13	0	-	P130	-	_	-	-	\checkmark		
	7	-	P137	-	-	-	-	\checkmark	\checkmark	
Port 14	0	PM140	P140 ^{Note 2}	PU140 ^{Note 2}	_	-	-	*		
	1	PM141	P141 ^{Note 1}	PU141 ^{Note 1}	_	-	_	*	*	
Port 15	0	PM150	P150 ^{Note 1}	_	_	_	_	*	*	
	1	PM151	P151 ^{Note 1}	_	_	_	_	*	*	
	2	PM152	P152 ^{Note 1}	_	_	_	_	*	*	\checkmark
	3	PM153	P153 ^{Note 1}	_	_	_	_	*	*	
	4	PM154	P154 ^{Note 1}	_	_	_	_	*	*	

PMxx, Pxx, PUxx, PIMxx, POMxx, PMCxx registers and the bits mounted on each product (2/2)

<R> Notes 1.

Not supported by RL78/G1E(Both 64-pin products and 80-pin products)

Not supported by RL78/G1E(64-pin products)

<R> Remark $\sqrt{:}$ Mounted

2.

*: Mounted but there are some differences between RL78/G1E and RL78/G1A

-: Not mounted

3. 4. 3. 1 Port mode register (PMxx)

(1) 64-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FFF20H	FFH	R/W
PM1	1	PM16	1	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
PM4	1	1	1	1	PM43	PM42	PM41	PM40	FFF24H	FFH	R/W
PM6	1	1	1	1	PM63	PM62	PM61	PM60	FFF26H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W
PM14	1	1	1	1	1	1	PM141	PM140	FFF2EH	FFH	R/W
PM15	1	1	1	PM154	PM153	PM152	PM151	PM150	FFF2FH	FFH	R/W

Cautions 1. Be sure to clear bits 4 to 6 of the PM0 register, bit 6 of the PM1 register, bits 4 to 7 of the PM2 register, bit 3 of the PM4 register, bits 0 to 3 of the PM6 register, bits 4 to 7 of the PM7 register, bits 0 and 1 of the PM14 register, and bits 0 to 4 of the PM15 register to "0".

2. Be sure to set bit 7 of the PM0 register, bits 5 and 7 of the PM1 register, bits 4 to 7 of the PM4 register, bits 4 to 7 of the PM6 register, bits 2 to 7 of the PM14 register, and bits 5 to 7 of the PM15 register to "1".

	Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
	PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FFF20H	FFH	R/W
	PM1	1	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
	PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
	PM4	1	1	1	1	PM43	PM42	PM41	PM40	FFF24H	FFH	R/W
<r></r>	PM5	1	1	1	1	1	1	PM51	PM50	FFF25H	FFH	R/W
	PM6	1	1	1	1	PM63	PM62	PM61	PM60	FFF26H	FFH	R/W
	PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W
	PM14	1	1	1	1	1	1	PM141	PM140	FFF2EH	FFH	R/W
	PM15	1	1	1	PM154	PM153	PM152	PM151	PM150	FFF2FH	FFH	R/W

(2) 80-pin products

Cautions 1. Be sure to clear bits 5 and 6 of the PM0 register, bit 6 of the PM1 register, bits 5 to 7 of the PM2 register, bit 3 of the PM4 register, bits 0 to 3 of the PM6 register, bits 4 to 7 of the PM7 register, bit 1 of the PM14 register, and bits 0 to 4 of the PM15 register to "0".

<R>

2. Be sure to set bit 7 of the PM0 register, bit 7 of the PM1 register, bits 4 to 7 of the PM4 register, bits 2 to 7 of the PM5 register, bits 4 to 7 of the PM6 register, bits 2 to 7 of the PM14 register, and bits 5 to 7 of the PM15 register to "1".

3. 4. 3. 2 Port register (Pxx)

(1) 64-pin products

S	Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
	P0	0	0	0	0	P03	P02	P01	P00	FFF00H	00H	R/W
	P1	0	0	0	P14	P13	P12	P11	P10	FFF01H	00H	R/W
	P2	0	0	0	0	P23	P22	P21	P20	FFF02H	00H	R/W
	P4	0	0	0	0	0	P42	P41	P40	FFF04H	00H	R/W
	P7	0	0	0	0	P73	P72	P71	P70	FFF07H	00H	R/W
	P12	0	0	0	0	0	P122	P121	0	FFF0CH	Undefined	R/W ^{Note 1}
<r></r>	P13	P137	0	0	0	0	0	0	P130	FFF0DH	Note2	R/W ^{Note 1}

<R> <R>

Notes 1. P121, P122 and P137 are read-only.

- 2. P137: Undefined
 - P130: 0 (output latch)

Cautions Be sure to clear bits 4 to 7 of the P0 register, bits 5 to 7 of the P1 register, bits 4 to 7 of the P2 register, bits 3 to 7 of the P4 register, bits 4 to 7 of the P7 register, and bits 0 and 3 to 7 of the P12 register, bits 1 to 6 of the P13 register to "0".

(2) 80-pin products

2.

	Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
	P0	0	0	0	P04	P03	P02	P01	P00	FFF00H	00H	R/W
	P1	0	0	P15	P14	P13	P12	P11	P10	FFF01H	00H	R/W
	P2	0	0	0	P24	P23	P22	P21	P20	FFF02H	00H	R/W
	P4	0	0	0	0	0	P42	P41	P40	FFF04H	00H	R/W
<r></r>	P5	0	0	0	0	0	0	P51	P50	FFF05H	00H	R/W
	P7	0	0	0	0	P73	P72	P71	P70	FFF07H	00H	R/W
	P12	0	0	0	0	0	P122	P121	0	FFF0CH	Undefined	R/W ^{Note 1}
	P13	P137	0	0	0	0	0	0	P130	FFF0DH	Note 2	R/W ^{Note 1}
	P14	0	0	0	0	0	0	0	P140	FFF0EH	00H	R/W

<R>

Notes 1. P121, P122 and P137 are read-only.

P137: Undefined

P130: 0 (output latch)

<R> Cautions Be sure to clear bits 5 to 7 of the P0 register, bits 6 and 7of the P1 register, bits 5 to 7 of the P2 register, bits 3 to 7 of the P4 register, bits 2 to 7 of the P5 register, bits 4 to 7 of the P7 register, bits 0 and 3 to 7 of the P12 register, bits 1 to 6 of the P13 register, and bits 1 to 7 of the P14 register to "0".

3. 4. 3. 3 Pull-up resistor option register (PUxx)

(1) 64-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PU0	0	0	0	0	PU03	PU02	PU01	PU00	F0030H	00H	R/W
PU1	0	0	0	PU14	PU13	PU12	PU11	PU10	F0031H	00H	R/W
PU4	0	0	0	0	0	PU42	PU41	PU40	F0034H	01H	R/W
PU7	0	0	0	0	PU73	PU72	PU71	PU70	F0037H	00H	R/W

Caution Be sure to clear bits 4 to 7 of the PU0 register, bits 5 to 7 of the PU1 register, bits 3 to 7 of the PU4 register, and bits 4 to 7 of the PU7 register to "0".

(2) 80-pin products

	Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
	PU0	0	0	0	PU04	PU03	PU02	PU01	PU00	F0030H	00H	R/W
	PU1	0	0	PU15	PU14	PU13	PU12	PU11	PU10	F0031H	00H	R/W
	PU4	0	0	0	0	0	PU42	PU41	PU40	F0034H	01H	R/W
<r></r>	PU5	0	0	0	0	0	0	PU51	PU50	F0035H	00H	R/W
	PU7	0	0	0	0	PU73	PU72	PU71	PU70	F0037H	00H	R/W
	PU14	0	0	0	0	0	0	0	PU140	F003EH	00H	R/W

<R>

Caution Be sure to clear bits 5 to 7 of the PU0 register, bits 6 and 7of the PU1 register, bits 3 to 7 of the PU4 register, bits 2 to 7 of the PU5 register, bits 4 to 7 of the PU7 register, and bits 1 to 7 of the PU14 register to "0".

3. 4. 3. 4 Port input mode register (PIMxx)

(1) 64-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PIM0	0	0	0	0	PIM03	0	PIM01	PIM00	F0040H	00H	R/W
PIM1	0	0	0	PIM14	0	0	PIM11	PIM10	F0041H	00H	R/W

<R> Caution Be sure to clear bits 2 and 4 to 7 of the PIM0 register, and bits 2, 3 and 5 to 7 of the PIM1 register to "0".

(2) 80-pin products

	Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
<r></r>	PIM0	0	0	0	PIM04	PIM03	0	PIM01	PIM00	F0040H	00H	R/W
	PIM1	0	0	PIM15	PIM14	0	0	PIM11	PIM10	F0041H	00H	R/W

<R> Caution Be sure to clear bits 2 and 5 to 7 of the PIM0 register, and bits 2, 3, 6 and 7 of the PIM1 register to "0".

3. 4. 3. 5 Port output mode register (POMxx)

(1) 64-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
POM0	0	0	0	0	POM03	POM02	0	0	F0050H	00H	R/W
POM1	0	0	0	POM14	POM13	POM12	POM11	POM10	F0051H	00H	R/W

<R> Caution Be sure to clear bits 0, 1 and 4 to 7 of the POM0 register, and bits 5 to 7 of the POM1 register to "0".

<R> (2) 80-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
POM0	0	0	0	POM04	POM03	POM02	0	0	F0050H	00H	R/W
POM1	0	0	POM15	POM14	POM13	POM12	POM11	POM10	F0051H	00H	R/W
POM5	0	0	0	0	0	0	0	POM50	F0055H	00H	R/W

Caution Be sure to clear bits 0, 1 and 5 to 7 of the POM0 register, bits 6 and 7 of the POM1 register, and bits 1 to 7 of the POM5 register to "0".

3. 4. 3. 6 Port mode control register (PMCxx)

<R> (1) 64-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PMC0	1	1	1	1	PMC03	PMC02	1	1	F0060H	FFH	R/W
PMC1	1	1	1	PMC14	PMC13	PMC12	PMC11	PMC10	F0061H	FFH	R/W
PMC4	1	1	1	1	1	1	PMC41	1	F0064H	FFH	R/W
PMC7	1	1	1	1	1	1	1	PMC70	F0067H	FFH	R/W

Caution Be sure to set bits 0, 1 and 4 to 7 of the PMC0 register, bits 5 to 7 of the PMC1 register, bits 0 and 2 to 7 of the PMC4 register, and bits 1 to 7 of the PMC7 register to "0".

<R> (2) 80-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PMC0	1	1	1	1	PMC03	PMC02	1	1	F0060H	FFH	R/W
PMC1	1	1	PMC15	PMC14	PMC13	PMC12	PMC11	PMC10	F0061H	FFH	R/W
PMC4	1	1	1	1	1	1	PMC41	1	F0064H	FFH	R/W
PMC5	1	1	1	1	1	1	PMC51	PMC50	F0065H	FFH	R/W
PMC7	1	1	1	1	1	1	1	PMC70	F0067H	FFH	R/W

Caution Be sure to set bits 0, 1 and 4 to 7 of the PMC0 register, bits 6 and 7 of the PMC1 register, bits 0 and 2 to 7 of the PMC4 register, bits 2 to 7 of the PMC5 register, and bits 1 to 7 of the PMC7 register to "0".

3. 4. 3. 7 A/D port configuration register (ADPC)

(1) 64-pin products

Address: F0076H After reset: 00H R/W

Symbol	7	6	5	4	3		2	1	0
ADPC	0	0	0	0	0		ADPC2	ADPC1	ADPC0
	-								
					Ar	nalog ir	nput (A)/digi	tal I/O (D) switchir	ng
	ADPC2	ADPC1			ANI3/P23		ANI2/P22	AN11/P21	ANI0/P20
	0	0	0		А		А	А	А
	0	0	1		D		D	D	D
	0	1	0		D		D	D	А
	0	1	1		D		D	А	А
	1	0	0		D		А	А	А
	Other than above				Setting prohibited	d			

Cautions 1. Be sure to clear bits 3 to 7 to "0".

- 2. Set the channel used for A/D conversion to the input mode by using port mode register 2 (PM2).
- 3. Do not set the pin set by the ADPC register as digital I/O by the analog input channel specification register (ADS).
- 4. When using AV_{REFP} and AV_{REFM}, specify ANI0 and ANI1 as the analog input channels and specify input mode by using the port mode register.

(2) 80-pin products

Address	Address: F0076H After reset: 00H R/W											
Symbol	7	6	5	4	3	2	1	0				
ADPC	0	0	0	0	0	ADPC2	ADPC1	ADPC0				
Analog input (A)/digital I/O (D) switching												
	ADPC2	ADPC1	ADPC0	ANI4/P24	ANI3/P23	ANI2/P22	ANI1/P21	ANI0/P20				
	0	0	0	А	А	А	А	А				
	0	0	1	D	D	D	D	D				
	0	1	0	D	D	D	D	А				
	0	1	1	D	D	D	А	А				

D

D

Setting prohibited

Cautions 1. Be sure to clear bits 3 to 7 to "0".

0

0

Other than above

1

1

0

1

2. Set the channel used for A/D conversion to the input mode by using port mode register 2 (PM2).

D

А

A

А

А

А

- 3. Do not set the pin set by the ADPC register as digital I/O by the analog input channel specification register (ADS).
- 4. When using AVREFP and AVREFM, specify ANIO and ANI1 as the analog input channels and specify input mode by using the port mode register.

3. 4. 3. 8 Peripheral I/O redirection register (PIOR)

Address	: F0077H	After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PIOR	0	0	0	0	0	0	PIOR1	PIOR0

Function		64-pin p	products		80-pin products					
		Setting value of	PIOR1, PIOR)	Setting value of PIOR1, PIOR0					
	0, 0	0, 1	1, 0	1, 1	0, 0	0, 1	1, 0	1, 1		
KR0	P70	Setting	P00	P10	P70	Setting	P00	P10		
KR1	P71	prohibited	P01	P11	P71	prohibited	P01	P11		
KR2	P72		P02	P12	P72		P02	P12		
KR3	P73		P03	P13	P73		P03	P13		
KR4	-		-	P14	_		P04	P14		
KR5	-		P22	_	_		P22	P15		
KR6	-		P23	—	—		P23	-		
KR7	_		_	_	_		P24	-		

<R>

Remark -: These functions are not available for use.

3. 4. 3. 9 Global digital input disable register (GDIDIS)

GDIDIS is not available for RL78/G1E.

3. 4. 3. 10 Global analog input disable register (GAIDIS)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **4. 3. 10** Global analog input disable register (GAIDIS) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 4. 4 Port function operation

The operations which are different from that of RL78/G1A (64-pin products) are described below.

3. 4. 4. 1 Writing to I/O port

See 4. 4. 1 Writing to I/O port in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 4. 4. 2 Reading from I/O port

See 4. 4. 2 Reading from I/O port in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 4. 4. 3 Operation on I/O port

See 4. 4. 3 Operation on I/O port in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 4. 4. 4 Handling different potential (1.8 V,2.5 V or 3 V) by using EVDD ≤ VDD

This function is not available, because the EVDD pin is not provided in the RL78/G1E.

<R> 3. 4. 4. 5 Handling different potential (1.8 V ,2.5 V or 3V) by using I/O buffers

It is possible to connect an external device operating on a different potential (1.8 V, 2.5 V or 3V) by switching I/O buffers with the port input mode register (PIMxx) and port output mode register (POMxx).

When receiving input from an external device with a different potential (1.8 V, 2.5 V or 3V), set the port input mode registers 0 and 1 (PIM0 and PIM1) on a bit-by-bit basis to enable normal input (CMOS)/TTL input buffer switching. When outputting data to an external device with a different potential (1.8 V, 2.5 V or 3V), set the port output mode registers 0 and 1 (POM0 and POM1) on a bit-by-bit basis to enable N-ch open drain (V_{DD} tolerance) switching. Following, describes the connection of a serial interface.

(1) Setting procedure when using input ports of UART0 to UART2, CSI00, CSI10, and CSI20 functions for the TTL input buffer

In case of UART0: P11 In case of UART1: P03 In case of UART2: P14 In case of CSI00: P10, P11 In case of CSI10: P03, P04 In case of CSI20: P14, P15

- <1> Using an external resistor, pull up externally the input pin to be used to the power supply of the target device (on-chip pull-up resistor cannot be used).
- <2> Set the corresponding bit of the PIMO and PIM1 registers to 1 to switch to the TTL input buffer. For V_{IH} and V_{IL}, refer to the DC characteristics when the TTL input buffer is selected.
- <3> Enable the operation of the serial array unit and set the mode to the UART/CSI mode.

<R> (2) Setting procedure when using output ports of UART0 to UART2, CSI00, CSI10, and CSI20 functions in N-ch open-drain output mode

```
In case of UART0:P12In case of UART1:P02In case of UART2:P13In case of CSI00:P10, P12In case of CSI10:P02, P04In case of CSI20:P13, P15
```

- <1> Using an external resistor, pull up externally the output pin to be used to the power supply of the target device (on-chip pull-up resistor cannot be used).
- <2> After reset release, the port mode changes to the input mode (Hi-Z).
- <3> Set the output latch of the corresponding port to 1.
- <4> Set the corresponding bit of the POM0 and POM1 registers to 1 to set the N-ch open drain output (VDD withstand voltage) mode.
- <5> Enable the operation of the serial array unit and set the mode to the UART/CSI mode.
- <6> Set the output mode by manipulating the PM0 and PM1 registers. At this time, the output data is high level, so the pin is in the Hi-Z state.
- <R> (3) Setting procedure when using I/O ports of IIC00, IIC10, and IIC20 functions with a different potential (1.8 V ,2.5 V or 3V)

In case of IIC00: P10, P11 In case of IIC10: P03, P04 In case of IIC20: P14, P15

- <1> Using an external resistor, pull up externally the input pin to be used to the power supply of the target device (on-chip pull-up resistor cannot be used).
- <2> After reset release, the port mode is the input mode (Hi-Z).
- <3> Set the output latch of the corresponding port to 1.
- <4> Set the corresponding bit of the POM0 and POM1 registers to 1 to set the N-ch open drain output (VDD tolerance) mode.
- <5> Set the corresponding bit of the PIM0 and PIM1 registers to 1 to switch to the TTL input buffer. For V_{IH} and V_{IL}, refer to the DC characteristics when the TTL input buffer is selected.
- <6> Enable the operation of the serial array unit and set the mode to the simplified I^2C mode.
- <7> Set the corresponding bit of the PM0 and PM1 registers to the output mode (data I/O is possible in the output mode).

At this time, the output data is high level, so the pin is in the Hi-Z state.

<R> 3. 4. 5 Register settings when using alternate function

See 4.5 Register Settings When Using Alternate Function in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 4. 6 Cautions when using port function

See 4. 6 Cautions When Using Port Function in RL78/G1A Hardware User's Manual (R01UH0305E).

3.5 Clock Generator

In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 5 CLOCK GENERATOR in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 5. 1 Functions of clock generator

The clock generator generates the clock to be supplied to the CPU and peripheral hardware. The following two kinds of system clocks and clock oscillators are selectable.

Caution The subsystem clock is not provided in the RL78/G1E (64-pin products, 80-pin products).

(1) Main system clock

<1> X1 oscillator

This circuit oscillates a clock of fx = 1 to 20 MHz by connecting a resonator to X1 and X2.

Oscillation can be stopped by executing the STOP instruction or setting of the MSTOP bit (bit 7 of the clock operation status control register (CSC)).

- <2> High-speed on-chip oscillator (High-speed OCD)
- <R>

The frequency at which to oscillate can be selected from among $f_{IH} = 32, 24, 16, 12, 8, 6, 4, 3, 2 \text{ or } 1 \text{ MHz}$ (typ.) by using the option byte (000C2H). After a reset release, the CPU always starts operating with this high-speed on-chip oscillator clock. Oscillation can be stopped by executing the STOP instruction or setting the HIOSTOP bit (bit 0 of the CSC register).

The frequency specified by using an option byte can be changed by using the high-speed on-chip oscillator frequency select register (HOCODIV). For details about the frequency, see **3. 5. 3. 8** High-speed on-chip oscillator frequency select register (HOCODIV).

The frequencies that can be specified for the high-speed on-chip oscillator by using the option byte and the high-speed on-chip oscillator frequency select register (HOCODIV) are shown below.

Power Supply Voltage	Flash Operation Mode			(Dscillat	ion Fre	quenc	y (MHz)		
		1	2	3	4	6	8	12	16	24	32
$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	HS (high-speed main) mode	\checkmark									
$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$		\checkmark	-	-							
$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	LS (low-speed main) mode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	_	-	-
$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	LV (low-voltage main) mode	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-

An external main system clock ($f_{EX} = 1$ to 20 MHz) can also be supplied from the EXCLK/X2/P122 pin. An external main system clock input can be disabled by executing the STOP instruction or setting of the MSTOP bit.

As the main system clock, a high-speed system clock (X1 clock or external main system clock) or high-speed on-chip oscillator clock can be selected by setting of the MCM0 bit (bit 4 of the system clock control register (CKC)).

<R> (2) Low-speed on-chip oscillator clock (Low-speed on-chip oscillator)

This circuit oscillates a clock of fi∟ = 15 kHz (TYP.).

The low-speed on-chip oscillator clock cannot be used as the CPU clock.

Only the following peripheral hardware runs on the low-speed on-chip oscillator clock.

- Watchdog timer
- 12-bit Interval timer
- <R> This clock operates when bit 4 (WDTON) of the option byte (000C0H), bit 4 (WUTMMCK0) of the subsystem clock supply mode control register (OSMC), or both are set to 1.

However, when WDTON = 1, WUTMMCK0 = 0, and bit 0 (WDSTBYON) of the option byte (000C0H) is 0, oscillation of the low-speed on-chip oscillator stops if the HALT or STOP instruction is executed.

Remark fx: X1 clock oscillation frequency

- fін: High-speed on-chip oscillator clock frequency
- fex: External main system clock frequency
- fil: Low-speed on-chip oscillator clock frequency

<R>

3. 5. 2 Configuration of clock generator

The clock generator includes the following hardware.

Table 3-6. Configuration of Clock Generator

ltem	Configuration
Control registers	Clock operation mode control register (CMC)
	System clock control register (CKC)
	Clock operation status control register (CSC)
	Oscillation stabilization time counter status register (OSTC)
	Oscillation stabilization time select register (OSTS)
	Peripheral enable register 0 (PER0)
	Subsystem clock supply mode control register (OSMC)
	High-speed on-chip oscillator frequency select register (HOCODIV)
	High-speed on-chip oscillator trimming register (HIOTRM)
Oscillators	X1 oscillator
	High-speed on-chip oscillator
	Low-speed on-chip oscillator

Figure 3-1. Block Diagram of Clock Generator	$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Contract busing the second se Second second sec
< K>	X11 X21E9 FRQS6 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FR	\sim

RENESAS

R01UH0353EJ0200 Rev.2.00 Mar 31, 2014

109

(Remark is listed on the next page)

Remark fx: X1 clock oscillation frequency

- fін: High-speed on-chip oscillator clock frequency
- fex: External main system clock frequency
- fmx: High-speed system clock frequency
- fMAIN: Main system clock frequency
- fclk: CPU/peripheral hardware clock frequency
- fi⊥: Low-speed on-chip oscillator clock frequency

3. 5. 3 Registers controlling clock generator

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see **5.3 Registers Controlling Clock Generator** in **RL78/G1A Hardware User's Manual (R01UH0305E)**.

<R> 3. 5. 3. 1 Clock operation mode control register (CMC)

Address: FFFA0H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
CMC	EXCLK	OSCSEL	0	0	0	0	0	AMPH

EXCLK	OSCSEL	High-speed system clock pin	X1/P121 pin	X2/EXCLK/P122 pin
		operation mode		
0	0	Input port mode	Input port	
0	1	X1 oscillation mode	Crystal/ceramic resonator con	nection
1	0	Input port mode	Input port	
1	1	External clock input mode	Input port	External clock input

AMPH	Control of X1 clock oscillation frequency
0	1 MHz \leq fx \leq 10 MHz
1	10 MHz < fx ≤ 20 MHz

Cautions 1. Be sure to clear bits 1 to 3 and 5 to "0".

- 2. The CMC register can be written only once after reset release, by an 8-bit memory manipulation instruction. When using the CMC register with its initial value (00H), be sure to set the register to 00H after a reset ends in order to prevent malfunction due to a program loop. Such a malfunction becomes unrecoverable when a value other than 00H is mistakenly written.
- 3. After reset release, set the CMC register before X1 oscillation is started as set by the clock operation status control register (CSC).
- 4. Be sure to set the AMPH bit to 1 if the X1 clock oscillation frequency exceeds 10 MHz.
- 5. Specify the settings for the AMPH, AMPHS1, and AMPHS0 bits while fin is selected as fclk after a reset ends (before fclk is switched to fмx).
- 6. Although the maximum system clock frequency is 32 MHz, the maximum frequency of the X1 oscillator is 20 MHz.

Remark fx: X1 clock oscillation frequency

3. 5. 3. 2 System clock control register (CKC)

Address: FFF	A4H After	reset: 00H R/M	Note					
Symbol	<7>	6	<5>	<4>	3	2	1	0
СКС	CLS	0	MCS	MCM0	0	0	0	0
-								
	CLS			Status of CPU/p	eripheral hard	ware clock (fclk)		
	0	Main system	clock (fmain)					
	1				_			
-		•						

MCS	Status of main system clock (fmain)			
0	High-speed on-chip oscillator clock (f⊮)			
1	High-speed system clock (f _{MX})			

MCM0	Main system clock (fmain) operation control
0	Selects the high-speed on-chip oscillator clock (fin) as the main system clock (fmain)
1	Selects the high-speed system clock (f _{MX}) as the main system clock (f _{MAIN})

Note Bits 7 and 5 are read-only.

Caution Be sure to clear bits 0 to 3 and 6 to "0".

- Remark fin: High-speed on-chip oscillator clock frequency
 - fmx: High-speed system clock frequency
 - fMAIN: Main system clock frequency

3. 5. 3. 3 Clock operation status control register (CSC)

FA1H After re	set: C0H R/W						
<7>	6	5	4	3	2	1	<0>
MSTOP	1	0	0	0	0	0	HIOSTOP
	<7>	<7> 6		<7> 6 5 4	<7> 6 5 4 3	<7> 6 5 4 3 2	<7> 6 5 4 3 2 1

MSTOP	High-speed system clock operation control					
	X1 oscillation mode	External clock input mode	Input port mode			
0	X1 oscillator operating	External clock from EXCLK pin is valid	Input port			
1	X1 oscillator stopped	External clock from EXCLK pin is invalid				

HIOSTOP	High-speed on-chip oscillator clock operation control
0	High-speed on-chip oscillator operating
1	High-speed on-chip oscillator stopped

Cautions 1. Be sure to set bit 6 to "1".

- 2. Set the oscillation stabilization time select register (OSTS) before setting the MSTOP bit to 0 after releasing reset. Note that if the OSTS register is being used with its default settings, the OSTS register is not required to be set here.
- 3. To start X1 oscillation as set by the MSTOP bit, check the oscillation stabilization time of the X1 clock by using the oscillation stabilization time counter status register (OSTC).
- 4. Do not stop the clock selected for the CPU/peripheral hardware clock (fcLK) with the CSC register.
- 5. The setting of the flags of the register to stop clock oscillation (invalidate the external clock input) and the condition before clock oscillation is to be stopped are as Table 3-7.

Clock	Condition Before Stopping Clock	Setting of CSC Register Flags
	(Invalidating External Clock Input)	
X1 clock	CPU and peripheral hardware clocks operate with a clock	MSTOP = 1
External main system clock	other than the high-speed system clock.	
	(CLS = 0 and MCS = 0)	
High-speed on-chip oscillator	CPU and peripheral hardware clocks operate with a clock	HIOSTOP = 1
clock	other than the high-speed on-chip oscillator clock.	
	(CLS = 0 and MCS = 1)	

Table 3-7. Stopping Clock Method	

3. 5. 3. 4 Oscillation stabilization time counter status register (OSTC)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **5. 3. 4** Oscillation stabilization time counter status register (OSTC) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 5. 3. 5 Oscillation stabilization time select register (OSTS)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **5. 3. 5** Oscillation stabilization time select register (OSTS) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 5. 3. 6 Peripheral enable register 0 (PER0)

Address: F00F0H After reset: 00H R/W

Symbol	<7>	6	<5>	4	<3>	<2>	1	<0>
PER0	RTCEN	0	ADCEN	0	SAU1EN	SAU0EN	0	TAU0EN

RTCEN	Control of 12-bit interval timer input clock supply				
0	Stops input clock supply.				
	SFR used by the 12-bit interval timer cannot be written.				
	The 12-bit interval timer is in the reset status.				
1	Enables input clock supply.				
	SFR used by the 12-bit interval timer can be written.				

ADCEN	Control of A/D converter input clock supply				
0	Stops input clock supply.				
	• SFR used by the A/D converter cannot be written.				
	• The A/D converter is in the reset status.				
1	Enables input clock supply.				
	• SFR used by the A/D converter can be written.				

SAU1EN	Control of serial array unit 1 input clock supply				
0	Stops input clock supply.				
	 SFR used by the serial array unit 1 cannot be written. 				
	The serial array unit 1 is in the reset status.				
1	Enables input clock supply.				
	SFR used by the serial array unit 1 can be written.				

SAU0EN	Control of serial array unit 0 input clock supply				
0	Stops input clock supply.				
	SFR used by the serial array unit 0 cannot be written.				
	The serial array unit 0 is in the reset status.				
1	Enables input clock supply.				
	SFR used by the serial array unit 0 can be written.				

TAU0EN	Control of timer array unit 0 input clock supply
0	Stops input clock supply. • SFR used by timer array unit 0 cannot be written.
	• Timer array unit 0 is in the reset status.
1	Enables input clock supply.SFR used by timer array unit 0 can be written.

Caution Be sure to clear bits 1, 4, and 6 to "0".

<R> 3. 5. 3. 7 Subsystem clock supply mode control register (OSMC)

Address: FC	00F3H After res	et: 00H R/W							
Symbol	7	6	5	4	3	2	1	0	
OSMC	0	0	0	WUTMMCK0	0	0	0	0	
	-								
	WUTMMCK0			Operation c	lock for12-bit i	nterval timer			
	0	Initial value							
	1	Low-speed on-chip oscillator clock							
-									

Cautions 1. Be sure to clear bit 7 to "0".

2. To use 12-bit interval timer, after reset release, set the WUTMMCK0 bit of the subsystem clock supply mode control register (OSMC) to "1" before setting the RTCEN bit of the peripheral enable register0 (PER0) to "1".

3. 5. 3. 8 High-speed on-chip oscillator frequency select register (HOCODIV)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **5. 3. 8 High-speed on-chip oscillator** frequency select register (HOCODIV) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 5. 3. 9 High-speed on-chip oscillator trimming register (HIOTRM)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **5. 3. 9** High-speed on-chip oscillator trimming register (HIOTRM) in RL78/G1A Hardware User's Manual (R01UH0305E).

Remark The subsystem clock is not supported by RL78/G1E, but the subsystem clock supply mode control register is used to control the clock of 12-bit interval timer.

3. 5. 4 System clock oscillator

See 5. 4 System Clock Oscillator in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 5. 5 Clock generator operation

See 5. 5 Clock Generator Operation in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 5. 6 Controlling clock

See 5. 6 Controlling Clock in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 5. 7 Resonator and oscillator constants

The resonators for which the operation is verified and their oscillator constants are shown below.

Cautions 1. The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. Be sure to apply to the resonator manufacturer for evaluation on the actual circuit before using these constants for your application. Also apply to the resonator manufacturer for re-evaluation on the actual circuit if you have changed the make of the microcontroller or the board.

2. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the RL78/G1E so that the internal operation conditions are within the specifications of the DC and AC characteristics.

<R>

Figure 3-2. External Oscillation Circuit Example (a) X1 oscillation

(1) X1 oscillation:

As of March, 2013 (1/4)

Manufacturer	Resonator	Part Number	SMD/	Frequency	Flash	Recommended Circuit			Oscillation	
			Lead	(MHz)	operation	Co	onstants ^N	ote 2	Voltage	Range
					mode Note 1	(reference	e)	(\	√)
						C1 (pF)	C2 (pF)	Rd (kΩ)	MIN.	MAX.
KYOCERA	Crystal	CX8045GB04000D0HEQZ1	SMD	4.0	LV	12	12	0	1.6	5.5
rystal Device	resonator	CX8045GB04000D0HEQZ1	SMD	4.0	LS	12	12	0	1.8	5.5
Corporation		CX8045GB04000D0HEQZ1	SMD	4.0	HS	12	12	0	2.4	5.5
Note 3		CX8045GB08000D0HEQZ1	SMD	8.0	LS	12	12	0	1.8	5.5
		CX8045GB08000D0HEQZ1	SMD	8.0	HS	12	12	0	2.4	5.5
		CX8045GB12000D0HEQZ1	SMD	12.0	HS	10	10	0	2.4	5.5
		CX3225GB16000D0HEQZ1	SMD	16.0	HS	10	10	0	2.4	5.5
		CX3225GB20000D0HEQZ1	SMD	20.0	HS	8	8	0	2.7	5.5

<R> Notes 1. Set the flash operation mode by using CMODE1 and CMODE0 bits of the option byte (000C2H).

- 2. C1, C2 columns indicate a reference value.
- 3. When using these oscillators, contact KYOCERA Crystal Device Corporation (http://www.kyocera-crystal.jp/).

Remark Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (High speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 32 MHz (When X1 oscillation: 1 MHz to 20 MHz) $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHzLS (Low speed main) mode: $1.8 V \le V_{DD} \le 5.5 V@1 MHz$ to 8 MHz

LV (Low voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz

	511.		T	1		-	7.0		en, 1 01	•(=/ 1)
Manufacturer	Resonator	Part Number	SMD/ Lead	Frequency (MHz)	Flash operation	Recommended Circuit Constants ^{Note 2}		Oscillation Voltage		
					mode Note 1	(1	reference	e)	Rang	ge (V)
						C1	C2	Rd	MIN.	MAX.
						(pF)	(pF)	(k Ω)		
Murata	Ceramic	CSTCC2M00G56-R0	SMD	2.0	LV	(47)	(47)	0	1.6	5.5
Manufacturing	resonator	CSTCR4M00G55-R0	SMD	4.0		(39)	(39)	0	1.6	5.5
Co., Ltd. ^{Note 3}		CSTLS4M00G53-B0	Lead	4.0		(15)	(15)	0	1.6	5.5
		CSTCC2M00G56-R0	SMD	2.0	LS	(47)	(47)	0	1.8	5.5
		CSTCR4M00G55-R0	SMD	4.0		(39)	(39)	0	1.8	5.5
		CSTLS4M00G53-B0	Lead	4.0		(15)	(15)	0	1.8	5.5
		CSTCR4M19G55-R0	SMD	4.194		(39)	(39)	0	1.8	5.5
		CSTLS4M19G53-B0	Lead	4.194		(15)	(15)	0	1.8	5.5
		CSTCR4M91G53-R0	SMD	4.915		(15)	(15)	0	1.8	5.5
		CSTLS4M91G53-B0	Lead	4.915		(15)	(15)	0	1.8	5.5
		CSTCR5M00G53-R0	SMD	5.0		(15)	(15)	0	1.8	5.5
		CSTLS5M00G53-B0	Lead	5.0		(15)	(15)	0	1.8	5.5
		CSTCR6M00G53-R0	SMD	6.0		(15)	(15)	0	1.8	5.5
		CSTLS6M00G53-B0	Lead	6.0		(15)	(15)	0	1.8	5.5
		CSTCE8M00G52-R0	SMD	8.0		(10)	(10)	0	1.8	5.5
		CSTLS8M00G53-B0	Lead	8.0		(15)	(15)	0	1.8	5.5

(1) X1 oscillation:

As of March, 2013(2/4)

<R> Notes 1. Set the flash operation mode by using CMODE1 and CMODE0 bits of the option byte (000C2H).

2. Values in parentheses in the C1, C2 columns indicate an internal capacitance.

3. When using these oscillators, contact Murata Manufacturing Co., Ltd. (http://www.murata.co.jp/).

Remark Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (High speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 32 MHz (When X1 oscillation: 1 MHz to 20 MHz) $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 16 MHz

LS (Low speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz

LV (Low voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz

Manufacturer	Resonator	Part Number	SMD/	Frequency	Flash		mended		Osci	llation
			Lead	(MHz)	operation	Co	nstants ^N	ote 2	Vol	tage
					mode Note 1	(1	eference	e)	Ranç	ge (V)
						C1	C2	Rd	MIN.	MAX.
						(pF)	(pF)	(kΩ)		
Murata	Ceramic	CSTCC2M00G56-R0	SMD	2.0	HS	(47)	(47)	0	2.4	5.5
Manufacturing	resonator	CSTCR4M00G55-R0	SMD	4.0	-	(39)	(39)	0	2.4	5.5
Co., Ltd. ^{Note 3}		CSTLS4M00G53-B0	Lead	4.0	4	(15)	(15)	0	2.4	5.5
		CSTCR4M19G55-R0	SMD	4.194	4	(39)	(39)	0	2.4	5.5
		CSTLS4M19G53-B0	Lead	4.194	-	(15)	(15)	0	2.4	5.5
		CSTCR4M91G53-R0	SMD	4.915		(15)	(15)	0	2.4	5.5
		CSTLS4M91G53-B0	Lead	4.915		(15)	(15)	0	2.4	5.5
		CSTCR5M00G53-R0	SMD	5.0	-	(15)	(15)	0	2.4	5.5
		CSTLS5M00G53-B0	Lead	5.0	-	(15)	(15)	0	2.4	5.5
		CSTCR6M00G53-R0	SMD	6.0		(15)	(15)	0	2.4	5.5
		CSTLS6M00G53-B0	Lead	6.0		(15)	(15)	0	2.4	5.5
		CSTCE8M00G52-R0	SMD	8.0		(10)	(10)	0	2.4	5.5
		CSTLS8M00G53-B0	Lead	8.0		(15)	(15)	0	2.4	5.5
		CSTCE8M38G52-R0	SMD	8.388		(10)	(10)	0	2.4	5.5
		CSTLS8M38G53-B0	Lead	8.388		(15)	(15)	0	2.4	5.5
		CSTCE10M0G52-R0	SMD	10.0		(10)	(10)	0	2.4	5.5
		CSTLS10M0G53-B0	Lead	10.0		(15)	(15)	0	2.4	5.5
		CSTCE12M0G52-R0	SMD	12.0		(10)	(10)	0	2.4	5.5
		CSTCE16M0V53-R0	SMD	16.0		(15)	(15)	0	2.4	5.5
		CSTLS16M0X51-B0	Lead	16.0		(5)	(5)	0	2.4	5.5
		CSTCE20M0V51-R0	SMD	20.0		(5)	(5)	0	2.7	5.5
		CSTLS20M0X51-B0	Lead	20.0		(5)	(5)	0	2.7	5.5

(1) X1 oscillation:

As of March, 2013(3/4)

<R> Notes 1. Set the flash operation mode by using CMODE1 and CMODE0 bits of the option byte (000C2H).

2. Values in parentheses in the C1, C2 columns indicate an internal capacitance.

3. When using these oscillators, contact Murata Manufacturing Co., Ltd. (http://www.murata.co.jp/).

Remark Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (High speed main) mode: $2.7 V \le V_{DD} \le 5.5 V @1$ MHz to 32 MHz (When X1 oscillation: 1 MHz to 20 MHz)

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- LS (Low speed main) mode: 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz
- LV (Low voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz

(1) X1 oscillation:

As of March, 2013(4/4)

Manufacturer	Resonator	Part Number	SMD/ Lead	Frequency (MHz)	Flash operation mode ^{Note 1}	Recommended Circuit Constants ^{Note 2} (reference)		Oscillation Voltage Range (V)		
						C1 (pF)	C2 (pF)	Rd (kΩ)	MIN.	MAX.
Nihon Dempa	Crystal	NX8045GB	SMD	8	LS	1	1	0	1.8	5.5
Kogyo Co.,	resonator	NX8045GB	SMD	8	HS	1	1	0	2.4	5.5
Ltd. ^{Note 3}		NX3225GB	SMD	16]	2	2	0	2.4	5.5
		NX2520SA	SMD	20		1	1	0	2.7	5.5

<R> Notes 1. Set the flash operation mode by using CMODE1 and CMODE0 bits of the option byte (000C2H).

2. C1, C2 columns indicate a reference value.

3. When using these oscillators, contact Nihon Dempa Kogyo Co., Ltd. (http://www.ndk.com/jp/).

Remark Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (High speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 32 MHz (When X1 oscillation: 1 MHz to 20 MHz) $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 16 MHz

- LS (Low speed main) mode: $1.8 V \le V_{DD} \le 5.5 V@1 MHz$ to 8 MHz
- LV (Low voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz

3.6 Timer Array Unit

In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 6 TIMER ARRAY UNIT in RL78/G1A Hardware User's Manual (R01UH0305E).

The timer array unit is provided in all products (Unit 0, Channels 0 to 7).

Units	Channels	64-pin products, 80-pin products
Unit 0	Channel 0	\checkmark
	Channel 1	\checkmark
	Channel 2	\checkmark
	Channel 3	\checkmark
	Channel 4	\checkmark
	Channel 5	\checkmark
	Channel 6	\checkmark
	Channel 7	\checkmark

Caution Most of the following descriptions in this section use the case of 80-pin products as an example.

The timer array unit has eight 16-bit timers.

Each 16-bit timer is called a channel and can be used as an independent timer. In addition, two or more "channels" can be used to create a high-accuracy timer.

For the details of each function, see the section shown below.

Independent channel operation function	Simultaneous channel operation function			
• Interval timer (-> see 3. 6. 8)	One-shot pulse output (-> see 3. 6. 9)			
• Square wave output (-> see 3. 6. 8)	• PWM output (-> see 3. 6. 9)			
• External event counter (-> see 3. 6. 8)	• Multiple PWM output (-> see 3. 6. 9)			
• Divider function ^{Note} (-> see 3. 6. 8)				
• Input pulse interval measurement (-> see 3. 6. 8)				
• Measurement of high/low-level width of input signal (-> see 3. 6. 8)				
• Delay counter (-> see 3. 6. 8)				

Note Only channel 0 of unit 0.

It is possible to use the 16-bit timer of channels 1 and 3 of unit 0 as two 8-bit timers (higher and lower). The functions that can use channels 1 and 3 as 8-bit timers are as follows:

- Interval timer (higher/lower 8-bit timer)/square wave output (lower 8-bit timer only)
- External event counter (lower 8-bit timer only)
- Delay counter (lower 8-bit timer only)

Channel 7 of unit 0 can be used to realize LIN-bus communication operating in combination with UART2 of the serial array unit.

3. 6. 1 Functions of timer array unit

Timer array unit has the following functions.

3. 6. 1. 1 Independent channel operation function

By operating a channel independently, it can be used for the following purposes without being affected by the operation mode of other channels.

Remark The presence or absence of timer I/O pins of channels 0 to 7 depends on the product. See **Table 3-9 Timer I/O Pins provided in Each Product** for details.

<1> Interval timer

Each timer of a unit can be used as a reference timer that generates an interrupt (INTTMmn) at fixed intervals.

<2> Square wave output

A toggle operation is performed each time INTTMmn interrupt is generated and a square wave with a duty factor of 50% is output from a timer output pin (TOmn).

<3> External event counter

Each timer of a unit can be used as an event counter that generates an interrupt when the number of the valid edges of a signal input to the timer input pin (Tlmn) has reached a specific value.

<4> Divider function (channel 0 of unit 0 only)

A clock input from a timer input pin (TI00) is divided and output from an output pin (TO00).

<5> Input pulse interval measurement

Counting is started by the valid edge of a pulse signal input to a timer input pin (TImn). The count value of the timer is captured at the valid edge of the next pulse. In this way, the interval of the input pulse can be measured.

<6> Measurement of high/low-level width of input signal

Counting is started by a single edge of the signal input to the timer input pin (TImn), and the count value is captured at the other edge. In this way, the high-level or low-level width of the input signal can be measured.

<7> Delay counter

Counting is started at the valid edge of the signal input to the timer input pin (TImn), and an interrupt is generated after any delay period.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn) : n = 0, 4, 7))

3. 6. 1. 2 Simultaneous channel operation function

By using the combination of a master channel (a reference timer mainly controlling the cycle) and slave channels (timers operating according to the master channel), channels can be used for the following purposes.

<1> One-shot pulse output

Two channels are used as a set to generate a one-shot pulse with a specified output timing and a specified pulse width.

<R>

<2> PWM (Pulse Width Modulation) output

Two channels are used as a set to generate a pulse with a specified period and a specified duty factor.

<3> Multiple PWM (Pulse Width Modulation) output

By extending the PWM function and using one master channel and two or more slave channels, up to seven types of PWM signals that have a specific period and a specified duty factor can be generated.

Caution For details about the rules of simultaneous channel operation function, see 3. 6. 4 Basic rules of timer array unit.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn) : n = 0, 4, 7), p, q: Slave channel number (4, 7)

3. 6. 1. 3 8-bit timer operation function (channels 1 and 3 only)

The 8-bit timer operation function makes it possible to use a 16-bit timer channel in a configuration consisting of two 8-bit timer channels. This function can only be used for channels 1 and 3.

Caution There are several rules for using 8-bit timer operation function. For details, see 3. 6. 4 Basic rules of timer array unit.

3. 6. 1. 4 LIN-bus supporting function (channel 7 of unit 0 only)

Timer array unit is used to check whether signals received in LIN-bus communication match the LIN-bus communication format.

<1> Detection of wakeup signal

The timer starts counting at the falling edge of a signal input to the serial data input pin (RxD2) of UART2 and the count value of the timer is captured at the rising edge. In this way, a low-level width can be measured. If the low-level width is greater than a specific value, it is recognized as a wakeup signal.

<2> Detection of break field

The timer starts counting at the falling edge of a signal input to the serial data input pin (RxD2) of UART2 after a wakeup signal is detected, and the count value of the timer is captured at the rising edge. In this way, a low-level width is measured. If the low-level width is greater than a specific value, it is recognized as a break field.

<3> Measurement of pulse width of sync field

After a break field is detected, the low-level width and high-level width of the signal input to the serial data input pin (RxD2) of UART2 are measured. From the bit interval of the sync field measured in this way, a baud rate is calculated.

Remark For details about setting up the operations used to implement the LIN-bus, see 3. 6. 3. 13 Input switch control register (ISC) and 3. 6. 8 Independent channel operation function of timer array unit.

3. 6. 2 Configuration of timer array unit

Timer array unit includes the following hardware.

Table 3-8. Configuration of Timer Array Unit

Item	Configuration
Timer/counter	Timer count register mn (TCRmn)
Register	Timer data register mn (TDRmn)
Timer input	TI00, TI04, TI07, RxD2 pin (for LIN-bus)
Timer output	TO00, TO04, TO07, output controller
Control registers	<registers block="" of="" setting="" unit=""></registers>
	Peripheral enable register 0 (PER0)
	Timer clock select register m (TPSm)
	Timer channel enable status register m (TEm)
	Timer channel start register m (TSm)
	Timer channel stop register m (TTm)
	Timer input select register 0 (TIS0)
	Timer output enable register m (TOEm)
	• Timer output register m (TOm)
	Timer output level register m (TOLm)
	Timer output mode register m (TOMm)
	<registers channel="" each="" of=""></registers>
	Timer mode register mn (TMRmn)
	Timer status register mn (TSRmn)
	Input switch control register (ISC)
	Noise filter enable register 1 (NFEN1)
	Port mode control register (PMCxx)
	Port mode register (PMxx)
	Port register (Pxx)

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7)

The presence or absence of timer I/O pins in each timer array unit channel is as follows.

Tir	mer array unit channels	64-pin products, 80-pin products
Unit 0	Channel 0	P00/TI00, P01/TO00
	Channel 1	_
	Channel 2	-
	Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5	-
	Channel 4	P42/TI04/TO04
	Channel 5	-
	Channel 6	-
	Channel 7	P41/TI07/TO07

Table 3-9. Timer I/O Pins provided in Each Product

- **Remarks 1.** When timer input and timer output are shared by the same pin, either only timer input or only timer output can be used.
 - 2. -: here is no timer I/O pin, but the channel is available. (However, the channel can only be used as an interval timer.)

Figures 3-3 show the block diagrams of the timer array unit of the 80-pin products.

Figure 3-3. Entire Configuration of Timer Array Unit 0 (Example: 80-pin products)

2. n = 4 only

Remark n = 0, 4

Figure 3-5. Internal Block Diagram of Channel 7 of Timer Array Unit 0

3. 6. 2. 1 Timer count register mn (TCRmn)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **6. 2. 1** Timer count register mn (TCRmn) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 2. 2 Timer data register mn (TDRmn)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **6. 2. 2** Timer data register mn (TDRmn) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 3 Registers controlling timer array unit

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 6.3 Registers Controlling Timer Array Unit in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 6. 3. 1 Peripheral enable register 0 (PER0)

Address: F00F0H After reset: 00H R/W

Symbol	<7>	6	<5>	4	<3>	<2>	1	<0>
PER0	RTCEN	0	ADCEN	0	SAU1EN	SAU0EN	0	TAU0EN

TAU0EN	Control of timer array 0 unit input clock
0	Stops input clock supply.
	 SFR used by timer array unit 0 cannot be written.
	Timer array unit 0 is in the reset status.
1	Enables input clock supply.
	SFR used by timer array unit 0 can be read/written.

- Cautions 1. When setting the timer array unit, be sure to set the TAUMEN bit to 1 first. If TAUMEN = 0, writing to a control register of timer array unit is ignored, and all read values are default values (except for the timer input select register 0 (TIS0), input switch control register (ISC), noise filter enable register 1 (NFEN1), port mode control registers 0, 1, 4 (PMC0, PMC1, PMC4), port mode registers 0, 1, 4 (PM, PM, PM4), and port registers 0, 1, 4 (P0, P1, P4)).
 - Timer clock select register m (TPSm)
 - Timer mode register mn (TMRmn)
 - Timer status register mn (TSRmn)
 - Timer channel enable status register m (TEm)
 - Timer channel start register m (TSm)
 - Timer channel stop register m (TTm)
 - Timer output enable register m (TOEm)
 - Timer output register m (TOm)
 - Timer output level register m (TOLm)
 - Timer output mode register m (TOMm)
 - 2. Be sure to clear bits 1, 4, and 6 to "0".

3. 6. 3. 2 Timer clock select register m (TPSm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 3. 2 Timer clock select register m (TPSm) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 3. 3 Timer mode register mn (TMRmn)

• Format of Timer Mode Register mn (TMRmn) (1/4)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	MAS	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 4, 6)	mn1	mn0		mn	TER	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
					mn											
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	15	14														
Symbol TMRmn	CKS	CKS	0	CCS	0 ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
	CKS				0 ^{Note}	STS mn2	STS mn1	STS mn0	CIS mn1	CIS mn0	0	0	MD mn3	MD mn2	MD mn1	MD mn0

Address: F0190H, F0191H (TMR00) - F019EH, F019FH (TMR07) After reset: 0000H R/W

CKSmn1	CKSmn0	Selection of operation clock (fmck) of channel n
0	0	Operation clock CKm0 set by timer clock select register m (TPSm)
0	1	Operation clock CKm2 set by timer clock select register m (TPSm)
1	0	Operation clock CKm1 set by timer clock select register m (TPSm)
1	1	Operation clock CKm3 set by timer clock select register m (TPSm)

Operation clock (f_{MCK}) is used by the edge detector. A count clock (f_{TCLK}) and a sampling clock are generated depending on the setting of the CCSmn bit.

The operation clocks CKm2 and CKm3 can only be selected for channels 1 and 3.

CCSmn	Selection of count clock (ftclk) of channel n									
0	Operation clock (fMCK) specified by the CKSmn0 and CKSmn1 bits									
1	Valid edge of input signal input from the TImn pin									
	When channel 5 is used, the valid edge of the input signal selected by the TIS0									
Count clock (f	Count clock (frcLk) is used for the timer/counter, output controller, and interrupt controller.									

< R> Note Bit 11 is fixed at 0 of read only, write is ignored.

Cautions 1. Be sure to clear bits 13, 5, and 4 to "0".

- The timer array unit must be stopped (TTm = 00FFH) if the clock selected for fcLk is changed (by changing the value of the system clock control register (CKC)), even if the operating clock specified by using the CKSmn0 and CKSmn1 bits (fMck) or the valid edge of the signal input from the TImn pin is selected as the count clock (ftcLk).
- **Remark** m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

• Format of Timer Mode Register mn (TMRmn) (2/4)

	,		`	,	,	`	,									
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	MAS	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 4, 6)	mn1	mn0		mn	TER	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
					mn											
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	0 ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 0, 5, 7)	mn1	mn0		mn		mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0

Address: F0190H, F0191H (TMR00) - F019EH, F019FH (TMR07) After reset: 0000H R/W

Bit 11 of TMRmn (n = 2, 4, 6)

MASTER	Selection between using channel n independently or										
mn	simultaneously with another channel (as a slave or master)										
0	Operates in independent channel operation function or as slave channel in simultaneous channel operation function.										
1	Operates as master channel in simultaneous channel operation function.										
Only the chan	nel 2, 4, 6 can be set as a master channel (MASTERmn = 1).										
Be sure to use	e channel 0, 5, 7 are fixed to 0 (Regardless of the bit setting, channel 0 operates as master, because it is the										
highest channe	el).										
Clear the MAS	TERmn bit to 0 for a channel that is used with the independent channel operation function.										

Bit 11 of TMRmn (n = 1, 3)

SPLITmn	Selection of 8 or 16-bit timer operation for channels 1 and 3
0	Operates as 16-bit timer.
	(Operates in independent channel operation function or as slave channel in simultaneous channel operation
	function.)
1	Operates as 8-bit timer.

STS	STS	STS	Setting of start trigger or capture trigger of channel n
mn2	mn1	mn0	
0	0	0	Only software trigger start is valid (other trigger sources are unselected).
0	0	1	Valid edge of the TImn pin input is used as both the start trigger and capture trigger.
0	1	0	Both the edges of the TImn pin input are used as a start trigger and a capture trigger.
1	0	0	Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function).
Oth	er than ab	ove	Setting prohibited

<R> Note Bit 11 is fixed at 0 of read only, write is ignored.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

• Format of Timer Mode Register mn (TMRmn) (3/4)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	MAS	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 4, 6)	mn1	mn0		mn	TER	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
					mn											
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	0 ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 0, 5, 7)	mn1	mn0		mn		mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0

Address: F0190H, F0191H (TMR00) - F019EH, F019FH (TMR07) After reset: 0000H R/W

CISmn1	CISmn0	Selection of TImn pin input valid edge
0	0	Falling edge
0	1	Rising edge
1	0	Both edges (when low-level width is measured)
		Start trigger: Falling edge, Capture trigger: Rising edge
1	1	Both edges (when high-level width is measured)
		Start trigger: Rising edge, Capture trigger: Falling edge
If both the edg	es are specifie	d when the value of the STSmn2 to STSmn0 bits is other than 010B, set the CISmn1 to
CISmn0 bits to	o 10B.	

<R> Note Bit 11 is fixed at 0 of read only, write is ignored.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

• Format of Timer Mode Register mn (TMRmn) (4/4)

			•	,		`	,									
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	MAS	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 4, 6)	mn1	mn0		mn	TER	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
					mn											
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	0 ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 0, 5, 7)	mn1	mn0		mn		mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0

Address: F0190H, F0191H (TMR00) - F019EH, F019FH (TMR07) After reset: 0000H R/W

MD	MD	MD	MD	Operation mode of	Corresponding function	Count operation of				
mn3	mn2	mn1	mn0	channel n		TCR				
0	0	0	1/0	Interval timer mode	Interval timer/Square wave output/	Counting down				
					Divider function/PWM output (master)					
0	1	0	1/0	Capture mode	Input pulse interval measurement	Counting up				
0	1	1	0	Event counter mode	External event counter	Counting down				
1	0	0	1/0	One-count mode	Delay counter/One-shot pulse output/	Counting down				
					PWM output (slave)					
1	1	0	0	Capture & one-count	Measurement of high/low-level width of	Counting up				
				mode	input signal					
Other than above Setting prohibited										

The operation of the MDmn0 bit varies depending on each operation mode (see table below).

<R> Note Bit 11 is fixed at 0 of read only, write is ignored.

(Remark is on the next page.)

Operation mode	MD	Setting of starting counting and interrupt
(Value set by the MDmn3 to	mn0	
MDmn1 bits (see table above))		
• Interval timer mode 0, 0, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
One-count mode Note 1	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.
(1, 0, 0)	1	Start trigger is valid during counting operation Note 2. At that time, interrupt is not generated.
Capture & one-count mode	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
(1, 1, 0)		Start trigger is invalid during counting operation. At that time interrupt is not generated, either.
Other than above		Setting prohibited

Notes 1. In one-count mode, interrupt output (INTTMmn) when starting a count operation and TOmn output are not controlled.

<R>

2. If the start trigger (TSmn = 1) is issued during operation, the counter is initialized, an interrupt is generated, and recounting is started (does not occur the interrupt request).

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

3. 6. 3. 4 Timer status register mn (TSRmn)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **6.3.4** Timer status register mn (TSRmn) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 3. 5 Timer channel enable status register m (TEm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **6. 3. 5** Timer channel enable status register m (TEm) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 3. 6 Timer channel start register m (TSm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 3. 6 Timer channel start register m (TSm) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 3. 7 Timer channel stop register m (TTm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 3. 7 Timer channel stop register m (TTm) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 3. 8 Timer input select register 0 (TIS0)

Address: F0074H After reset: 00H R/W											
Symbol	7	6	5	4	3	2	1	0			
TIS0	0	0	0	0	0	TIS02	TIS01	TIS00			

TIS02	TIS01	TIS00	Selection of timer input used with channel 5							
0	0	0	Default value							
1	0	0	Low-speed on-chip oscillator clock (f⊫)							
	Other than above		Setting prohibited							

Caution High-level width, low-level width of timer input selected will require more than 1/fmck +10 ns.

3. 6. 3. 9 Timer output enable register m (TOEm)

Addres	s: F01B	AH, F01	BBH (TO	DEO) A	After rese	et: 0000H	H R/W									
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOEm	0	0	0	0	0	0	0	0	TOE	0	0	TOE	0	0	0	TOE
									m7			m4				m0

TOEmn	Timer output enable/disable of channel n
0	The TOmn operation stopped by count operation (timer channel output bit).
	Writing to the TOmn bit is enabled.
	The TOmn pin functions as data output, and it outputs the level set to the TOmn bit.
	The output level of the TOmn pin can be manipulated by software.
1	The TOmn operation enabled by count operation (timer channel output bit).
	Writing to the TOmn bit is disabled (writing is ignored).
	The TOmn pin functions as timer output, and the TOEmn bit is set or reset depending on the timer operation.
	The TOmn pin outputs the square-wave or PWM depending on the timer operation.

Caution Be sure to clear bits 15 to 8, 6, 5, 3 to 1 to "0".

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

3. 6. 3. 10 Timer output register m (TOm)

Address: F01B8H, F01B9H (TO0) After reset: 0000H R/W

TOmn	Timer output of channel n
0	Timer output value is "0".
1	Timer output value is "1".

Caution Be sure to clear bits 15 to 8, 6, 5, 3 to 1 to "0".

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

3. 6. 3. 11 Timer output level register m (TOLm)

Addres	s: F01B	CH, F01	BDH (T	OLO) A	After rese	et: 0000⊢	I R/W									
Symbol 15 14 13 12 11 10								8	7	6	5	4	3	2	1	0
TOLm	0	0	0	0	0	0	0	0	TOL	0	0	TOL	0	0	0	0
									m7			m4				
-																

TOLmn	Control of timer output level of channel n
0	Positive logic output (active-high)
1	Negative logic output (active-low)

Caution Be sure to clear bits 15 to 8, 6, 5, 3 to 0 to "0".

- **Remarks 1.** If the value of this register is rewritten during timer operation, the timer output logic is inverted when the timer output signal changes next, instead of immediately after the register value is rewritten.
 - m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

3. 6. 3. 12 Timer output mode register m (TOMm)

Address: F01BEH, F01BFH (TOM0) After reset: 0000H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOMm	0	0	0	0	0	0	0	0	том	0	0	ТОМ	0	0	0	0
									m7			m4				

TOMmn	Control of timer output mode of channel n					
0	Master channel output mode (to produce toggle output by timer interrupt request signal (INTTMmn))					
1	Slave channel output mode (output is set by the timer interrupt request signal (INTTMmn) of the master					
	channel, and reset by the timer interrupt request signal (INTTMmp) of the slave channel)					

Caution Be sure to clear bits 15 to 8 and 0 to "0".

Remark m: Unit number (m = 0)

n: Channel number

n = 0, 1 (n = 0, 2, 4, 6)

p: Slave channel number

n = 4, 7

(For details of the relation between the master channel and slave channel, refer to **3. 6. 4 Basic rules of timer array unit**.)

3. 6. 3. 13 Input switch control register (ISC)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 3. 13 Input switch control register (ISC) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 3. 14 Noise filter enable register 1 (NFEN1)

Address: F0071H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
NFEN1	TNFEN07	0	0	TNFEN04	0	0	0	TNFEN00

TNFEN07	Enable/disable using noise filter of TI07/TO07/P41 pin or RxD2/P14 pin input signal ^{Note}
0	Noise filter OFF
1	Noise filter ON

TNFEN04	Enable/disable using noise filter of TI04/TO04/P42 pin input signal
0	Noise filter OFF
1	Noise filter ON

TNFEN00	Enable/disable using noise filter of TI00/P00 pin input signal				
0	Noise filter OFF				
1	Noise filter ON				

Note The applicable pin can be switched by setting the ISC1 bit of the ISC register.

ISC1 = 0: Whether or not to use the noise filter of the TI07 pin can be selected.

ISC1 = 1: Whether or not to use the noise filter of the RxD2 pin can be selected.

Caution Be sure to clear bits 6, 5, 3 to 1 to "0".

<R> 3. 6. 3. 15 Registers controlling port functions of pins to be used for timer I/O

Using port pins for the timer array unit functions requires setting of the registers that control the port functions multiplexed on the target pins (port mode register (PMxx), port register (Pxx), and port mode control register (PMCxx)). For details, see **3. 4. 3. 1 Port mode registers (PMxx)**, **3. 4. 3. 2 Port registers (Pxx)**, and **3. 4. 3. 6 Port mode control registers (PMCxx)**.

For details of setting example, see 6. 3. 15 Registers controlling port functions of pins to be used for timer I/O in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 4 Basic rules of timer array unit

See 6. 4 Basic Rules of Timer Array Unit in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 5 Operation of counter

See 6. 5 Operation of Counter in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 6 Channel output (TOmn pin) control

See 6. 6 Channel Output (TOmn pin) Control in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 7 Timer input (TImn) control

See 6.7 Timer Input (TImn) Control in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 8 Independent channel operation function of timer array unit

See 6. 8 Independent Channel Operation Function of Timer Array Unit in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 9 Simultaneous channel operation function of timer array unit

See 6. 9 Simultaneous Channel Operation Function of Timer Array Unit in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 10 Cautions when using timer array unit

See 6. 10 Cautions When Using Timer Array Unit in RL78/G1A Hardware User's Manual (R01UH0305E).

3.7 Real-Time Clock

Real-time clock is not provided in RL78/G1E (64-pin products, 80-pin products).

3.8 12-bit Interval Timer

3. 8. 1 Functions of 12-bit interval timer

An interrupt (INTIT) is generated at any previously specified time interval. It can be utilized for wakeup from STOP mode and triggering an A/D converter's SNOOZE mode.

<R> 3. 8. 2 Configuration of 12-bit interval timer

The 12-bit interval timer includes the following hardware.

ltem	Configuration			
Counter	2-bit counter			
Control registers	Peripheral enable register 0 (PER0)			
	Subsystem clock supply mode control register (OSMC)			
	Interval timer control register (ITMC)			

Table 3-10. Configuration of 12-bit Interval Timer

Figure 3-6. Block Diagram of 12-bit Interval Timer

3. 8. 3 Registers controlling 12-bit interval timer

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see **8.3 Registers Controlling 12-bit Interval Timer** in **RL78/G1A Hardware User's Manual** (R01UH0305E).

3. 8. 3. 1 Peripheral enable register0 (PER0)

Address: F00F0H After reset: 00H R/W

Symbol	<7>	6	<5>	4	<3>	<2>	1	<0>
PER0	RTCEN	0	ADCEN	0	SAU1EN	SAU0EN	0	TAU0EN

RTCEN	Control of 12-bit interval timer input clock supply
0	Stops input clock supply.SFR used by the 12-bit interval timer cannot be written.The 12-bit interval timer is in the reset status.
1	Enables input clock supply. • SFR used by the 12-bit interval timer can be written.

<R> 3.8.3.2 Subsystem clock supply mode control register (OSMC)

Address: F00F3H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
OSMC	0	0	0	WUTMMCK0	0	0	0	0

WUTMMCK0 Operation clos		Operation clock for 12-bit interval timer		
	0 Default value			
	1	Low-speed on-chip oscillator clock		

Cautions 1. Be sure to clear bit 7 to "0".

2. To use 12-bit interval timer, after reset release, set the WUTMMCK0 bit of the subsystem clock supply mode control register (OSMC) to "1" before setting the RTCEN bit of the peripheral enable register0 (PER0) to "1".

3. 8. 3. 3 Interval timer control register (ITMC)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **8. 3. 3** Interval timer control register (ITMC) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 8. 4 12- bit interval timer operation

See 8. 4 12- bit Interval Timer Operation in RL78/G1A Hardware User's Manual (R01UH0305E).

3.9 Clock Output/Buzzer Output Controller

The number of output pins of the clock output and buzzer output controllers differs, depending on the product.

Output Pin	64-pin products	80-pin products
PCLBUZ0	-	
PCLBUZ1	_	_

Caution The output pins for clock output/buzzer output controller are not provided in the 64-pin products.

3. 9. 1 Functions of clock output/buzzer output controller

The clock output controller is intended for clock output for supply to peripheral ICs.

Buzzer output is a function to output a square wave of buzzer frequency.

One pin can be used to output a clock or buzzer sound.

The PCLBUZ0 pin outputs a clock selected by clock output select register 0 (CKS0).

Figure 3-7 shows the block diagram of clock output/buzzer output controller.

Note For output frequencies available from PCLBUZ0, see CHAPTER 5 ELECTRICAL SPECIFICATIONS.

3. 9. 2 Configuration of clock output/buzzer output controller

The clock output/buzzer output controller includes the following hardware.

Item	Configuration
Control registers	Clock output select register n (CKS0)
	Port mode register 14 (PM14)
	Port register 14 (P14)

3. 9. 3 Registers controlling clock output/buzzer output controller

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 9. 3 Registers Controlling Clock Output/Buzzer Output Controller in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 9. 3. 1 Clock output select register 0 (CKS0)

Address: FF	FFA5H (CKS0)	After reset: 00H	H R/W					
Symbol	<7>	6	5	4	3	2	1	0
CKS0	PCLOE0	0	0	0	CSEL0	CCS02	CCS01	CCS00

PCLOE0	PCLBUZ0 pin output enable/disable specification
0	Output disable (default)
1	Output enable

CSEL0	CCS	CCS	CCS	PCLBUZ0 pin output clock selection					
	02	01	00		fmain = 5 MHz	fmain = 10 MHz	fmain = 20 MHz	fmain = 32 MHz	
0	0	0	0	fmain	5 MHz	10 MHz ^{Note}	Setting	Setting	
							prohibited ^{Note}	prohibited ^{Note}	
0	0	0	1	fmain/2	2.5 MHz	5 MHz	10 MHz ^{Note}	16 MHz ^{Note}	
0	0	1	0	fmain/2 ²	1.25 MHz	2.5 MHz	5 MHz	8 MHz ^{Note}	
0	0	1	1	fmain/2 ³	625 kHz	1.25 MHz	2.5 MHz	4 MHz	
0	1	0	0	fmain/2 ⁴	312.5 kHz	625 kHz	1.25 MHz	2 MHz	
0	1	0	1	fmain/2 ¹¹	2.44 kHz	4.88 kHz	9.77 kHz	15.63 kHz	
0	1	1	0	fmain/2 ¹²	1.22 kHz	2.44 kHz	4.88 kHz	7.81 kHz	
0	1	1	1	fmain/2 ¹³	610 Hz	1.22 kHz	2.44 kHz	3.91 kHz	
	Other that	an above		Setting proh	ibited				

- Note Use the output clock within a range of 16 MHz. Furthermore, when using the output clock at 2.7 V \leq V_{DD} < 4.0 V, can be use it within 8 MHz only. See 5. 2. 3 AC characteristics for details.
- Cautions 1. Change the output clock after disabling clock output (PCLOEn = 0).
 - 2. To shift to STOP mode when the main system clock is selected (CSELn = 0), set PCLOEn = 0 before executing the STOP instruction.

Remark fMAIN: Main system clock frequency

<R> 3. 9. 3. 2 Registers controlling port functions of pins to be used for clock or buzzer output

Using a port pin for clock or buzzer output requires setting of the registers that control the port functions multiplexed on the target pin (port mode register (PMxx), port register (Pxx)). For details, see **3. 4. 3. 1 Port mode registers (PMxx)** and **3. 4. 3. 2 Port registers (Pxx)**.

For details of setting example, see 9. 3. 2 Registers controlling port functions of pins to be used for clock or buzzer output in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 9. 4 Operations of clock output/buzzer output controller

See 9. 4 Operations of Clock Output/Buzzer Output Controller in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 9. 5 Cautions of clock output/buzzer output controller

See 9.5 Cautions of Clock Output/Buzzer Output Controller in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 10 Watchdog Timer

See CHAPTER 10 WATCHDOG TIMER in RL78/G1A Hardware User's Manual (R01UH0305E).

3.11 A/D Converter

The number of analog input channels of the A/D converter differs, depending on the product.

			64-pin products	80-pin products
Analog input		Total	13 channels	17 channels
channels	High	Pins based on input	4 channels	5 channels
	accuracy	buffer power supply	(ANI0 to ANI3)	(ANI0 to ANI4)
	channel	AVDD		
	Standard	Pins based on input	9 channels	12 channels
	channel	buffer power supply	(ANI16 to ANI18, ANI20 to ANI23,	(ANI16 to ANI18, ANI20 to ANI26,
		Vdd	ANI28, ANI30)	ANI28, ANI30)

Remark In this section, most of the following descriptions, such as function of A/D converter, block diagram and configuration, are based on the case of the 80-pin products as an example. For the case of the 64-pin products, ignore the descriptions which are not available for 64-pin products.

3. 11. 1 Function of A/D converter

The A/D converter converts analog input signals into digital values, and is configured to control analog inputs, including up to 17 channels of A/D converter analog inputs (ANI0 to ANI4, ANI16 to ANI18, ANI20 to ANI26, ANI28, and ANI30). 12-bit resolution or 8-bit resolution can also be selected by using the ADTYP bit of A/D converter mode register 2 (ADM2). The A/D converter has the following functions.

<R> • 12-bit/8-bit resolution A/D conversion

A/D conversion is carried out repeatedly for one analog input channel selected from ANI0 to ANI4, ANI16 to ANI18, ANI20 to ANI26, ANI28, ANI30. Each time an A/D conversion operation ends, an interrupt request (INTAD) is generated (when in the select mode).

- <R> Caution The valid resolution differs depending on the voltage conditions of AV_{DD} and AV_{REFP}. For details, see 5. 2. 5. 1 A/D converter characteristics.
- <R> Remark When using the converter with a resolution of 10 bits, select the 12-bit resolution mode (ADTYP = 0). Use the higher 10 bits of the conversion result. Do not use the lower 2 bits.

<R> Various A/D conversion modes can be specified by using the mode combinations below.

Trigger mode	Software trigger	Conversion is started by software manipulation.
	Hardware trigger no-wait mode	Conversion is started by detecting a hardware trigger.
	Hardware trigger wait mode	The power is turned on by detecting a hardware trigger while the system is off and in the conversion standby state, and conversion is then started automatically after the A/D power supply stabilization wait time passes. When using the SNOOZE mode function, specify the hardware trigger wait mode.
Channel selection	Select mode	A/D conversion is performed on the analog input of one selected channel.
	Scan mode	A/D conversion is performed on the analog input of four channels in order.
Conversion operation	One-shot conversion mode	A/D conversion is performed on the selected channel once.
mode	Sequential conversion mode	A/D conversion is sequentially performed on the selected channels until it is stopped by software.

Operation Mode ^{Note}	Number of Sampling Clock					
Normal 1	11 f _{AD}	Set a value to the number of sampling clocks, at which the				
Normal 2	23 f _{AD}	sampling capacitor is fully charged, depending on the output				
Low-voltage 1	33 f _{AD}	impedance of the analog input source.				
Low-voltage 2	187 f _{AD}					

Note The operation modes selectable differ depending on the analog input channel, AV_{DD} voltage, trigger mode, and f_{CLK} . For details, see 3. 11. 3. 2 A/D converter mode register 0 (ADM0) and check A/D conversion time selection.

RENESAS

3. 11. 2 Configuration of A/D converter

The A/D converter includes the following hardware.

(1) ANI0 to ANI4, ANI16 to ANI18, ANI20 to ANI26, ANI28, and ANI30 pins

These are the analog input pins of the 17 channels of the A/D converter. They input analog signals to be converted into digital signals. Pins other than the one selected as the analog input pin can be used as I/O port pins.

(2) Sample & hold circuit

The sample & hold circuit samples each of the analog input voltages sequentially sent from the input circuit, and sends them to the A/D voltage comparator. This circuit also holds the sampled analog input voltage during A/D conversion.

(3) A/D voltage comparator

This A/D voltage comparator compares output from the voltage tap of the comparison voltage generator with the sampled voltage value.

If the analog input voltage is found to be greater than the reference voltage ($1/2 \text{ AV}_{REF}$) as a result of the comparison, the most significant bit (MSB) of the successive approximation register (SAR) is set. If the analog input voltage is less than the reference voltage ($1/2 \text{ AV}_{REF}$), the MSB bit of the SAR is reset.

After that, bit 10 of the SAR register is automatically set, and the next comparison is made. The voltage tap of the comparison voltage generator is selected by the value of bit 11, to which the result has been already set.

Bit 11 = 0: (1/4 AVREF) Bit 11 = 1: (3/4 AVREF)

The voltage tap of the comparison voltage generator and the analog input voltage are compared and bit 10 of the SAR register is manipulated according to the result of the comparison.

Analog input voltage \geq Voltage tap of comparison voltage generator: Bit 10 = 1 Analog input voltage \leq Voltage tap of comparison voltage generator: Bit 10 = 0

Comparison is continued like this to bit 0 of the SAR register. When performing A/D conversion at a resolution of 8 bits, the comparison continues until bit 4 of the SAR register.

Remark AVREF: The + side reference voltage of the A/D converter.(This can be selected from AVREFP, the internal reference voltage (1.45 V), and AVDD.)

(4) Comparison voltage generator

The comparison voltage generator generates the comparison voltage input from an analog input pin.

(5) Successive approximation register (SAR)

The SAR register is a register that sets voltage tap data whose values from the comparison voltage generator match the voltage values of the analog input pins, 1 bit at a time starting from the most significant bit (MSB).

If data is set in the SAR register all the way to the least significant bit (LSB) (end of A/D conversion), the contents of the SAR register (conversion results) are held in the A/D conversion result register (ADCR). When all the specified A/D conversion operations have ended, an A/D conversion end interrupt request signal (INTAD) is generated.

(6) 12-bit A/D conversion result register (ADCR)

The A/D conversion result is loaded from the successive approximation register to this register each time A/D conversion is completed, and the ADCR register holds the A/D conversion result in its lower 12 bits (the higher 4 bits are fixed to 0).

(7) 8-bit A/D conversion result register (ADCRH)

The A/D conversion result is loaded from the successive approximation register to this register each time A/D conversion is completed, and the ADCRH register stores the higher 8 bits of the A/D conversion result.

(8) Controller

This circuit controls the conversion time of an input analog signal that is to be converted into a digital signal, as well as starting and stopping of the conversion operation. When A/D conversion has been completed, this controller generates INTAD.

(9) AVREFP pin

This pin inputs an external reference voltage (AVREFP).

If using AV_{REFP} as the + side reference voltage of the A/D converter, set the ADREFP1 and ADREFP0 bits of A/D converter mode register 2 (ADM2) to 1.

The analog signals input to ANI0 to ANI12 and ANI16 to ANI30 are converted to digital signals based on the voltage applied between AVREFP and the – side reference voltage (AVREFM/AVss).

In addition to AV_{REFP}, it is possible to select AV_{DD}, or the internal reference voltage (1.45 V) as the + side reference voltage of the A/D converter.

(10) AVREFM pin

This pin inputs an external reference voltage (AVREFM). If using AVREFM as the – side reference voltage of the A/D converter, set the ADREFM bit of the ADM2 register to 1.

In addition to AVREFM, it is possible to select AVss as the – side reference voltage of the A/D converter.

3. 11. 3 Registers used in A/D converter

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see **11.3 Registers Used in A/D Converter in RL78/G1A Hardware User's Manual (R01UH0305E)**.

3. 11. 3. 1 Peripheral enable register 0 (PER0)

Address: F00F0H After reset: 00H R/W

Symbol	<7>	6	<5>	4	<3>	<2>	1	<0>
PER0	RTCEN	0	ADCEN	0	SAU1EN	SAU0EN	0	TAU0EN

ADCEN	Control of A/D converter input clock supply
0	Stops input clock supply.
	• SFR used by the A/D converter cannot be written.
	• The A/D converter is in the reset status.
1	Enables input clock supply.
	• SFR used by the A/D converter can be read/written.

<R>

Caution Be sure to clear bits 1, 4, and 6 to "0".

3. 11. 3. 2 A/D converter mode register 0 (ADM0)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **11. 3. 2** A/D converter mode register **0** (ADM0) in RL78/G1A Hardware User's Manual (R01UH0305E).

RL78/G1E

3. 11. 3. 3 A/D converter mode register 1 (ADM1)

Address: FFF32H After reset: 00H R/W								
Symbol	7	6	5	4	3	2	1	0
ADM1	ADTMD1	ADTMD0	ADSCM	0	0	0	ADTRS1	ADTRS0
								-

<R>

ADTMD1	ADTMD0	Selection of the A/D conversion trigger mode
0	×	Software trigger mode
1	0	Hardware trigger no-wait mode
1	1	Hardware trigger wait mode

ADSCM	Specification of the A/D conversion mode
0	Sequential conversion mode
1	One-shot conversion mode

ADTRS1	ADTRS0	Selection of the hardware trigger signal
0	0	End of timer channel 1 count or capture interrupt signal (INTTM01)
0	1	Setting prohibited
1	0	Setting prohibited
1	1	Interval timer interrupt signal (INTIT)

Cautions 1. Rewrite the value of the ADM1 register while conversion is stopped (ADCS = 0, ADCE = 0).

- <R>
- 2. To complete A/D conversion, specify at least the following time as the hardware trigger interval: Hardware trigger no wait mode: 2 fcLk clock + A/D conversion time Hardware trigger wait mode: 2 fcLk clock + A/D power supply stabilization wait time +A/D conversion time
- 3. In modes other than SNOOZE mode, input of the next INTRTC or INTIT will not be recognized as a valid hardware trigger for up to four fclk cycles after the first INTRTC or INTIT is input.

Remarks 1. ×: don't care

2. fcLK: CPU/peripheral hardware clock frequency

3. 11. 3. 4 A/D converter mode register 2 (ADM2)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **11.3.4** A/D converter mode register **2 (ADM2)** in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 3. 5 12-bit A/D conversion result register (ADCR)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **11. 3. 5 12-bit A/D conversion result** register (ADCR) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 3. 6 8-bit A/D conversion result register (ADCRH)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **11.3.6 8-bit A/D conversion result register (ADCRH)** in **RL78/G1A Hardware User's Manual (R01UH0305E)**.

3. 11. 3. 7 Analog input channel specification register (ADS)

Address: F	FF31H After r	reset: 00H R/W	1					
Symbol	7	6	5	4	3	2	1	0
ADS	ADISS	0	0	ADS4	ADS3	ADS2	ADS1	ADS0

• Select mode (64-pin products, ADMD = 0)

ADISS	ADS4	ADS3	ADS2	ADS1	ADS0	Selected channel	Input source
0	0	0	0	0	0	ANIO	P20/ANI0/AVREFP pin
0	0	0	0	0	1	ANI1	P21/ANI1/AVREFM pin
0	0	0	0	1	0	ANI2	P22/ANI2 pin
0	0	0	0	1	1	ANI3	P23/ANI3 pin
0	0	0	1	0	0	Setting prohibited	
0	0	0	1	0	1	Setting prohibited	
0	0	0	1	1	0	Setting prohibited	
0	0	0	1	1	1	Setting prohibited	
0	0	1	0	0	0	Setting prohibited	
0	0	1	0	0	1	Setting prohibited	
0	0	1	0	1	0	Setting prohibited	
0	0	1	0	1	1	Setting prohibited	
0	0	1	1	0	0	Setting prohibited	
0	0	1	1	0	1	Setting prohibited	
0	0	1	1	1	0	Setting prohibited	
0	0	1	1	1	1	Setting prohibited	
0	1	0	0	0	0	ANI16	P03/ANI16 pin
0	1	0	0	0	1	ANI17	P02/ANI17 pin
0	1	0	0	1	0	ANI18	P10/ANI18 pin
0	1	0	0	1	1	Setting prohibited	
0	1	0	1	0	0	ANI20	P11/ANI20 pin
0	1	0	1	0	1	ANI21	P12/ANI21 pin
0	1	0	1	1	0	ANI22	P13/ANI22 pin
0	1	0	1	1	1	ANI23	P14/ANI23 pin
0	1	1	0	0	0	Setting prohibited	
0	1	1	0	0	1	Setting prohibited	
0	1	1	0	1	0	Setting prohibited	
0	1	1	0	1	1	Setting prohibited	
0	1	1	1	0	0	ANI28	P70/ANI28 pin
0	1	1	1	0	1	Setting prohibited	
0	1	1	1	1	0	ANI30	P41/ANI30 pin
0	1	1	1	1	1	Setting prohibited	
1	0	0	0	0	0	_	Temperature sensor output Note
1	0	0	0	0	1	-	Internal reference voltage output (1.45 V) ^{Note}
	L	Other the	an above	I	I	Setting prohibited	

Note This setting can be used only in HS (high-speed main) mode.

Address: FFF31H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADS	ADISS	0	0	ADS4	ADS3	ADS2	ADS1	ADS0

• Scan mode (64-pin products, ADMD = 1)

ADISS	ADS4	ADS3	ADS2	ADS1	ADS0	Analog input channel				
						Scan 0 Scan 1 Scan 2 St		Scan 3		
0	0	0	0	0	0	ANI0	ANI1	ANI2	ANI3	
0	1	0	1	0	0	ANI20 ANI21 ANI22 ANI23		ANI23		
	Other than above						d			

Cautions 1. Be sure to clear bits 5 and 6 to 0.

- 2. Set a channel to be used for A/D conversion in the input mode by using port mode registers 0 to 2, 4, or 7 (PM0 to PM2, PM4, PM7).
- 3. Do not set the pin that is set by the A/D port configuration register (ADPC) as digital I/O by the ADS register.
- 4. Do not set the pin that is set by port mode control register 0, 4, or 7 (PMC0, PMC4, PMC7) as digital I/O by the ADS register.
- 5. Rewrite the value of the ADISS bit while conversion operation is stopped (ADCS = 0, ADCE = 0).
- 6. If using AVREFP as the + side reference voltage source of the A/D converter, do not select ANI0 as an A/D conversion channel.
- 7. If using AVREFM as the side reference voltage source of the A/D converter, do not select ANI1 as an A/D conversion channel.
- 8. If ADISS is set to 1, the internal reference voltage (1.45 V) cannot be used for the + side reference voltage source. Also, after setting the ADISS to 1, the result of the first conversion cannot be used. For details about the setting flow, refer to 3. 11.7 A/D converter setup flowchart.
- 9. Do not set the ADISS bit to 1 when shifting from STOP mode to HALT mode. Also, if the ADISS bit is set to 1, the temperature sensor operating current indicated in 5. 2. 2. 2 Supply current characteristics (ITMPS) will be added to the current consumption when shifting to HALT mode while the CPU is operating on the main system clock.
- 10. Ignore the conversion result if the corresponding ANI pin does not exist in the product used.

Symbol	7	6		5	4	3	3 2 1 0			
ADS	ADISS	0		0	ADS4	ADS3	ADS2	ADS1	ADS0	
- <u>L</u>				-	-					
Select m	ode (80-pir	n products,	ADMD = (D)						
ADISS	ADS4	ADS3	ADS2	ADS1	ADS0	Selected channel Input sou			ource	
0	0	0	0	0	0	ANIO		P20/ANI0/AVREF		
0	0	0	0	0	1	ANI1		P21/ANI1/AVREF		
0	0	0	0	1	0	ANI2		P22/ANI2 pin		
0	0	0	0	1	1	ANI3		P23/ANI3 pin		
0	0	0	1	0	0	ANI4		P24/ANI4 pin		
0	0	0	1	0	1	Setting prohibited				
0	0	0	1	1	0	Setting prohibited				
0	0	0	1	1	1	Setting prohibited				
0	0	1	0	0	0	Setting prohibited				
0	0	1	0	0	1	Setting prohibited				
0	0	1	0	1	0	Setting prohibited				
0	0	1	0	1	1	Setting prohibited				
0	0	1	1	0	0	Setting prohibited				
0	0	1	1	0	1	Setting prohibited				
0	0	1	1	1	0	Setting prohibited				
0	0	1	1	1	1	Setting prohibited				
0	1	0	0	0	0	ANI16		P03/ANI16 pin		
0	1	0	0	0	1	ANI17		P02/ANI17 pin		
0	1	0	0	1	0	ANI18		P10/ANI18 pin		
0	1	0	0	1	1	Setting prohibited				
0	1	0	1	0	0	ANI20		P11/ANI20 pin		
0	1	0	1	0	1	ANI21		P12/ANI21 pin		
0	1	0	1	1	0	ANI22		P13/ANI22 pin		
0	1	0	1	1	1	ANI23		P14/ANI23 pin		
0	1	1	0	0	0	ANI24		P15/ANI24 pin		
0	1	1	0	0	1	ANI25		P51/ANI25 pin		
0	1	1	0	1	0	ANI26		P50/ANI26 pin		
0	1	1	0	1	1	Setting prohibited		r		
0	1	1	1	0	0	ANI28		P70/ANI28 pin		
0	1	1	1	0	1	Setting prohibited		r		
0	1	1	1	1	0	ANI30		P41/ANI30 pin		
0	1	1	1	1	1	Setting prohibited				
1	0	0	0	0	0	_		Temperature ser	nsor output ^{Note}	
1	0	0	0	0	1	-		Internal reference output (1.45 V) ^{No}	•	
		Other th:	an above	1	1	Setting prohibited				
						County promotion				

Address: FFF31H After reset: 00H R/W

Note This setting can be used only in HS (high-speed main) mode.

Address: Fl	Address: FFF31H After reset: 00H R/W											
Symbol	7	6	5	4	3	2	1	0				
ADS	ADISS	0	0	ADS4	ADS3	ADS2	ADS1	ADS0				

• Scan mode (80-pin products, ADMD = 1)

ADISS	ADS4	ADS3	ADS2	ADS1	ADS0		Analog input channel				
						Scan 0	Scan 1	Scan 2	Scan 3		
0	0	0	0	0	0	ANI0	ANI1	ANI2	ANI3		
0	0	0	0	0	1	ANI1	ANI2	ANI3	ANI4		
0	1	0	1	0	0	ANI20	ANI21	ANI22	ANI23		
0	1	0	1	0	1	ANI21	ANI22	ANI23	ANI24		
0	1	0	1	1	0	ANI22	ANI23	ANI24	ANI25		
0	1	0	1	1	1	ANI23	ANI24	ANI25	ANI26		
		Other tha	in above			Setting prohit	bited				

Cautions 1. Be sure to clear bits 5 and 6 to 0.

- 2. Set a channel to be used for A/D conversion in the input mode by using port mode registers 0 to 2, 4, or 7 (PM0 to PM2, PM4, PM7).
- 3. Do not set the pin that is set by the A/D port configuration register (ADPC) as digital I/O by the ADS register.
- 4. Do not set the pin that is set by port mode control register 0, 4, or 7 (PMC0, PMC4, PMC7) as digital I/O by the ADS register.
- 5. Rewrite the value of the ADISS bit while conversion operation is stopped (ADCS = 0, ADCE = 0).
- 6. If using AV_{REFP} as the + side reference voltage source of the A/D converter, do not select ANI0 as an A/D conversion channel.
- 7. If using AVREFM as the side reference voltage source of the A/D converter, do not select ANI1 as an A/D conversion channel.
- 8. If ADISS is set to 1, the internal reference voltage (1.45 V) cannot be used for the + side reference voltage source. Also, after setting the ADISS to 1, the result of the first conversion cannot be used. For details about the setting flow, refer to 3. 11. 7 A/D converter setup flowchart.
- 9. Do not set the ADISS bit to 1 when shifting from STOP mode to HALT mode. Also, if the ADISS bit is set to 1, the temperature sensor operating current indicated in 5. 2. 2. 2 Supply current characteristics (ITMPS) will be added to the current consumption when shifting to HALT mode while the CPU is operating on the main system clock.
- **10.** Ignore the conversion result if the corresponding ANI pin does not exist in the product used.

3. 11. 3. 8 Conversion result comparison upper limit setting register (ADUL)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **11.3.8 Conversion result** comparison upper limit setting register (ADUL) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 3. 9 Conversion result comparison lower limit setting register (ADLL)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **11.3.9 Conversion result** comparison lower limit setting register (ADLL) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 3. 10 A/D test register (ADTES)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **11.3.10** A/D test register (ADTES) in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 11. 3. 11 Registers controlling port function of analog input pins

Set up the registers for controlling the functions of the ports shared with the analog input pins of the A/D converter (port mode registers (PMxx), port mode control registers (PMCxx), and A/D port configuration register (ADPC)). For details, see as follows.

- 3. 4. 3. 1 Port mode registers (PMxx)
- 3. 4. 3. 6 Port mode control registers (PMCxx)
- 3. 4. 3. 7 A/D port configuration register (ADPC)

For details of setting example, see 11. 3. 11 Registers controlling port function of analog input pins in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 4 A/D converter conversion operations

See 11. 4 A/D Converter Conversion Operations in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 5 Input voltage and conversion results

See 11.5 Input Voltage and Conversion Results in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 6 A/D converter operation modes

See 11. 6 A/D Converter Operation Modes in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 7 A/D converter setup flowchart

See 11.7 A/D Converter Setup Flowchart in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 8 SNOOZE mode function

See 11.8 SNOOZE Mode Function in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 9 How to read A/D converter characteristics table

See 11.9 How to Read A/D Converter Characteristics Table in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 11. 10 Cautions for A/D converter

See 11. 10 Cautions for A/D Converter in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12 Serial Array Unit

Serial array unit 0 has four serial channels, and serial array unit 1 has two. Each channel can achieve 3-wire serial (CSI), UART, and simplified I²C communication.

Function assignment of each channel supported by the RL78/G1E (64-pin products, 80-pin products) is as shown below.

• 64-pin products

Unit	Channel	Used as CSI	Used as UART	Used as Simplified I ² C
0	0	CSI00	UART0	IIC00
	1	-		_
	2	_	UART1	_
	3	_		_
1	0	_	UART2	_
	1	CSI21 ^{Note}	(LIN-bus supported)	_

Note Connected to the pins of the chip of analog block inside the package.

• 80-pin products

Unit	Channel	Used as CSI	Used as UART	Used as Simplified I ² C
0	0	CSI00	UART0	IIC00
	1	_		_
	2	CSI10	UART1	IIC10
	3	-		_
1	0	CSI20	UART2	IIC20
	1	CSI21 ^{Note}	(LIN-bus supported)	_

Note Connected to the pins of the chip of analog block inside the package.

When "UART0" is used for channels 0 and 1 of unit 0, CSI00 cannot be used, but CSI10, UART1, or IIC10 of channel 2 or 3 can be used.

Caution Most of the descriptions in this section use the units and channels of the 80-pin products as an example.

3. 12. 1 Functions of serial array unit

Each serial interface supported by the RL78/G1E (64-pin products, 80-pin products) has the following features.

3. 12. 1. 1 3-wire serial I/O (CSI00, CSI10, CSI20, CSI21)

Data is transmitted or received in synchronization with the serial clock (SCK) output from the master channel.

3-wire serial communication is clocked communication performed by using three communication lines: one for the serial clock (SCK), one for transmitting serial data (SO), one for receiving serial data (SI).

For details about the settings, see **3. 12. 5** Operation of 3-Wire serial I/O (CSI00, CSI10, CSI20, CSI21) Communication.

[Data transmission/reception]

- Data length of 7 or 8 bits
- Phase control of transmit/receive data
- MSB/LSB first selectable
- Level setting of transmit/receive data

[Clock control]

- Master/slave selection
- Phase control of I/O clock
- Setting of transfer period by prescaler and internal counter of each channel
- Maximum transfer rate During master communication (CSI00): Max. fcLK/2^{Note}

During master communication (other than CSI00): Max. fcLk/4^{Note}

During slave communication: Max. fmck/6^{Note}

[Interrupt function]

• Transfer end interrupt/buffer empty interrupt

[Error detection flag]

• Overrun error

In addition, CSI00 of following channels supports the SNOOZE mode. When SCK input is detected while in the STOP mode, the SNOOZE mode makes data reception that does not require the CPU possible. Only CSI00 can be specified for asynchronous reception.

Note Use the clocks within a range satisfying the SCK cycle time (tkcr) characteristics (see CHAPTER 5 ELECTRICAL SPECIFICATIONS).

3. 12. 1. 2 UART (UART0 to UART2)

This is a start-stop synchronization function using two lines: serial data transmission (TxD) and serial data reception (RxD) lines. By using these two communication lines, each data frame, which consist of a start bit, data, parity bit, and stop bit, is transferred asynchronously (using the internal baud rate) between the microcontroller and the other communication party. Full-duplex UART communication can be performed by using a channel dedicated to transmission (even-numbered channel) and a channel dedicated to reception (odd-numbered channel). The LIN-bus can be implemented by using timer array unit with an external interrupt (INTP0).

For details about the settings, see **3. 12. 6** Operation of UART (UART0 to UART2) Communication.

[Data transmission/reception]

- Data length of 7, 8, or 9 bits Note
- Select the MSB/LSB first
- · Level setting of transmit/receive data and select of reverse
- · Parity bit appending and parity check functions
- Stop bit appending

[Interrupt function]

- Transfer end interrupt/buffer empty interrupt
- Error interrupt in case of framing error, parity error, or overrun error

[Error detection flag]

• Framing error, parity error, or overrun error

In addition, UARTs of following channels support the SNOOZE mode. When RxD input is detected while in the STOP mode, the SNOOZE mode makes data reception that does not require the CPU possible. Only UART0 can be specified for asynchronous reception.

The LIN-bus is accepted in UART2 (0 and 1 channels of unit 1).

[LIN-bus functions]

- Wakeup signal detection
- Sync break field (SBF) detection
- Sync field measurement, baud rate calculation

_ Using the external interrupt (INTP0) and timer array unit

Note Only UART0 can be specified for the 9-bit data length.

3. 12. 1. 3 Simplified I²C (IIC00, IIC10, IIC20)

This is a clocked communication function to communicate with two or more devices by using two lines: serial clock (SCL) and serial data (SDA). This simplified I^2C is designed for single communication with a device such as EEPROM, flash memory, or A/D converter, and therefore, it functions only as a master.

Make sure by using software, as well as operating the control registers, that the AC specifications of the start and stop conditions are observed.

For details about the settings, see 3. 12. 8 Operation of simplified I²C (IIC00, IIC10, IIC20).

[Data transmission/reception]

- Master transmission, master reception (only master function with a single master)
- ACK output function Note and ACK detection function
- Data length of 8 bits
- (When an address is transmitted, the address is specified by the higher 7 bits, and the least significant bit is used for R/W control.)
- Manual generation of start condition and stop condition

[Interrupt function]

• Transfer end interrupt

[Error detection flag]

• Parity error (ACK error), or overrun error

[Functions not supported by simplified I²C]

- Slave transmission, slave reception
- Arbitration loss detection function
- Wait detection functions
- Note When receiving the last data, ACK will not be output if 0 is written to the SOEmn bit (serial output enable register m (SOEm)) and serial communication data output is stopped. For details, see 3. 12. 8 Operation of simplified I²C (IIC00, IIC10, IIC20).

3. 12. 2 Configuration of serial array unit

The serial array unit includes the following hardware.

Table 3-12. Configuration of Serial Array Unit

	Item	Configuration
	Shift register	8 bits or 9 bits ^{Note 1}
	Buffer register	Lower 8 bits or 9 bits of serial data register mn (SDRmn) ^{Notes 1, 2}
<r></r>	Serial clock I/O	SCK00, SCK10, SCK20, SCK21 pins (for 3-wire serial I/O),
		SCL00, SCL10, SCL20, SCL21 pins (for simplified I ² C)
	Serial data input	SI00, SI10, SI20, SI21 pins (for 3-wire serial I/O), RxD0, RxD1 pins (for UART), RxD2 pin (for UART supporting LIN-bus)
	Serial data output	SO00, SO10, SO20, SO21 pins (for 3-wire serial I/O), TxD0, TxD1 pins (for UART), TxD2 pin (for UART supporting LIN-bus), output controller
	Serial data I/O	SDA00, SDA10, SDA20 pins (for simplified I ² C)
	Control registers	<registers block="" of="" setting="" unit=""></registers>
		Peripheral enable register 0 (PER0)
		Serial clock select register m (SPSm)
		Serial channel enable status register m (SEm)
		Serial channel start register m (SSm)
		Serial channel stop register m (STm)
		Serial output enable register m (SOEm)
		• Serial output register m (SOm)
		Serial output level register m (SOLm)
		Serial standby control register m (SSCm)
		Input switch control register (ISC)
		Noise filter enable register 0 (NFEN0)
		<registers channel="" each="" of=""></registers>
		Serial data register mn (SDRmn)
		Serial mode register mn (SMRmn)
		 Serial communication operation setting register mn (SCRmn)
		Serial status register mn (SSRmn)
		Serial flag clear trigger register mn (SIRmn)
		Port input mode registers 0, 1 (PIM0, PIM1)
		Port output mode registers 0, 1 (POM0, POM1)
		Port mode registers 0, 1, 7 (PM0, PM1, PM7)
		• Port registers 0, 1, 7 (P0, P1, P7)

(Notes and Remark are on the next page.)

- Notes 1. The number of bits used as the shift register and buffer register differs depending on the unit and channel.
 - mn = 00, 01: lower 9 bits
 - Other than above: lower 8 bits
 - 2. The lower 8 bits of serial data register mn (SDRmn) can be read or written as the following SFR, depending on the communication mode.
 - CSIp communication ... SIOp (CSIp data register)
 - UARTq reception ... RXDq (UARTq receive data register)
 - UARTq transmission ... TXDq (UARTq transmit data register)
 - IICr communication ... SIOr (IICr data register)

Remark m: Unit number (m = 0, 1)

- n: Channel number (n = 0 to 3)
- p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21)
- q: UART number (q = 0 to 2)
- r: IIC number (80-pin products: r = 00, 10, 20 64-pin products: r = 00)

<R> Figure 3-9 shows the block diagram of the serial array unit 0.

Figure 3-9. Block Diagram of Serial Array Unit 0

<R> Figure 3-10 shows the block diagram of the serial array unit 1.

Figure 3-10. Block Diagram of Serial Array Unit 1

<R> 3. 12. 2. 1 Shift register

This is a 9-bit register that converts parallel data into serial data or vice versa.

In case of the UART communication of nine bits of data, nine bits (bits 0 to 8) are used^{Note 1}.

The shift register cannot be directly manipulated by program.

During reception, it converts data input to the serial pin into parallel data, and stores to the lower 8/9 bits of the SDRmn register.

When data is transmitted, the value transferred from the lower 8/9 bits of the SDRmn register to this register is output as serial data from the serial output pin.

For details, see 3. 12. 2. 2 Lower 8/9 bits of the serial data register mn (SDRmn).

	8	7	6	5	4	3	2	1	0
Shift register									

<R> 3. 12. 2. 2 Lower 8/9 bits of the serial data register mn (SDRmn)

The SDRmn register is the transmit/receive data register (16 bits) of channel n. Bits 8 to 0 of SDR00, SDR01 (lower 9 bits) or bits 7 to 0 of SDR02, SDR03, SDR10Note 1, and SDR11Note 1 (lower 8 bits) function as a transmit/receive buffer register, and bits 15 to 9 (higher 7 bits) are used as a register that sets the division ratio of the operation clock (fmck).

Remark For the function of the higher 7 bits of the SDRmn register, see 12. 3. 5 Higher 7 bits of the serial data register mn (SDRmn) in RL78/G1A Hardware User's Manual (R01UH0305E).

When data is received, parallel data converted by the shift register is stored in the lower 8/9 bits. When data is to be transmitted, set transmit to be transferred to the shift register to the lower 8/9 bits.

The data stored in the lower 8/9 bits of this register is as follows, depending on the setting of bits 0 and 1 (DLSmn0, DLSmn1) of serial communication operation setting register mn (SCRmn), regardless of the output sequence of the data.

- 7-bit data length (stored in bits 0 to 6 of SDRmn register)
- 8-bit data length (stored in bits 0 to 7 of SDRmn register)
- 9-bit data length (stored in bits 0 to 8 of SDRmn register)^{Note 1}

The SDRmn register can be read or written in 16-bit units.

The lower 8/9 bits of the SDRmn register can be read or written^{Note 2} as the following SFR, depending on the communication mode.

- CSIp communication ... SIOp (CSIp data register)
- UARTq reception ... RXDq (UARTq receive data register)
- UARTq transmission ... TXDq (UARTq transmit data register)
- IICr communication ... SIOr (IICr data register)

The SDRmn register can be read or written in 16-bit units.

Reset signal generation clears the SDRmn register to 0000H.

Notes 1. Only following UART0 can be specified for the 9-bit data length.

2. Writing in 8-bit units is prohibited when the operation is stopped (SEmn = 0).

Remarks 1. After data is received, "0" is stored in bits 0 to 8 in bit portions that exceed the data length.

- **2.** m: Unit number (m = 0, 1)
 - n: Channel number (n = 0 to 3)
 - p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21)
 - q: UART number (q = 0 to 2)
 - r: IIC number (80-pin products: r = 00, 10, 20 64-pin products: r = 00)

<R> Figure 3-11. Format of Serial Data Register mn (SDRmn) (mn = 00, 01, 02, 03, 10, 11)

Address: FFF10H, FFF11H (SDR00), FFF12H, FFF13H (SDR01) After reset: 0000H R/W FFF44H, FFF45H (SDR02), FFF46H, FFF47H (SDR03), FFF48H, FFF49H (SDR10)^{Note}, FFF4AH, FFF4BH (SDR11)^{Note}

Caution For 9-bit data communication, be sure to clear bit 8 of the SDRmn register to "0".

<R> 3. 12. 3 Registers controlling serial array unit

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see **12.3** Registers Controlling Serial Array Unit in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 1 Peripheral enable register 0 (PER0)

Address: F00F0H After reset: 00H R/W

Symbol	<7>	6	<5>	4	<3>	<2>	1	<0>
PER0	RTCEN	0	ADCEN	0	SAU1EN	SAU0EN	0	TAU0EN

SAU1EN	Control of serial array unit 1 input clock supply
0	Stops input clock supply.
	• SFR used by the serial array unit 1 cannot be written.
	• The serial array unit 1 is in the reset status.
1	Enables input clock supply.
	• SFR used by the serial array unit 1 can be read/written.

<R>

SAU0EN	Control of serial array unit 0 input clock supply							
0	Stops input clock supply.							
	• SFR used by the serial array unit 0 cannot be written.							
	• The serial array unit 0 is in the reset status.							
1	Enables input clock supply.							
	• SFR used by the serial array unit 0 can be read/written.							

<R>

Caution Be sure to clear bits 1, 4, and 6 to "0".

3. 12. 3. 2 Serial clock select register m (SPSm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 2** Serial clock select register m (SPSm) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 3 Serial mode register mn (SMRmn)

• Setting of serial mode register mn (SMRmn) (1/2)

<R> Address: F0110H, F0111H (SMR00) - F0116H, F0117H (SMR03),

F0150H, F0151H (SMR10), F0152H, F0153H (SMR11)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	CKS	CCS	0	0	0	0	0	STS	0	SIS	1	0	0	MD	MD	MD
	mn	mn						mn ^{Note}		mn0 ^{Note}				mn2	mn1	mn0

CKSmn	Selection of operation clock (fмск) of channel n								
0	peration clock CKm0 set by the SPSm register								
1	Operation clock CKm1 set by the SPSm register								
Operation cloc	Operation clock (fMCK) is used by the edge detector. In addition, depending on the setting of the CCSmn bit and the higher 7								
bits of the SDR	Rmn register, a transfer clock (fтськ) is generated.								

After reset: 0020H R/W

CCSmn	Selection of transfer clock (ftclk) of channel n									
0	ivided operation clock fmck specified by the CKSmn bit									
1	Clock input fsck from the SCKp pin (slave transfer in CSI mode)									
Transfer clock	frcuk is used for the shift register, communication controller, output controller, interrupt controller, and error									
controller. When CCSmn = 0, the division ratio of operation clock (fMCK) is set by the higher 7 bits of the SDRmn register.										

STSmn ^{Note}	Selection of start trigger source								
0	Only software trigger is valid (selected for CSI, UART transmission, and simplified I ² C).								
1	Valid edge of the RxDq pin (selected for UART reception)								
Transfer is star	Transfer is started when the above source is satisfied after 1 is set to the SSm register.								

Note The SMR01, SMR03, and SMR11 registers only.

Caution Be sure to clear bits 13 to 9, 7, 4, and 3 (or bits 13 to 6, 4, and 3 for the SMR00, SMR02, or SMR10 register) to "0". Be sure to set bit 5 to "1".

Remark m: Unit number (m = 0, 1)

- n: Channel number (n = 0 to 3)
- p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21)
- q: UART number (q = 0 to 2)
- r: IIC number (80-pin products: r = 00, 10, 20 64-pin products: r = 00)

• Setting of serial mode register mn (SMRmn) (2/2)

<R> Address: F0110H, F0111H (SMR00) - F0116H, F0117H (SMR03), After reset: 0020H R/W

F0150H, F0151H (SMR10), F0152H, F0153H (SMR11)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	CKS	CCS	0	0	0	0	0	STS	0	SIS	1	0	0	MD	MD	MD
	mn	mn						mn ^{Note}		mn0 ^{Note}				mn2	mn1	mn0

SISmn0 ^{Note}	Controls inversion of level of receive data of channel n in UART mode							
0	Falling edge is detected as the start bit.							
	The input communication data is captured as is.							
1	Rising edge is detected as the start bit.							
	The input communication data is inverted and captured.							

MDmn2	MDmn1	Setting of operation mode of channel n
0	0	CSI mode
0	1	UART mode
1	0	Simplified I ² C mode
1	1	Setting prohibited

MDmn0	Selection of interrupt source of channel n								
0	Transfer end interrupt								
1	Buffer empty interrupt								
	(Occurs when data is transferred from the SDRmn register to the shift register.)								
For successiv	For successive transmission, the next transmit data is written by setting the MDmn0 bit to 1 when SDRmn data has run out.								

Note The SMR01, SMR03, and SMR11 registers only.

- Caution Be sure to clear bits 13 to 9, 7, 4, and 3 (or bits 13 to 6, 4, and 3 for the SMR00, SMR02, or SMR10 register) to "0". Be sure to set bit 5 to "1".
- **Remark** m: Unit number (m = 0, 1)
 - n: Channel number (n = 0 to 3)
 - p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21)
 - q: UART number (q = 0 to 2)
 - r: IIC number (80-pin products: r = 00, 10, 20 64-pin products: r = 00)

3. 12. 3. 4 Serial communication operation setting register mn (SCRmn)

• Setting of serial communication operation setting register mn (SCRmn) (1/2)

<R> Address: F0118H, F0119H (SCR00) - F011EH, F011FH (SCR03), After reset: 0087H R/W F0158H, F0159H (SCR10), F015AH, F015BH (SCR11)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCR	TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	1	DLS	DLS
mn	mn	mn	mn	mn		mn	mn1	mn0	mn		mn1	mn0			mn1	mn0
											Note 1				Note 2	

TXEmn	RXEmn	Setting of operation mode of channel n
0	0	Disable communication.
0	1	Reception only
1	0	Transmission only
1	1	Transmission/reception

DAPmn	CKPmn	Selection of data and clock phase in CSI mode	Туре
0	0		1
	_	SOp <u>XD7 D6 X D5 X D4 X D3 X D2 X D1 X D0</u>	
		Slp	
0	1		2
		SOp XD7 XD6 X D5 X D4 X D3 X D2 X D1 X D0	
		Sip	
1	0		3
		SOp XD7 X D6 X D5 X D4 X D3 X D2 X D1 X D0	
		Sip	
1	1		4
		SOp XD7 X D6 X D5 X D4 X D3 X D2 X D1 X D0	
		Sip	

Be sure to set DAPmn, CKPmn = 0, 0 in the UART mode and simplified I^2C mode.

EOCmn	Selection of masking of error interrupt signal (INTSREx (x = 0 to 2))						
0	lasks error interrupt INTSREx (INTSRx is not masked).						
1	Enables generation of error interrupt INTSREx (INTSRx is masked if an error occurs).						
Set EOCmn =	0 in the CSI mode, simplified I ² C mode, and during UART transmission ^{Note 3} .						
Set EOCmn = 1 during UART reception.							

(Notes, Caution and Remark are on the next page.)

<R> Notes 1. The SCR00, SCR02, and SCR10 registers only. Others are fixed to 0.

- 2. The SCR00 and SCR01 registers only. Others are fixed to 1.
- 3. When using CSImn not with EOCmn = 0, error interrupt INTSRE0 may be generated.

Caution Be sure to clear bits 3, 6, and 11 to "0". Be sure to set bit 2 to "1".

- **Remark** m: Unit number (m = 0, 1)
 - n: Channel number (n = 0 to 3)
 - p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21)

• Setting of serial communication operation setting register mn (SCRmn) (2/2)

<R> Address: F0118H, F0119H (SCR00) - F011EH, F011FH (SCR03), After reset: 0087H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCRmn	TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	1	DLS	DLS
	mn	mn	mn	mn		mn	mn1	mn0	mn		mn1	mn0			mn1	mn0
											Note 1				Note 2	

F0158H, F0159H (SCR10), F015AH, F015BH (SCR11)

PTCmn1	PTCmn0	Setting of	Setting of parity bit in UART mode						
		Transmission	Reception						
0	0	Does not output the parity bit.	Receives without parity						
0	1	Outputs 0 parity ^{Note 3} .	No parity judgment						
1	0	Outputs even parity.	Judged as even parity.						
1	1	Outputs odd parity.	Judges as odd parity.						
Be sure to set PTCmn1, PTCmn0 = 0, 0 in the CSI mode and simplified I^2 C mode.									

DIRmn	Selection of data transfer sequence in CSI and UART modes							
0	Inputs/outputs data with MSB first.							
1	Inputs/outputs data with LSB first.							
$D_{\rm e}$ such that along DID map = 0 in the simulational l^2 C mode								

Be sure to clear DIRmn = 0 in the simplified I^2C mode.

SLCmn1 ^{Note 1}	SLCmn0	Setting of stop bit in UART mode								
0	0	No stop bit								
0	1	Stop bit length = 1 bit								
1	0	Stop bit length = 2 bits (mn = 00, 02, 10 only)								
1	1	Setting prohibited								
When the trans	sfer end interru	pt is selected, the interrupt is generated when all stop bits have been completely transferred.								
Set 1 bit (SLCmn1, SLCmn0 = 0, 1) during UART reception and in the simplified I^2C mode.										
Sot no stop bit	Set to stop hit (SI Cmp1 SI Cmp0 - 0. 0) in the CSI mode									

Set no stop bit (SLCmn1, SLCmn0 = 0, 0) in the CSI mode.

DLSmn1 ^{Note 2}	DLSmn0	Setting of data length in CSI and UART modes				
0	1	9-bit data length (stored in bits 0 to 8 of the SDRmn register) (settable in UART mode only)				
1 0 7-bit data length (stored in bits 0 to 6 of the SDRmn register)						
1	1	8-bit data length (stored in bits 0 to 7 of the SDRmn register)				
Other that	an above	Setting prohibited				
Be sure to set DLSmn1, DLSmn0 = 1, 1 in the simplified I^2C mode.						

(Notes, Caution and Remark are on the next page.)

Notes 1. The SCR00, SCR02, and SCR10 registers only.

- 2. The SCR00 and SCR01 registers only. Others are fixed to 1.
- 3. 0 is always added regardless of the data contents.
- Caution Be sure to clear bits 3, 6, and 11 to "0". (Also clear bit 5 of the SCR01, SCR03, or SCR11 register to 0, as well as bit 1 of the SCR02, SCR03, SCR10, SCR11 registers). Be sure to set bit 2 to "1".
- **Remark** m: Unit number (m = 0, 1)
 - n: Channel number (n = 0 to 3)
 - p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21)

3. 12. 3. 5 Higher 7 bits of the serial data register mn (SDRmn)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 5** Higher 7 bits of the serial data register mn (SDRmn) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 6 Serial flag clear trigger register mn (SIRmn)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 6** Serial flag clear trigger register mn (SIRmn) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 7 Serial status register mn (SSRmn)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 7** Serial status register mn (SSRmn) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 8 Serial channel start register m (SSm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 8** Serial channel start register **m (SSm)** in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 9 Serial channel stop register m (STm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 9** Serial channel stop register **m (STm)** in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 10 Serial channel enable status register m (SEm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12.3.10** Serial channel enable status register m (SEm) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 11 Serial output enable register m (SOEm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 11 Serial output enable register m (SOEm)** in **RL78/G1A Hardware User's Manual (R01UH0305E)**.

3. 12. 3. 12 Serial output register m (SOm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 12** Serial output register m (SOm) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 13 Serial output level register m (SOLm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 13** Serial output level register **m** (SOLm) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 14 Serial standby control register 0 (SSC0)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 14** Serial standby control register 0 (SSC0) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 15 Input switch control register (ISC)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 15** Input switch control register (ISC) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 16 Noise filter enable register 0 (NFEN0)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 16** Noise filter enable register **0** (NFEN0) in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 12. 3. 17 Registers controlling port functions of serial input/output pins

Using the serial array unit requires setting of the registers that control the port functions multiplexed on the target channel (port mode register (PMxx), port register (Pxx), port input mode register (PIMxx), port output mode register (POMxx), port mode control register (PMCxx)).

For details, see 3. 4. 3. 1 Port mode registers (PMxx), 3. 4. 3. 2 Port registers (Pxx), 3. 4. 3. 4 Port input mode registers (PIMxx), 3. 4. 3. 5 Port output mode registers (POMxx), and 3. 4. 3. 6 Port mode control registers (PMCxx).

For details of setting example, see 12. 3. 17 Registers controlling port functions of serial Input/output pins in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 4 Operation stop mode

See 12. 4 Operation Stop Mode in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 5 Operation of 3-Wire serial I/O (CSI00, CSI10, CSI20, CSI21) communication

See 12. 5 Operation of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI11, CSI20, CSI21) Communication in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 6 Operation of UART (UART0 to UART2) communication

See 12. 6 Operation of UART (UART0 to UART2) Communication in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 7 LIN communication operation

See 12.7 LIN Communication Operation in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 8 Operation of simplified I²C (IIC00, IIC10, IIC20) communication

See 12. 8 Operation of Simplified I²C (IIC00, IIC01, IIC10, IIC11, IIC20, IIC21) Communication in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 13 Serial Interface IICA

Serial interface IICA is not provided in RL78/G1E (64-pin products, 80-pin products).

3. 14 Multiplier and Divider/Multiply-Accumulator

See CHAPTER 14 MULTIPLIER AND DIVIDER/MULTIPLY-ACCUMULATOR in RL78/G1A Hardware User's Manual (R01UH0305E).

3.15 DMA Controller

See CHAPTER 15 DMA CONTROLLER in RL78/G1A Hardware User's Manual (R01UH0305E).

3.16 Interrupt Functions

The interrupt function switches the program execution to other processing. When the branch processing is finished, the program returns to the interrupted processing. The number of interrupt sources differs, depending on the product.

		64-pin products	80-pin products
Maskable	External	2	5
interrupts	Internal	2	5

3. 16. 1 Interrupt function types

The following two types of interrupt functions are used.

(1) Maskable interrupts

These interrupts undergo mask control. Maskable interrupts can be divided into four priority groups by setting the priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H).

Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If two or more interrupt requests, each having the same priority, are simultaneously generated, then they are processed according to the default priority of vectored interrupt servicing. Default priority, see **Table 3-13**.

A standby release signal is generated and STOP, HALT, and SNOOZE modes are released.

External interrupt requests and internal interrupt requests are provided as maskable interrupts.

(2) Software interrupt

This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts are disabled. The software interrupt does not undergo interrupt priority control.

3. 16. 2 Interrupt sources and configuration

Interrupt sources include maskable interrupts and software interrupts. In addition, they also have up to seven reset sources (see **Table 3-13**). The vector codes that store the program start address when branching due to the generation of a reset or various interrupt requests are two bytes each, so interrupts jump to a 64 K address of 00000H to 0FFFFH.

Inte	De		Interrupt Source	Inte	Ve	Ba	RL78	/G1E
Interrupt Type	Default Priority ^{Note 1}	Name	Trigger	Internal/External	Vector Table Address	Basic Configuration Type ^{Note 2}	64-pin	80-pin
Maskable	0	INTWDTI	Watchdog timer interval ^{Note 3} (75% of overflow time + 1/2fı∟)	Internal	0004H	(A)	\checkmark	\checkmark
ole	1	INTLVI	Voltage detection ^{Note 4}		0006H		\checkmark	\checkmark
	2	INTP0	Pin input edge detection	External	0008H	(B)	\checkmark	\checkmark
	3	INTP1			000AH		_	\checkmark
	4	INTP2			000CH		_	\checkmark
	5	INTP3			000EH		_	-
	6	INTP4			0010H		_	-
	7	INTP5			0012H		-	-
	8	INTST2/ INTCSI20/ INTIIC20	UART2 transmission transfer end or buffer empty interrupt/ CSI20 transfer end or buffer empty interrupt/ IIC20 transfer end	Internal	0014H	(A)	_√ Note 5	\checkmark
	9	INTSR2/ INTCSI21/ INTIIC21	UART2 reception transfer end or buffer empty interrupt/ CSI21 transfer end or buffer empty interrupt/ IIC21 transfer end		0016H		√Note 6	√ ^{Note 6}
	10	INTSRE2	UART2 reception communication error occurrence		0018H			
	11	INTDMA0	End of DMA0 transfer		001AH			
	12	INTDMA1	End of DMA1 transfer		001CH		\checkmark	\checkmark
	13	INTST0/ INTCSI00/ INTIIC00	UART0 transmission transfer end or buffer empty interrupt/ CSI00 transfer end or buffer empty interrupt/ IIC00 transfer end		001EH		\checkmark	\checkmark
	14	INTSR0/ INTCSI01/ INTIIC01	UART0 reception transfer end or buffer empty interrupt/ CSI01 transfer end or buffer empty interrupt/ IIC01 transfer end		0020H		√Note 7	√Note 7
	15	INTSRE0 INTTM01H	UART0 reception communication error occurrence End of timer channel 1 count or capture (at higher 8-bit timer operation)		0022H		√ √	√ √

Table 3-13. Interrupt Source List (1/3)

<R>

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 53 indicates the lowest priority.

- 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 3-13.
- 3. When bit 7 (WDTINT) of the option byte (000C0H) is set to 1.
- 4. When bit 7 (LVIMD) of the voltage detection level register (LVIS) is cleared to 0.
- 5. INTST2 only.
- 6. INTSR2 and INTCSI21 only.
- 7. INTSR0 only.

	Inte	Def		Interrupt Source	Inte	Vec	Bas	RL78	/G1E
	Interrupt Type	Default Priority ^{Note 1}	Name	Trigger	Internal/External	Vector Table Address	Basic Configuration Type ^{Note 2}	64-pin	80-pin
	Maskable	16	INTST1/ INTCSI10/ INTIIC10	UART1 transmission transfer end or buffer empty interrupt/ CSI10 transfer end or buffer empty interrupt/ IIC10 transfer end	Internal	0024H	(A)	√Note 3	\checkmark
		17	INTSR1/ INTCSI11/ INTIIC11	UART1 reception transfer end/ CSI11 transfer end or buffer empty interrupt/ IIC11 transfer end		0026H		√Note 4	_√ Note 4
		18	INTSRE1	UART1 reception communication error occurrence		0028H			\checkmark
<r></r>			INTTM03H	End of timer channel 3 count or capture (at higher 8-bit timer operation)				\checkmark	\checkmark
		19	INTIICA0	End of IICA0 communication		002AH		-	-
		20	INTTM00	End of timer channel 0 count or capture		002CH			\checkmark
<r></r>		21	INTTM01	End of timer channel 1 count or capture (at 16-bit/lower 8- bit timer operation)		002EH		V	\checkmark
		22	INTTM02	End of timer channel 2 count or capture		0030H		\checkmark	\checkmark
<r></r>		23	INTTM03	End of timer channel 3 count or capture (at 16-bit/lower 8- bit timer operation)		0032H		V	\checkmark
		24	INTAD	End of A/D conversion		0034H		\checkmark	\checkmark
		25	INTRTC	Fixed-cycle signal of real-time clock/alarm match detection		0036H		_	_
		26	INTIT	Interval signal of 12-bit interval timer detection		0038H		\checkmark	\checkmark
		27	INTKR	Key return signal detection	External	003AH	(C)		\checkmark
		28	INTTM04	End of timer channel 4 count or capture	Internal	0042H	(A)	\checkmark	\checkmark

Table 3-13. Interrupt Source List (2/3)

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 39 indicates the lowest priority.

2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 3-13.

3. INTST1 only.

4. INTSR1 only.

Inte	Def		Interrupt Source	Inte	Vec	Bas	RL78/G	1E
Interrupt Type	Default Priority ^{Note 1}	Name	Trigger	Internal/External	Vector Table Address	Basic Configuration Type ^{Note 2}	64-pin	80-pin
Mas	29	INTTM05	End of timer channel 5 count or capture	Internal	0044H	(A)	\checkmark	\checkmark
Maskable	30	INTTM06	End of timer channel 6 count or capture		0046H		\checkmark	\checkmark
æ	31	INTTM07	End of timer channel 7 count or capture		0048H		\checkmark	\checkmark
	32	INTP6	Pin input edge detection	External	004AH	(B)	_	\checkmark
	33	INTP7			004CH		_	-
	34	INTP8			004EH		-	-
	35	INTP9			0050H		-	-
	36	INTP10			0052H		-	-
	37	INTP11			0054H		_	-
	38	INTMD	End of division operation/Overflow of multiplyaccumulation result occurs	Internal	005EH	(A)	V	\checkmark
	39	INTFL	Reserved Note 3		0062H		\checkmark	\checkmark
Software	-	BRK	Execution of BRK instruction	-	007EH	(D)	V	V
Reset	_	RESET	RESET pin input	_	0000H	_	\checkmark	\checkmark
et		POR	Power-on-reset				\checkmark	\checkmark
		LVD	Voltage detection ^{Note 4}				\checkmark	\checkmark
		WDT	Overflow of watchdog timer				\checkmark	\checkmark
		TRAP	Execution of illegal instruction ^{Note 5}				\checkmark	\checkmark
		IAW	Illegal-memory access				\checkmark	\checkmark
		RAMTOP	RAM parity error				\checkmark	\checkmark

Table 3-13. Interrupt Source List (3/3)

<R>

<R>

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 39 indicates the lowest priority.

2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 3-13.

3. Be used at the flash self programming library or the data flash library.

4. When bit 7 (LVIMD) of the voltage detection level register (LVIS) is set to 1.

5. When the instruction code in FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Figure 3-13. Basic Configuration of Interrupt Function (1/2)

(a) Internal maskable interrupt

(b) External maskable interrupt (INTPn)

- IF: Interrupt request flag
- IE: Interrupt enable flag
- ISP0: In-service priority flag 0
- ISP1: In-service priority flag 1
- MK: Interrupt mask flag
- PR0: Priority specification flag 0
- PR1: Priority specification flag 1
- **Remark** 64-pin products: n = 0 80-pin products: n = 0 to 3, 6

Figure 3-13. Basic Configuration of Interrupt Function (2/2)

(c) External maskable interrupt (INTKR)

(d) Software interrupt

- IF: Interrupt request flag
- IE: Interrupt enable flag
- ISP0: In-service priority flag 0
- ISP1: In-service priority flag 1
- MK: Interrupt mask flag
- PR0: Priority specification flag 0
- PR1: Priority specification flag 1

Remark 64-pin products: n = 0 to 6 80-pin products: n = 0 to 7

3. 16. 3 Registers controlling interrupt functions

The following 6 types of registers are used to control the interrupt functions.

- Interrupt request flag register (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H)
- Interrupt mask flag register (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H)
- Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H)
- External interrupt rising edge enable register (EGP0)
- External interrupt falling edge enable register (EGN0)
- Program status word (PSW)

Table 3-14 shows a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding to interrupt request sources.

Interrupt	Interrupt Re	quest Flag	Interrupt Mask Flag Priority Specification Flag		on Flag	RL78	/G1E	
Source		Register		Register		Register	64-pin	80-pin
INTWDTI	WDTIIF	IF0L	WDTIMK	MK0L	WDTIPR0, WDTIPR1	PR00L,	\checkmark	\checkmark
INTLVI	LVIIF		LVIMK		LVIPR0, LVIPR1	PR10L		\checkmark
INTP0	PIF0		PMK0		PPR00, PPR10			\checkmark
INTP1	PIF1		PMK1		PPR01, PPR11		_	\checkmark
INTP2	PIF2		PMK2		PPR02, PPR12		-	\checkmark
INTP3	PIF3		PMK3		PPR03, PPR13		_	_
INTP4	PIF4		PMK4		PPR04, PPR14		-	_
INTP5	PIF5		PMK5		PPR05, PPR15		_	_
INTST2 ^{Note 1}	STIF2 ^{Note 1}	IF0H	STMK2 ^{Note 1}	МК0Н	STPR02, STPR12 ^{Note 1}	PR00H,		\checkmark
INTCSI20 ^{Note 1}	CSIIF20 ^{Note 1}		CSIMK20 ^{Note 1}		CSIPR020, CSIPR120 ^{Note 1}	PR10H	_	\checkmark
INTIIC20 ^{Note 1}	IICIF20 ^{Note 1}		IICMK20 ^{Note 1}		IICPR020, IICPR120 ^{Note 1}		-	V
INTSR2 ^{Note 2}	SRIF2 ^{Note 2}		SRMK2 ^{Note 2}		SRPR02, SRPR12 ^{Note 2}		-	\checkmark
INTCSI21 ^{Note 2}	CSIIF21 ^{Note 2}		CSIMK21 ^{Note 2}		CSIPR021, CSIPR121 ^{Note 2}		\checkmark	
INTIIC21 ^{Note 2}	IICIF21 ^{Note 2}		IICMK21 ^{Note 2}		IICPR021, IICPR121 ^{Note 2}		-	-

Table 3-14. Flags Corresponding to Interrupt Request Sources (1/4)

Notes 1. If one of the interrupt sources INTST2, INTCSI20, and INTIIC20 is generated, bit 0 of the IF0H register is set to 1. Bit 0 of the MK0H, PR00H, and PR10H registers can be used for all three of these interrupt sources.

If one of the interrupt sources INTSR2, INTCSI21, and INTIIC21 is generated, bit 1 of the IF0H register is set to
 Bit 1 of the MK0H, PR00H, and PR10H registers can be used for all three of these interrupt sources.

Interrupt	Interrupt Red	quest Flag			Priority Specific	cation Flag	RL78	/G1E
Source		Register		Register		Register	64-pin	80-pin
INTSRE2	SREIF2	IF0H	SREMK2	МК0Н	SREPR02,	PR00H,	\checkmark	\checkmark
				_	SREPR12	PR10H		
INTDMA0	DMAIF0		DMAMK0		DMAPR00,		\checkmark	\checkmark
					DMAPR10	ļ		
INTDMA1	DMAIF1		DMAMK1		DMAPR01,		\checkmark	\checkmark
					DMAPR11	ļ		
INTST0 ^{Note 1}	STIF0 ^{Note 1}		STMK0 ^{Note 1}		STPR00,		\checkmark	\checkmark
					STPR10 ^{Note 1}	ļ		
INTCSI00 ^{Note 1}	CSIIF00 ^{Note 1}		CSIMK00 ^{Note 1}		CSIPR000,		\checkmark	\checkmark
					CSIPR100 ^{Note 1}			
INTIIC00 ^{Note 1}	IICIF00 ^{Note 1}		IICMK00 ^{Note 1}		IICPR000,		\checkmark	\checkmark
					IICPR100 ^{Note 1}			
INTSR0 ^{Note 2}	SRIF0 ^{Note 2}		SRMK0 ^{Note 2}		SRPR00,		\checkmark	\checkmark
					SRPR10 ^{Note 2}			
INTCSI01 ^{Note 2}	CSIIF01 ^{Note 2}		CSIMK01 ^{Note 2}		CSIPR001,		-	-
					CSIPR101 ^{Note 2}			
INTIIC01 ^{Note 2}	IICIF01 ^{Note 2}		IICMK01 ^{Note 2}		IICPR001,		-	-
					IICPR101 ^{Note 2}			
INTSRE0 ^{Note 3}	SREIF0 ^{Note 3}		SREMK0 ^{Note 3}		SREPR00,		\checkmark	\checkmark
					SREPR10 ^{Note 3}			
INTTM01H ^{Note 3}	TMIF01H ^{Note 3}		TMMK01H ^{Note 3}		TMPR001H,		\checkmark	\checkmark
					TMPR101H ^{Note 3}			

 Table 3-14. Flags Corresponding to Interrupt Request Sources (2/4)

Notes 1. If one of the interrupt sources INTSTO, INTCSI00, and INTIIC00 is generated, bit 5 of the IF0H register is set to 1. Bit 5 of the MK0H, PR00H, and PR10H registers can be used for all three of these interrupt sources.

If one of the interrupt sources INTSR0, INTCSI01, and INTIIC01 is generated, bit 6 of the IF0H register is set to
 Bit 6 of the MK0H, PR00H, and PR10H registers can be used for all three of these interrupt sources.

<R>

3. Do not use the error interrupt of UART0 reception and the interrupt of channel 1 of TAU0 (while the higher 8 bits are operating at a timer) at the same time because they share flags for the interrupt request sources. If the error interrupt of UART0 reception is not used (EOC01 = 0), UART0 and channel 1 of TAU0 (while the higher 8 bits are operating at a timer) can be used at the same time. If the interrupt source INTSRE0 or INTTM01H is generated, bit 7 of the IF0H register is set to 1. Bit 7 of the MK0H, PR00H, and PR10H registers can be used for both these interrupt sources.

Interrupt	Interrupt Re	nterrupt Request Flag Interrupt Mask Flag				cation Flag	RL78	/G1E
Source		Register		Register		Register	64-pin	80-pin
INTST1 ^{Note 1}	STIF1 ^{Note 1}	IF1L	STMK1 ^{Note 1}	MK1L	STPR01, STPR11 ^{Note 1}	PR01L, PR11L	\checkmark	V
INTCSI10 ^{Note 1}	CSIIF10 ^{Note 1}		CSIMK10 ^{Note 1}		CSIPR010, CSIPR110 ^{Note 1}		_	\checkmark
INTIIC10 ^{Note 1}	IICIF10 ^{Note 1}		IICMK10 ^{Note 1}		IICPR010, IICPR110 ^{Note 1}		_	\checkmark
INTSR1 ^{Note 2}	SRIF1 ^{Note 2}		SRMK1 ^{Note 2}		SRPR01, SRPR11 ^{Note 2}		\checkmark	\checkmark
INTCSI11 ^{Note 2}	CSIIF11 ^{Note 2}		CSIMK11 ^{Note 2}		CSIPR011, CSIPR111 ^{Note 2}		-	-
INTIIC11 ^{Note 2}	IICIF11 ^{Note 2}		IICMK11 ^{Note 2}		IICPR011, IICPR111 ^{Note 2}		-	-
INTSRE1 ^{Note 3}	SREIF1 ^{Note 3}		SREMK1 ^{Note 3}		SREPR01, SREPR11 ^{Note 3}		\checkmark	
INTTM03H ^{Note 3}	TMIF03H ^{Note 3}		TMMK03H ^{Note 3}		TMPR003H, TMPR103H ^{Note 3}		\checkmark	V
INTIICA0	IICAIFO		IICAMK0		IICAPR00, IICAPR10		_	-
INTTM00	TMIF00		ТММК00		TMPR000, TMPR100		\checkmark	V
INTTM01	TMIF01		TMMK01		TMPR001, TMPR101		\checkmark	V
INTTM02	TMIF02		TMMK02		TMPR002, TMPR102			\checkmark
INTTM03	TMIF03		ТММК03		TMPR003, TMPR103			\checkmark
INTAD	ADIF	IF1H	ADMK	MK1H	ADPR0, ADPR1	PR01H,	\checkmark	
INTRTC	RTCIF		RTCMK		RTCPR0, RTCPR1	PR11H	_	-
INTIT	ITIF		ІТМК		ITPR0, ITPR1		\checkmark	
INTKR	KRIF		KRMK		KRPR0, KRPR1		\checkmark	
INTTM04	TMIF04		ТММК04		TMPR004, TMPR104		\checkmark	

Table 3-14. Flags Corresponding to Interrupt Request Sources ((3/4)
--	-------

(**Notes** are on the next page.)

- **Notes 1.** If one of the interrupt sources INTST1, INTCSI10, and INTIIC10 is generated, bit 0 of the IF1L register is set to 1. Bit 0 of the MK1L, PR01L, and PR11L registers can be used for all three of these interrupt sources.
 - 2. If one of the interrupt sources INTSR1, INTCSI11, and INTIIC11 is generated, bit 1 of the IF1L register is set to 1. Bit 1 of the MK1L, PR01L, and PR11L registers can be used for all three of these interrupt sources.

<R>

3. Do not use the error interrupt of UART1 reception and the interrupt of channel 3 of TAU0 (while the higher 8 bits are operating at a timer) at the same time because they share flags for the interrupt request sources. If the error interrupt of UART1 reception is not used (EOC03 = 0), UART1 and channel 3 of TAU0 (while the higher 8 bits are operating at a timer) can be used at the same time. If the interrupt source INTSRE1 or INTTM03H is generated, bit 2 of the IF1L register is set to 1. Bit 2 of the MK1L, PR01L, and PR11L registers can be used for both these interrupt sources.

Interrupt	Interrupt Re	quest Flag	Interrupt Ma	Interrupt Mask Flag Pr		cation Flag	RL78	/G1E
Source		Register		Register		Register	64-pin	80-pin
INTTM05	TMIF05	IF2L	TMMK05	MK2L	TMPR005, TMPR105	PR02L, PR12L	\checkmark	\checkmark
INTTM06	TMIF06		ТММК06		TMPR006, TMPR106		\checkmark	\checkmark
INTTM07	TMIF07		ТММК07		TMPR007, TMPR107		\checkmark	\checkmark
INTP6	PIF6		PMK6		PPR06, PPR16		-	\checkmark
INTP7	PIF7		PMK7		PPR07, PPR17		_	_
INTP8	PIF8		PMK8		PPR08, PPR18		_	_
INTP9	PIF9		РМК9		PPR09, PPR19		_	_
INTP10	PIF10		PMK10		PPR010, PPR110		-	_
INTP11	PIF11	IF2H	PMK11	MK2H	PPR011, PPR111	PR02H, PR12H	-	-
INTMD	MDIF		MDMK		MDPR0, MDPR1		\checkmark	V
INTFL	FLIF		FLMK		FLPR0, FLPR1			

Table 3-14. Flags	Corresponding to	Interrupt Request	Sources (4/4)
			•••••(.,.,

The bit settings which are different from that of RL78/G1A (64-pin products) are shown on the next page. For details of each register, see **16. 3** Registers Controlling Interrupt Functions in RL78/G1A Hardware User's Manual (R01UH0305E).

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see **16.3 Registers Controlling Interrupt Functions** in **RL78/G1A Hardware User's Manual** (R01UH0305E).

3. 16. 3. 1 Interrupt request flag register (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H)

• 64-pin products

Address: FF	FE0H After re	eset: 00H R/W						
Symbol	<7>	6	5	4	3	<2>	<1>	<0>
IF0L	0	0	0	0	0	PIF0	LVIIF	WDTIIF
Address: FF	FE1H After re	eset: 00H R/W						
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF0H	TMIF01H	SRIF0	STIF0	DMAIF1	DMAIF0	SREIF2	SRIF2	STIF2
	SREIF0		CSIIF00				CSIIF21	
			IICIF00					
Address: FF	FE2H After re	eset: 00H R/W						
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
IF1L	TMIF03	TMIF02	TMIF01	TMIF00	0	SREIF1	SRIF1	STIF1
						TMIF03H		
Address: FF	FE3H After re	eset: 00H R/W						
Symbol	<7>	6	5	4	<3>	<2>	1	<0>
IF1H	TMIF04	0	0	0	KRIF	ITIF	0	ADIF
Address: FF	FD0H After re	eset: 00H R/W						
Symbol	7	6	5	4	3	<2>	<1>	<0>
IF2L	0	0	0	0	0	TMIF07	TMIF06	TMIF05
Address: FF	FD1H After re	eset: 00H R/W						
Symbol	<7>	6	<5>	4	3	2	1	0
IF2H	FLIF	0	MDIF	0	0	0	0	0

Cautions 1. Be sure to clear bits 3 to 7 of the IF0L register to "0".

- 2. Be sure to clear bit 3 of the IF1L register to "0".
- 3. Be sure to clear bits 1 and 4 to 6 of the IF1H register to "0".
- 4. Be sure to clear bits 3 to 7 of the IF2L register to "0".
- 5. Be sure to clear bits 0 to 4 and 6 of the IF2H register to "0".

• 80-pin products

Address: FFFE0H After reset: 00H R/W Symbol 7 6 5 <4> <3> <2> <1> <0> IF0L 0 0 0 PIF2 PIF1 PIF0 LVIIF WDTIIF Address: FFFE1H After reset: 00H R/W Symbol <7> <6> <5> <4> <3> <2> <1> <0> IF0H TMIF01H SRIF0 STIF0 DMAIF1 DMAIF0 SREIF2 SRIF2 STIF2 SREIF0 CSIIF00 CSIIF21 CSIIF20 IICIF00 IICIF20 Address: FFFE2H After reset: 00H R/W Symbol <7> <6> <5> <4> 3 <2> <1> <0> IF1L TMIF03 TMIF02 TMIF01 TMIF00 0 SREIF1 SRIF1 STIF1 TMIF03H CSIIF10 IICIF10 Address: FFFE3H After reset: 00H R/W Symbol 6 <3> <2> <0> <7> 5 4 1 IF1H TMIF04 0 0 0 KRIF ITIF 0 ADIF Address: FFFD0H After reset: 00H R/W Symbol 7 6 5 4 <3> <2> <1> <0> PIF6 0 0 IF2L 0 0 TMIF07 TMIF06 TMIF05 Address: FFFD1H After reset: 00H R/W Symbol <7> 6 <5> 4 3 2 1 0 IF2H FLIF 0 MDIF 0 0 0 0 0

Cautions 1. Be sure to clear bits 5 to 7 of the IF0L register to "0".

2. Be sure to clear bit 3 of the IF1L register to "0".

3. Be sure to clear bits 1 and 4 to 6 of the IF1H register to "0".

4. Be sure to clear bits 4 to 7 of the IF2L register to "0".

5. Be sure to clear bits 0 to 4 and 6 of the IF2H register to "0".

3. 16. 3. 2 Interrupt mask flag register (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H)

• 64-pin products

Address: FFFE4H After reset: FFH R/W

Symbol	7	6	5	4	3	<2>	<1>	<0>
MK0L	1	1	1	1	1	PMK0	LVIMK	WDTIMK

Address: FFFE5H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
МК0Н	TMMK01H	SRMK0	STMK0	DMAMK1	DMAMK0	SREMK2	SRMK2	STMK2
	SREMK0		CSIMK00				CSIMK21	
			IICMK00					

Address: FFFE6H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
MK1L	TMMK03	TMMK02	TMMK01	TMMK00	1	SREMK1 TMMK03H	SRMK1	STMK1

Address: FFFE7H After reset: FFH R/W

Symbol	<7>	6	5	4	<3>	<2>	1	<0>
MK1H	TMMK04	1	1	1	KRMK	ITMK	1	ADMK

Address: FFFD4H After reset: FFH R/W

Symbol	7	6	5	4	3	<2>	<1>	<0>
MK2L	1	1	1	1	1	TMMK07	TMMK06	TMMK05

Address: FFFD5H After reset: FFH R/W

Symbol	<7>	6	<5>	4	3	2	1	0
MK2H	FLMK	1	MDMK	1	1	1	1	1

Cautions 1. Be sure to set bits 3 to 7 of the MK0L register to "1".

2. Be sure to set bit 3 of the MK1L register to "1".

3. Be sure to set bits 1 and 4 to 6 of the MK1H register to "1".

4. Be sure to set bits 3 to 7 of the MK2L register to "1".

5. Be sure to set bits 0 to 4 and 6 of the MK2H register to "1".

• 80-pin products

Address: FFFE4H After reset: FFH R/W Symbol 6 5 <4> <3> <2> <1> <0> 7 MK0L 1 1 1 PMK2 PMK1 PMK0 LVIMK WDTIMK Address: FFFE5H After reset: FFH R/W Symbol <7> <6> <5> <4> <3> <2> <1> <0> MK0H TMMK01H SRMK0 STMK0 DMAMK1 DMAMK0 SREMK2 SRMK2 STMK2 SREMK0 CSIMK00 CSIMK21 CSIMK20 IICMK00 IICMK20 Address: FFFE6H After reset: FFH R/W Symbol <7> <6> <5> <4> 3 <2> <1> <0> MK1L TMMK03 TMMK02 TMMK01 TMMK00 1 SREMK1 SRMK1 STMK1 CSIMK10 тммкозн IICMK10 Address: FFFE7H After reset: FFH R/W Symbol 6 <3> <2> <0> <7> 5 4 1 MK1H TMMK04 1 1 1 KRMK ITMK 1 ADMK Address: FFFD4H After reset: FFH R/W Symbol 7 6 5 <3> <2> <1> <0> 4 1 1 1 PMK6 TMMK07 TMMK06 TMMK05 MK2L 1 Address: FFFD5H After reset: FFH R/W Symbol <7> 6 <5> 4 3 2 1 0 MK2H FLMK 1 MDMK 1 1 1 1 1

Cautions 1. Be sure to set bits 5 to 7 of the MK0L register to "1".

2. Be sure to set bit 3 of the MK1L register to "1".

3. Be sure to set bits 1 and 4 to 6 of the MK1H register to "1".

4. Be sure to set bits 4 to 7 of the MK2L register to "1".

5. Be sure to set bits 0 to 4 and 6 of the MK2H register to "1".

3. 16. 3. 3 Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H, PR02L, PR02H)

٠	64-pin	products
---	--------	----------

Address: FF	FE8H After re	set: FFH R/W	,					
Symbol	7	6	5	4	3	<2>	<1>	<0>
PR00L	1	1	1	1	1	PPR00	LVIPR0	WDTIPR0
Address: FF	FECH After re	eset: FFH R/W	I					
Symbol	7	6	5	4	3	<2>	<1>	<0>
PR10L	1	1	1	1	1	PPR10	LVIPR1	WDTIPR1
Address: FF	FE9H After re	set: FFH R/W	1					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR00H	TMPR001H	SRPR00	STPR00	DMAPR01	DMAPR00	SREPR02	SRPR02	STPR02
	SREPR00		CSIPR000				CSIPR021	
			IICPR00					
Address: FF	FEDH After re	eset: FFH R/W	I					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR10H	TMPR101H	SRPR10	STPR10	DMAPR11	DMAPR10	SREPR12	SRPR12	STPR12
	SREPR10		CSIPR100				CSIPR121	
			IICPR100					
	FEAH After re			_	_	_		_
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR01L	TMPR003	TMPR002	TMPR001	TMPR000	1	SREPR01	SRPR01	STPR01
						TMPR003H		
==			,					
	FEEH After re			.4.	2	0	.4.	0
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR11L	TMPR103	TMPR102	TMPR101	TMPR100	1	SREPR11	SRPR11	STPR11
						TMPR103H		
Address: EF	FEBH After re	eset: FFH R/W	I					
Symbol	<7>	6	5	4	<3>	<2>	1	<0>
PR01H	TMPR004	0		4	KRPR0	ITPR0	1	ADPR0
		1	I	1		ΠΓKV	1	AUCKU
Address: EE	FEFH After re	eset: FFH R/W	ı					
Symbol	<7>	Sell FFH R/W	5	4	<3>	<2>	1	<0>
-								
PR11H	TMPR104	1	1	1	KRPR1	ITPR1	1	ADPR1

Address: FFFD8H After reset: FFH R/W

Symbol	7	6	5	4	3	<2>	<1>	<0>
PR02L	1	1	1	1	1	TMPR007	TMPR006	TMPR005
Address: FF	FDCH After re	eset: FFH R/M	V					
Symbol	7	6	5	4	3	<2>	<1>	<0>
PR12L	1	1	1	1	1	TMPR107	TMPR106	TMPR105
Address: FF	FD9H After re	eset: FFH R/W	1					
Symbol	<7>	6	<5>	4	3	2	1	0
PR02H	FLPR0	1	MDPR0	1	1	1	1	1
Address: FF	FDDH After re	eset: FFH R/W	V					
Symbol	<7>	6	<5>	4	3	2	1	0
PR12H	FLPR1	1	MDPR1	1	1	1	1	1

Cautions 1. Be sure to set bits 3 to 7 of the PR00L register to "1".

- 2. Be sure to set bits 3 to 7 of the PR10L register to "1".
- 3. Be sure to set bit 3 of the PR01L register to "1".
- 4. Be sure to set bit 3 of the PR11L register to "1".
- 5. Be sure to set bits 1 and 4 to 6 of the PR01H register to "1".
- 6. Be sure to set bits 1 and 4 to 6 of the PR11H register to "1".
- 7. Be sure to set bits 3 to 7 of the PR02L register to "1".
- 8. Be sure to set bits 3 to 7 of the PR12L register to "1".
- 9. Be sure to set bits 0 to 4 and 6 of the PR02H register to "1".
- 10. Be sure to set bits 0 to 4 and 6 of the PR12H register to "1".

• 80-pin products

Address: FF	FE8H After re	set: FFH R/W	,					
Symbol	7	6	5	<4>	<3>	<2>	<1>	<0>
PR00L	1	1	1	PPR02	PPR01	PPR00	LVIPR0	WDTIPR0
Address: FF	FECH After re	eset: FFH R/W	1					
Symbol	7	6	5	4	<3>	<2>	<1>	<0>
PR10L	1	1	1	PPR12	PPR11	PPR10	LVIPR1	WDTIPR1
	FE9H After re							
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR00H	TMPR001H	SRPR00	STPR00	DMAPR01	DMAPR00	SREPR02	SRPR02	STPR02
	SREPR00		IICPR000				CSIPR021	CSIPR020
								IICPR020
Address: FF	FEDH After re	eset: FFH R/W	1					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR10H	TMPR101H	SRPR10	STPR10	DMAPR11	DMAPR10	SREPR12	SRPR12	STPR12
	SREPR10		CSIPR100				CSIPR121	CSIPR120
			IICPR100					IICPR120
Address: FF	FEAH After re	eset: FFH R/W	1					
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR01L	TMPR003	TMPR002	TMPR001	TMPR000	1	SREPR01	SRPR01	STPR01
						TMPR003H		CSIPR010
								IICPR010
Address: FF	FEEH After re	eset: FFH R/W	1					
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR11L	TMPR103	TMPR102	TMPR101	TMPR100	1	SREPR11	SRPR11	STPR11
			-			TMPR103H	-	CSIPR110
								IICPR110
Address: FF	FEBH After re	Set FFH RM	1					
Symbol	<7>	6	5	4	<3>	<2>	1	<0>
PR01H	TMPR004					ITPR0		ADPR0
		1	1	1	KRPR0	IIPKU	1	AUPKU
	FEFH After re							
Symbol								
PR11H	<7> TMPR104	6 1	5	4	<3> KRPR1	<2> ITPR1	1	<0> ADPR1

Address: FFFD8H After reset: FFH R/W

Symbol	7	6	5	4	<3>	<2>	<1>	<0>
PR02L	1	1	1	1	PPR06	TMPR007	TMPR006	TMPR005
Address: FF	FDCH After re	eset: FFH R/V	V					
Symbol	7	6	5	4	<3>	<2>	<1>	<0>
PR12L	1	1	1	1	PPR16	TMPR107	TMPR106	TMPR105
Address: FF	FD9H After re	eset: FFH R/W	1					
Symbol	<7>	6	<5>	4	3	2	1	0
PR02H	FLPR0	1	MDPR0	1	1	1	1	1
Address: FF	FDDH After re	eset: FFH R/M	V					
Symbol	<7>	6	<5>	4	3	2	1	0
PR12H	FLPR1	1	MDPR1	1	1	1	1	1

Cautions 1. Be sure to set bits 5 to 7 of the PR00L register to "1".

- 2. Be sure to set bits 5 to 7 of the PR10L register to "1".
- 3. Be sure to set bit 3 of the PR01L register to "1".
- 4. Be sure to set bit 3 of the PR11L register to "1".
- 5. Be sure to set bits 1 and 4 to 6 of the PR01H register to "1".
- 6. Be sure to set bits 1 and 4 to 6 of the PR11H register to "1".
- 7. Be sure to set bits 4 to 7 of the PR02L register to "1".
- 8. Be sure to set bits 4 to 7 of the PR12L register to "1".
- 9. Be sure to set bits 4 to 7 of the PR02H register to "1".
- 10. Be sure to set bits 0 to 4 and 6 of the PR12H register to "1".

		errupt rising e errupt falling e	-		-			
	products		age enable i	egister (LON	0)			
Address: FF	F38H After r	eset: 00H R/W						
Symbol	7	6	5	4	3	2	1	0
EGP0	0	0	0	0	0	0	0	EGP0
Address: FF	F39H After r	eset: 00H R/W						
Symbol	7	6	5	4	3	2	1	0
EGN0	0	0	0	0	0	0	0	EGN0
• 80-pin	products							
Address: FF	F38H After r	eset: 00H R/W						
Symbol	7	6	5	4	3	2	1	0
EGP0	0	EGP6	0	0	0	EGP2	EGP1	EGP0
Address: FF	F39H After r	eset: 00H R/W						
Symbol	7	6	5	4	3	2	1	0
EGN0	0	EGN6	0	0	0	EGN2	EGN1	EGN0

Table 3-15 shows the ports corresponding to the EGPn and EGNn bits.

Detection Enable Bit				RL78/G1E	
		Edge Detection Port	Interrupt Request Signal	64-pin	80-pin
EGP0	EGN0	P137	INTP0	\checkmark	\checkmark
EGP1	EGN1	P50	INTP1	-	\checkmark
EGP2	EGN2	P51	INTP2	-	\checkmark
EGP6	EGN6	P140	INTP6	_	

Caution Select the port mode by clearing the EGPn and EGNn bits to 0 because an edge may be detected when the external interrupt function is switched to the port function.

Remark n = 0 to 2, 6

3. 16. 3. 5 Program status word (PSW)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **16.3.5** Program status word (PSW) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 16. 4 Interrupt servicing operations

See 16. 4 Interrupt Servicing Operations in RL78/G1A Hardware User's Manual (R01UH0305E).

3.17 Key Interrupt Function

The number of key interrupt input channels differs, depending on the product.

	64-pin products	80-pin products
Key interrupt	4 ob (7 ob)	1 ob (9 ob)
input channels	4 ch (7 ch)	4 ch (8 ch)

Remarks 1. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

2. Most of the following descriptions in this section use the case of 80-pin products as an example.

3. 17. 1 Functions of key interrupt

A key interrupt (INTKR) can be generated by inputting a rising/falling edge to the key interrupt input pins (KR0 to KR7). There are two ways to identify the channel(s) to which a valid edge has been input:

- · Identify the channel(s) (KR0 to KR7) by using the port input level.
- · Identify the channel(s) (KR0 to KR5) by using the key interrupt flag.

Key Interrupt Pins	Key return mode register (KRM0)	Key return flag register (KRF)
KR0	KRM00	KRF0
KR1	KRM01	KRF1
KR2	KRM02	KRF2
KR3	KRM03	KRF3
KR4	KRM04	KRF4
KR5	KRM05	KRF5
KR6	KRM06	-
KR7	KRM07	-

Table 3-16. Assignment of Key Interrupt Detection Pins

Remark KR0 to KR3 (KR0 to KR6): 64-pin products

KR0 to KR3 (KR0 to KR7): 80-pin products

Functions in parentheses can be assigned via settings in the peripheral I/O redirection register (PIOR)

3. 17. 2 Configuration of key interrupt

The key interrupt includes the following hardware.

Table 3-17. Configuration of Key Interrupt

Item	Configuration			
Control register	Key interrupt control register (KRCTL)			
	Key interrupt mode control register 0 (KRM0)			
	Key interrupt flag register (KRF)			
	Port mode registers 0, 1, 2, 7 (PM0, PM1, PM2, PM7)			
	Peripheral I/O redirection register (PIOR)			

<R>

<R>

Figure 3-14. Block Diagram of Key Interrupt

 Remark
 KR0 to KR3 (KR0 to KR6):
 64-pin products

 KR0 to KR3 (KR0 to KR7):
 80-pin products

 Functions in parentheses can be assigned via settings in the peripheral I/O redirection register (PIOR)

3. 17. 3 Register controlling key interrupt

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see **17.3 Register Controlling Key Interrupt** in **RL78/G1A Hardware User's Manual (R01UH0305E)**.

3. 17. 3. 1 Key return control register (KRCTL)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **17. 3. 1** Key return control register (KRCTL) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 17. 3. 2 Key return mode register 0 (KRM0)

(1) 64-pin products

Address:	FFF37H Aff	ter reset: 00H R/W						
Symbol	7	6	5	4	3	2	1	0
KRM0	0	KRM06	KRM05	KRM04	KRM03	KRM02	KRM01	KRM00

Caution Be sure to clear bit 7 of the KRM0 register to "0".

<R> (2) 80-pin products

Address: FFF37H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
KRM0	KRM07	KRM06	KRM05	KRM04	KRM03	KRM02	KRM01	KRM00

3. 17. 3. 3 Key return flag register (KRF)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **17.3.3 Key return flag register (KRF)** in **RL78/G1A Hardware User's Manual (R01UH0305E)**.

3. 17. 3. 4 Port mode registers 0 to 2, 7 (PM0 to PM2, PM7)

(1) 64-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FFF20H	FFH	R/W
PM1	1	PM16	1	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W

Cautions 1. Be sure to clear bits 4 to 6 of the PM0 register, bit 6 of the PM1 register, bits 4 to 7 of the PM2 register, bits 4 to 7 of the PM7 register to "0".

2. Be sure to set bit 7 of the PM0 register, bits 5 and 7 of the PM1 register to "1".

(2) 80-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FFF20H	FFH	R/W
PM1	1	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W

Cautions 1. Be sure to clear bits 5 and 6 of the PM0 register, bit 6 of the PM1 register, bits 5 to 7 of the PM2 register, bits 4 to 7 of the PM7 register to "0".

2. Be sure to set bit 7 of the PM0 register, bit 7 of the PM1 register to "1".

3. 17. 3. 5 Peripheral I/O redirection register (PIOR)

Address: F0077H After reset: 00H			W					
Symbol	7	6	5	4	3	2	1	0
PIOR	0	0	0	0	0	0	PIOR1	PIOR0

Function		64-pin p	products		80-pin products					
		Setting value of	PIOR1, PIOR)	Setting value of PIOR1, PIOR0					
	0, 0	0, 1	1, 0	1, 1	0, 0	0, 1	1, 0	1, 1		
KR0	P70	Setting	P00	P10	P70	Setting	P00	P10		
KR1	P71	prohibited	P01	P11	P71	prohibited	P01	P11		
KR2	P72		P02	P12	P72		P02	P12		
KR3	P73		P03	P13	P73		P03	P13		
KR4	-		-	P14	-		P04	P14		
KR5	_		P22	-	_		P22	P15		
KR6	-		P23	-	-		P23	-		
KR7	_		_	_	_		P24	_		

3. 17. 4 Key interrupt operation

See 17. 4 Key Interrupt Operation in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 18 Standby Function

See CHAPTER 18 STANDBY FUNCTION in RL78/G1A Hardware User's Manual (R01UH0305E).

3.19 Reset Function

See CHAPTER 19 RESET FUNCTION in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 20 Power-On-Reset Circuit

See CHAPTER 20 POWER-ON-RESET CIRCUIT in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 21 Voltage Detector

<R> 3. 21. 1 Functions of voltage detector

The operation mode and detection voltages (VLVDH, VLVDL, VLVD) for the voltage detector is set by using the option byte (000C1H).

The voltage detector (LVD) has the following functions.

- The LVD circuit compares the supply voltage (VDD) with the detection voltage (VLVDH, VLVDL, VLVD), and generates an internal reset or interrupt request signal.
- The detection level for the power supply detection voltage (VLVDH, VLVDL, VLVD) can be selected by using the option byte as one of 3 levels (For details, see **3. 24 Option Byte**).
- Operable in STOP mode.
- After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5.
 2. 3 AC characteristics. This is done by utilizing the voltage detector or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detector or controlling the externally input reset signal before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H).

(a) Interrupt & reset mode (option byte LVIMDS1, LVIMDS0 = 1, 0)

The two detection voltages (VLVDH, VLVDL) are selected by the option byte 000C1H. The high-voltage detection level (VLVDH) is used for releasing resets and generating interrupts. The low-voltage detection level (VLVDL) is used for generating resets.

(b) Reset mode (option byte LVIMDS1, LVIMDS0 = 1, 1)

The detection voltage (VLVD) selected by the option byte 000C1H is used for generating/releasing resets.

(c) Interrupt mode (option byte LVIMDS1, LVIMDS0 = 0, 1)

The detection voltage (VLVD) selected by the option byte 000C1H is used for releasing resets/generating interrupts.

<R> The reset and internal interrupt signals are generated in each mode as follows.

Interrupt & reset mode	Reset mode	Interrupt mode
(LVIMDS1, LVIMDS0 = 1, 0)	(LVIMDS1, LVIMDS0 = 1, 1)	(LVIMDS1, LVIMDS0 = 0, 1)
Generates an interrupt request signal by detecting $V_{DD} < V_{LVDH}$ when the operating voltage falls, and an internal reset by detecting $V_{DD} < V_{LVDL}$. Releases an internal reset by detecting $V_{DD} \ge V_{LVDH}$.	Releases an internal reset by detecting $V_{DD} \ge V_{LVD}$. Generates an interrupt request signal by detecting $V_{DD} < V_{LVD}$.	Releases an internal reset by detecting $V_{DD} \ge V_{LVD}$ at power on after the first release of the POR. Generates an interrupt request signal by detecting $V_{DD} < V_{LVD}$ or $V_{DD} \ge V_{LVD}$ at power on after the second release of the POR.

While the voltage detector is operating, whether the supply voltage or the input voltage from an external input pin is more than or less than the detection level can be checked by reading the voltage detection flag (LVIF: bit 0 of the voltage detection register (LVIM)).

Bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of the RESF register, see **3**. **19 Reset Function**.

3. 21. 2 Configuration of voltage detector

The block diagram of the voltage detector is shown in Figure 3-15.

<R>

Figure 3-15. Block Diagram of Voltage Detector

3. 21. 3 Registers controlling voltage detector

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see **21.3 Registers Controlling Voltage Detector** in **RL78/G1A Hardware User's Manual (R01UH0305E)**.

3. 21. 3. 1 Voltage detection register (LVIM)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **21. 3. 1** Voltage detection register (LVIM) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 21. 3. 2 Voltage detection level register (LVIS)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **21. 3. 2** Voltage detection level register (LVIS) in RL78/G1A Hardware User's Manual (R01UH0305E).

Format of User Option Byte (000C1H/010C1H) (1/2)

Address: 000C1H/010C1H^{Note}

7	6	5	4	3	2	1	0
VPOC2	VPOC1	VPOC0	1	LVIS1	LVIS0	LVIMDS1	LVIMDS0

• LVD setting (interrupt & reset mode)

	De	etection volta	ge	Option byte setting value								
<r></r>	VL	VDH	VLVDL	VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting		
	Rising	Falling	Falling						LVIMDS1	LVIMDS0		
	edge	edge	edge									
	3.13	3.06	1.84	0	0	1	0	0	1	0		
	3.75	3.67	2.45	0	1	0	0	0				
	4.06	3.98	2.75	0	1	1	0	0				
	_			Value other t	han above is :	setting prohibi	ted.					

• LVD setting (reset mode)

	Detection	n voltage			Optic	on byte setting value				
<r></r>	VL	VDH	VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting	
	Rising	Falling						LVIMDS1	LVIMDS0	
	edge	edge								
	3.13	3.06	0	0	1	0	0	1	1	
	3.75	3.67	0	1	0	0	0			
	4.06	3.98	0	1	1	0	0			
	-	_	Value other that	n above is settin	g prohibited.					

Note Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H.

<R> Remarks 1. For details on the LVD circuit, see 3. 21 Voltage Detector.

2. The detection voltage is a TYP. value. For details, see 5. 2. 5. 4 LVD circuit characteristics.

(Cautions are listed on the next page.)

Format of User Option Byte (000C1H/010C1H) (2/2)

Address: 000C1H/010C1H^{Note}

7	6	5	4	3	2	1	0
VPOC2	VPOC1	VPOC0	1	LVIS1	LVIS0	LVIMDS1	LVIMDS0

• LVD setting (interrupt mode)

	Detection	n voltage	Option byte setting value									
<r></r>	VĽ	VDH	VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting			
	Rising	Falling						LVIMDS1	LVIMDS0			
	edge	edge										
	3.13	3.06	0	0	1	0	0	0	1			
	3.75	3.67	0	1	0	0	0					
	4.06	3.98	0	1	1	0	0					
	-	-	Value other that	an above is sett	ing prohibited.							

• LVD off (use of external reset input via RESET pin)

	Detection	Detection voltage Option byte setting value							
<r></r>	Vlvd		VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode setting	
	Rising edge	Falling edge						LVIMDS1	LVIMDS0
	-	-	1	×	×	×	×	×	1
	-	_	Value other than above is setting prohibited.						

Note Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H.

<R> Cautions1. Set bit 4 to 1.

2. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5. 2. 3 AC characteristics. This is done by utilizing the voltage detector or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detector or controlling the externally input reset signal, before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H).

<R> Remarks 1. X: don't care

- 2. For details on the LVD circuit, see 3. 21 Voltage Detector.
- 3. The detection voltage is a TYP. value. For details, see 5. 2. 5. 4 LVD circuit characteristics.

3. 21. 4 Operation of voltage detector

See 21. 4 Operation of Voltage Detector in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 21. 5 Cautions for voltage detector

See 21.5 Cautions for Voltage Detector in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 22 Safety Functions

3. 22. 1 Overview of safety functions

The following safety functions are provided in the RL78/G1E to comply with the IEC60730 and IEC61508 safety standards. These functions enable the microcontroller to self-diagnose abnormalities and stop operating if an abnormality is detected.

(1) Flash memory CRC operation function (high-speed CRC, general-purpose CRC)

This detects data errors in the flash memory by performing CRC operations.

Two CRC functions are provided in the RL78/G1E that can be used according to the application or purpose of use.

- High-speed CRC: The CPU can be stopped and a high-speed check executed on its entire code flash memory area during the initialization routine.
- General CRC: This can be used for checking various data in addition to the code flash memory area while the CPU is running.

(2) RAM parity error detection function

This detects parity errors when reading RAM data.

(3) RAM guard function

This prevents RAM data from being rewritten when the CPU freezes.

(4) SFR guard function

This prevents SFRs from being rewritten when the CPU freezes.

(5) Invalid memory access detection function

This detects illegal accesses to invalid memory areas (such as areas where no memory is allocated and areas to which access is restricted).

<R> (6) Frequency detection function

This function allows a self-check of the CPU/peripheral hardware clock frequencies using the timer array unit.

<R> (7) A/D test function

This is used to perform a self-check of the A/D converter by performing A/D conversion of the A/D converter's positive and negative reference voltages, analog input channel (ANI), temperature sensor output voltage, and internal reference voltage.

Remark See the self-testing library application note for the RL78 MCU series (R01AN0749, R01AN1062, R01AN1296) for use examples of the safety functions compliant with the safety standard IEC60730.

3. 22. 2 Registers used by safety functions

See 22. 2 Registers Used by Safety Functions in RL78/G1A Hardware User's Manual (R01UH0305E).

- 3. 22. 3 Operation of safety functions
- 3. 22. 3. 1 Flash memory CRC operation function (high-speed CRC)

See 22. 3. 1 Flash memory CRC operation function (high-speed CRC) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 22. 3. 2 CRC operation function (general-purpose CRC)

See 22. 3. 2 CRC operation function (general-purpose CRC) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 22. 3. 3 RAM parity error detection function

See 22. 3. 3 RAM parity error detection function in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 22. 3. 4 RAM guard function

See 22. 3. 4 RAM guard function in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 22. 3. 5 SFR guard function

See 22. 3. 5 SFR guard function in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 22. 3. 6 Invalid memory access detection function

See 22. 3. 6 Invalid memory access detection function in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 22. 3. 7 Frequency detection function

For details of each register, see 22. 3. 7 Frequency detection function in RL78/G1A Hardware User's Manual (R01UH0305E).

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below.

(1) Timer input select register 0 (TIS0)

Address: F0074H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
TIS0	0	0	0	0	0	TIS02	TIS01	TIS00

TIS02	TIS01	TIS00	Selection of timer input used with channel 5
0	0	0	Default value
1	1 0 0		Low-speed on-chip oscillator clock (fi∟)
	Other than above		Setting prohibited

Caution High-level width, low-level width of timer input is selected, will require more than 1/fmck +10 ns. Therefore, when selecting fsub to fcLk (CSS bit of CKS register = 1), can not TIS02 bit set to 1.

3. 22. 3. 8 A/D test function

See 22. 3. 8 A/D test function in RL78/G1A Hardware User's Manual (R01UH0305E).

3.23 Regulator

See CHAPTER 23 REGULATOR in RL78/G1A Hardware User's Manual (R01UH0305E).

3.24 Option Byte

3. 24. 1 Functions of option bytes

Addresses 000C0H to 000C3H of the flash memory of the RL78/G1E form an option byte area.

Option bytes consist of user option byte (000C0H to 000C2H) and on-chip debug option byte (000C3H).

Upon power application or resetting and starting, an option byte is automatically referenced and a specified function is set. For the bits to which no function is allocated, be sure to set the value specified in this manual.

To use the boot swap operation during self programming, 000C0H to 000C3H are replaced by 010C0H to 010C3H. Therefore, set the same values as 000C0H to 000C3H to 010C0H to 010C3H.

Caution Be sure to specify option byte settings regardless of whether they are used or not.

3. 24. 1. 1 User option byte (000C0H to 000C2H/010C0H to 010C2H)

<R> (1) 000C0H/010C0H

- O Setting of watchdog timer operation
 - · Enabling or disabling of counter operation
 - Enabling or disabling of counter operation in the HALT or STOP mode
- O Setting of overflow time of watchdog timer
- O Setting of window open period of watchdog timer
- O Setting of interval interrupt of watchdog timer
 - Whether or not to use the interval interrupt is selectable

Caution Set the same value as 000C0H to 010C0H when the boot swap operation is used because 000C0H is replaced by 010C0H.

<R> (2) 000C1H/010C1H

- O Setting of LVD operation mode
 - Interrupt & reset mode.
 - Reset mode.
 - Interrupt mode.
 - LVD off (by controlling the externally input reset signal on the RESET pin)
- O Setting of LVD detection level (VLVDH, VLVDL, VLVD)
- <R> Cautions1. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5. 2. 3 AC characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal, before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H).
 - 2. Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H.

(3) 000C2H/010C2H

- O Setting of flash operation mode
 - LV (low voltage main) mode
 - LS (low speed main) mode
 - HS (high speed main) mode
- O Setting of the frequency of the high-speed on-chip oscillator
- <R> Select from 32 MHz/24 MHz/16 MHz/12 MHz/8 MHz/6 MHz/4 MHz/3 MHz/2 MHz/1 MHz (TYP.).

Caution Set the same value as 000C2H to 010C2H when the boot swap operation is used because 000C2H is replaced by 010C2H.

3. 24. 1. 2 On-chip debug option byte (000C3H/010C3H)

- O Control of on-chip debug operation
 - On-chip debug operation is disabled or enabled.
- O Handling of data of flash memory in case of failure in on-chip debug security ID authentication
 - Data of flash memory is erased or not erased in case of failure in on-chip debug security ID authentication.

Caution Set the same value as 000C3H to 010C3H when the boot swap operation is used because 000C3H is replaced by 010C3H.

3. 24. 2 Format of user option byte

For details of each register, see 24. 2 Format of User Option Byte in RL78/G1A Hardware User's Manual (R01UH0305E).

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below.

Format of user option byte (000C1H/010C1H) (1/2)

Address: 000C1H/010C1H Note

_	7	6	5	4	3	2	1	0
	VPOC2	VPOC1	VPOC0	1	LVIS1	LVIS0	LVIMDS1	LVIMDS0

<R> • LVD setting (interrupt & reset mode)

De	Detection voltage			Option byte setting value							
VL	Vlvdh Vlvdl		VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting		
Rising edge	Falling edge	Falling edge						LVIMDS1	LVIMDS0		
3.13	3.06	1.84	0	0	1	0	0	1	0		
3.75	3.67	2.45	0	1	0	0	0				
4.06	3.98	2.75	0	1	1	0	0				
	-			Value other than above is setting prohibited.							

<R> • LVD setting (reset mode)

Detectio	n voltage	Option byte setting value								
Vlvdh		VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting		
Rising	Falling						LVIMDS1	LVIMDS0		
edge	edge									
3.13	3.06	0	0	1	0	0	1	1		
3.75	3.67	0	1	0	0	0				
4.06	3.98	0	1	1	0	0				
-	-	Value other tha	n above is settin	g prohibited.						

Note Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H.

Cautions 1. Be sure to set bit 4 to "1".

- 2. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5. 2. 3 AC Characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal, before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H).
- <R> Remarks 1. For details on the LVD circuit, see 3. 21 Voltage Detector.
 - 2. The detection voltage is a typical value. For details, see 5. 2. 5. 4 LVD circuit characteristics.

Format of user option byte (000C1H/010C1H) (2/2)

Address: 000C1H/010C1H Note

_	7	6	5	4	3	2	1	0
	VPOC2	VPOC1	VPOC0	1	LVIS1	LVIS0	LVIMDS1	LVIMDS0

<R> • LVD setting (interrupt mode)

Detection	Detection voltage		Option byte setting value								
VL	Vlvdh		VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting			
Rising edge	Falling edge						LVIMDS1	LVIMDS0			
3.13	3.06	0	0	1	0	0	0	1			
3.75	3.67	0	1	0	0	0					
4.06	3.98	0	1	1	0	0					
	_	Value other that	an above is sett	ing prohibited.							

<R> • LVD off (by controlling the externally input reset signal on the RESET pin)

Detection voltage		Option byte setting value								
Vlvd		VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting		
Rising Falling edge edge							LVIMDS1	LVIMDS0		
_	_	1	×	×	×	×	×	1		
-		Value other that	Value other than above is setting prohibited.							

Note Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H.

Cautions 1. Be sure to set bit 4 to "1".

2. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5. 2. 3 AC characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal, before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H).

<R> Remarks 1. X: don't care

- 2. For details on the LVD circuit, see 3. 21 Voltage Detector.
- 3. The detection voltage is a typical value. For details, see 5. 2. 5. 4 LVD circuit characteristics.

Format of user option byte (000C2H/010C2H)

Address: 000C2H/010C2H Note

7	6	5	4	3	3	2	1	0
CMODE1	CMODE0	1	0	FRQ	SEL3	FRQSEL2	FRQSEL1	FRQSEL0
CMODE1	CMODE0			Setting	of flash	operation mode		
		Operating Frequence				Operating	Voltage Range	
		Range				Range		
0	0	LV (low voltag	e main) mode		1 to 4 N	1 to 4 MHz 1.6 to 5.5 V		/
1	0	LS (low speed	main) mode		1 to 8 M	ИHz	1.8 to 5.5 V	
1	1	HS (high spee	d main) mode		1 to 16 MHz 2.4 to 5.5 V		/	
					1 to 32	MHz	2.7 to 5.5 V	/
Other that	an above	Setting prohibited						

FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator
1	0	0	0	32 MHz
0	0	0	0	24 MHz
1	0	0	1	16 MHz
0	0	0	1	12 MHz
1	0	1	0	8 MHz
0	0	1	0	6 MHz
1	0	1	1	4 MHz
0	0	1	1	3 MHz
1	1	0	0	2 MHz
1	1	0	1	1 MHz
	Other the	an above		Setting prohibited

- **Note** Set the same value as 000C2H to 010C2H when the boot swap operation is used because 000C2H is replaced by 010C2H.
- <R> Cautions 1. Be sure to set bits 5, 4 to "10B".
 - 2. The ranges of operation frequency and operation voltage vary depending on the flash operation mode. For details, see 5. 2. 3 AC characteristics.

3. 24. 3 Format of on-chip debug option byte

See 24.3 Format of On-chip Debug Option Byte in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 24. 4 Setting of option byte

See 24. 4 Setting of Option Byte in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 25 Flash Memory

In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 25 FLASH MEMORY in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 25. 1 Serial Programming Using Flash Memory Programmer

The following dedicated flash memory programmer can be used to write data to the internal flash memory of the RL78/G1E.

- PG-FP5, FL-PR5
- E1 on-chip debugging emulator

Data can be written to the flash memory on-board or off-board, by using a dedicated flash memory programmer.

(1) On-board programming

The contents of the flash memory can be rewritten after the RL78/G1E has been mounted on the target system. The connectors that connect the dedicated flash memory programmer must be mounted on the target system.

(2) Off-board programming

Data can be written to the flash memory with a dedicated program adapter (FA series) before the RL78/G1E is mounted on the target system.

Remark FL-PR5 and FA series are products of Naito Densei Machida Mfg. Co., Ltd.

<R>

Pin Cor	figuration of De	dicated Fla	sh Memory Programmer	Pin Name	Pin	No.	
Sigr	nal Name	I/O	Pin Function		64-pin products	80-pin products	
PG-FP5 E1 On-chip					WQFN (9 $ imes$ 9)	LQFP (12 \times 12)	
FL-PR5	Debugging						
Emulator							
– TOOL0		I/O	Transmit/receive signal	TOOL0/P40	15	18	
SI / RxD –		I/O					
-	RESET	Output	Reset signal	RESET	16	19	
/RESET	-	Output					
Vdd		I/O	VDD voltage generation/	Vdd	22	25	
			power monitoring				
GND		_	Ground	Vss	21	24	
				EVsso	_	_	
				REGC Note	20	23	
EMVDD		-	Driving power	Vdd	22	25	
			for TOOL0 pin	EVDD0	_	-	

Table 3-18. Wiring Between RL78/G1E and Dedicated Flash Memory Programmer

<R>

Note Connect REGC pin to ground via a capacitor (0.47 to 1 μ F).

Remark Pins that are not indicated in the above table can be left open when using the flash memory programmer for flash programming.

3. 25. 1. 1 Programming environment

See 25. 1.1 Programming environment in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 25. 1. 2 Communication mode

See 25. 1. 2 Communication mode in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 25. 2 Serial programming using external device (that Incorporates UART)

See 25. 2 Serial Programming Using External Device (that Incorporates UART) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 25. 3 Connection of pins on board

See 25. 3 Connection of Pins on Board in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 25. 4 Serial programming method

See 25. 4 Serial Programming Method in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 25. 5 Processing time for each command when PG-FP5 Is in use (Reference value)

See 25. 5 Processing Time for Each Command When PG-FP5 Is in Use (Reference Value) in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 25. 6 Self-programming

See 25. 6 Self-Programming in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 25. 7 Security Settings

See 25.7 Security Settings in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 25. 8 Data flash

See 25. 8 Data Flash in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 26 On-chip Debug Function

3. 26. 1 Connecting E1 on-chip debugging emulator to RL78/G1E

The RL78/G1A uses the VDD, RESET, TOOL0, and Vss pins to communicate with the host machine via an E1 on-chip debugging emulator. Serial communication is performed by using a single-line UART that uses the TOOL0 pin.

Caution The RL78/G1E has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

- Notes 1. Connecting the dotted line is not necessary during serial flash programming..
 - 2. If the reset circuit on the target system does not have a buffer and generates a reset signal only with resistors and capacitors, this pull-up resistor is not necessary.
 - **3.** AVDD \leq 3.6 V.
- Cautions 1. This circuit diagram is assumed that the reset signal outputs from an N-ch open drain buffer (output resistor: 100Ω or less).
 - 2. For the details of ARESET pin, see 2. 5. 31 ARESET.

3. 26. 2 On-chip debug security ID

See 26. 2 On-Chip Debug Security ID in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 26. 3 Securing of user resources

See 26. 3 Securing of User Resources in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 27 BCD Correction Circuit

See CHAPTER 27 BCD CORRECTION CIRCUIT in RL78/G1A Hardware User's Manual (R01UH0305E).

3.28 Instruction Set

See CHAPTER 28 INSTRUCTION SET in RL78/G1A Hardware User's Manual (R01UH0305E).

CHAPTER 4 ANALOG BLOCK

4.1 Configurable Amplifier

The RL78/G1E (64-pin products, 80-pin products) has three on-chip configurable amplifier channels.

4. 1. 1 Overview of configurable amplifier features

By specifying settings in the SPI control registers, the configurable amplifiers can be used to realize the following features:

- Single-channel operation
 - Non-inverting amplifier
 - The gain can be specified between 9.5 dB and 40.1 dB in 18 steps
 - Four operating modes are available
 - Includes a power-off function
 - Inverting amplifier
 - The gain can be specified between 6 dB and 40 dB in 18 steps
 - Four operating modes are available
 - Includes a power-off function
 - Differential amplifier
 - The gain can be specified between 6 dB and 40 dB in 18 steps
 - Four operating modes are available
 - Includes a power-off function
 - Transimpedance amplifier
 - The feedback resistance can be specified between 20 k Ω and 640 k Ω in 6 steps
 - Four operating modes are available
 - Includes a power-off function
- Multiple-channel operation
 - Instrumentation amplifier
 - The gain can be specified between 20 dB and 54 dB in 18 steps
 - Four operating modes are available
 - Includes a power-off function

And also, the DACn_OUT output signals can be used as the reference voltage for each configurable amplifier. If D/A converter is powered off, the external reference voltage is to be input to DACn_OUT/VREFINn pin. For details about use of D/A converter, see **4.3 D/A Converter**.

Remark n = 1 to 3

4.1.2 Block diagram

Figure 4-2. Block Diagram of Configurable Amplifier Ch2

Figure 4-3. Block Diagram of Configurable Amplifier Ch3

• 64-pin products

• 80-pin products

4.1.3 Registers controlling the configurable amplifiers

The configurable amplifiers are controlled by the following 9 registers:

- Configuration register 1 (CONFIG1)
- Configuration register 2 (CONFIG2)
- MPX setting register 1 (MPX1)
- MPX setting register 2 (MPX2)
- Gain control register 1 (GC1)
- Gain control register 2 (GC2)
- Gain control register 3 (GC3)
- AMP operation mode control register (AOMC)
- Power control register 1 (PC1)

(1) Configuration register 1 (CONFIG1)

This register is used to turn on or off each switch of configurable amplifiers Ch1 and Ch2. Reset signal input clears this register to 00H.

Address: 00H After reset: 00H R/W

	7	6	5	4	3	2	1	0
CONFIG1	0	SW11	SW12	SW13	0	SW21	SW22	SW23

SW11	Control of SW11
0	Turn off SW11.
1	Turn on SW11.

SW12	Control of SW12
0	Turn off SW12.
1	Turn on SW12.

SW13	Control of SW13
0	Turn off SW13.
1	Turn on SW13.

SW21	Control of SW21
0	Turn off SW21.
1	Turn on SW21.

SW22	Control of SW22
0	Turn off SW22.
1	Turn on SW22.

SW23	Control of SW23
0	Turn off SW23.
1	Turn on SW23.

Remark Bits 7 and 3 can be set to 1, but this has no effect on the function.

(2) Configuration register 2 (CONFIG2)

This register is used to turn on or off each switch of configurable amplifiers Ch1 to Ch3.

Reset signal input clears this register to 00H.

Address: 01H After reset: 00H R/W

	7	6	5	4	3	2	1	0
CONFIG2	0	SW31	SW32	SW33	0	SW02	SW01	SW00

SW31	Control of SW31
0	Turn off SW31.
1	Turn on SW31.

SW32	Control of SW32				
0	Turn off SW32.				
1	Turn on SW32.				

SW33	Control of SW33
0	Turn off SW33.
1	Turn on SW33.

SW02	Control of SW02
0	Turn off SW02.
1	Turn on SW02.

SW01	Control of SW01
0	Turn off SW01.
1	Turn on SW01.

SW00	Control of SW00
0	Turn off SW00.
1	Turn on SW00.

Remark Bits 7 and 3 can be set to 1, but this has no effect on the function.

(3) MPX setting register 1 (MPX1)

This register is used to control MPX1, MPX2, MPX3, and MPX4.

This register is used to select the signal input to configurable amplifiers Ch1 and Ch2.

Reset signal input clears this register to 00H.

Address: 03H After reset: 00H R/W

_	7	6	5	4	3	2	1	0
MPX1	MPX11	MPX10	MPX21	MPX20	MPX31	MPX30	MPX41	MPX40

М	PX11	MPX10	Source of configurable amplifier Ch1 inverse input
	0	0	MPXIN10 pin
	0	1	MPXIN11 pin
	1	0	D/A converter Ch1 output signal or VREFIN1 pin
	1	1	Open pin

MPX21	MPX20	Source of configurable amplifier Ch1 non-inverted input
0	0	MPXIN20 pin
0	1	MPXIN21 pin
1	0	D/A converter Ch1 output signal or VREFIN1 pin
1	1	Open pin

MPX31	MPX30	Source of configurable amplifier Ch2 inverse input
0	0	MPXIN30 pin
0	1	MPXIN31 pin
1	0	D/A converter Ch2 output signal or VREFIN2 pin
1	1	Open pin

MPX41	MPX40	Source of configurable amplifier Ch2 non-inverted input
0	0	MPXIN40 pin
0	1	MPXIN41 pin
1	0	D/A converter Ch2 output signal or VREFIN2 pin
1	1	Open pin

(4) MPX setting register 2 (MPX2)

This register is used to control MPX5 and MPX6.

This register is used to select the signal input to configurable amplifier Ch3.

Reset signal input clears this register to 00H.

• 64-pin products

Address: 04H After reset: 00H R/W

_	7	6	5	4	3	2	1	0
MPX2	0	MPX52	MPX51	MPX50	0	MPX62	MPX61	MPX60

MPX52	MPX51	MPX50	Source of configurable amplifier Ch3 inverse input
0	0	0	MPXIN50 pin
0	1	0	Configurable amplifier Ch1 output signal
0	1	1	Configurable amplifier Ch2 output signal
1	0	0	D/A converter Ch3 output signal or VREFIN3 pin
(Other than abov	е	Setting prohibited

MPX62	MPX61	MPX60	Source of configurable amplifier Ch3 non-inverted input
0	0	0	MPXIN60 pin
0	1	0	Configurable amplifier Ch1 output signal
0	1	1	Configurable amplifier Ch2 output signal
1	0	0	D/A converter Ch3 output signal or VREFIN3 pin
(Other than above		Setting prohibited

Remark Bits 7 and 3 can be set to 1, but this has no effect on the function.

• 80-pin products

Address: 04H After reset: 00H R/W

0

1

1

0 Other than above 1

0

	7	6	5	4	3	2	1	0
MPX2	0	MPX52	MPX51	MPX50	0	MPX62	MPX61	MPX60
	MPX52	MPX51	MPX50	So	ource of configu	urable amplifier	Ch3 inverse inp	out
	0	0	0	MPXIN50 pin				
	0	0	1	MPXIN51 pin				
	0	1	0	Configurable a	amplifier Ch1 ou	utput signal		

Setting prohibited

MPX62	MPX61	MPX60	Source of configurable amplifier Ch3 non-inverted input
0	0	0	MPXIN60 pin
0	0	1	MPXIN61 pin
0	1	0	Configurable amplifier Ch1 output signal
0	1	1	Configurable amplifier Ch2 output signal
1	0	0	D/A converter Ch3 output signal or VREFIN3 pin
C	Other than above	e	Setting prohibited

Configurable amplifier Ch2 output signal

D/A converter Ch3 output signal or VREFIN3 pin

Remark Bits 7 and 3 can be set to 1, but this has no effect on the function.

(5) Gain control register 1 (GC1)

This register is used to specify the gain and feedback resistance of configurable amplifier Ch1.

The value to specify depends on the configuration of configurable amplifier Ch1.

When using configurable amplifiers Ch1 to Ch3 together as an instrumentation amplifier, be sure to set gain control register 1 (GC1) to 03H.

Reset signal input clears this register to 00H.

Address: 06H After reset: 00H R/W

	7	6	5	4	3	2	1	0
GC1	0	0	0	AMPG14	AMPG13	AMPG12	AMPG11	AMPG10

AMPG14 AMPG13 AMPG12 AMPG11 AMPG10 Gain of Configurable Amplifier Ch1 (Typ.) 9.5 dB 10.9 dB 12.4 dB 14.0 dB 15.6 dB 17.3 dB

19.0 dB

20.8 dB

22.7 dB

24.5 dB

26.4 dB

28.3 dB

30.3 dB

32.2 dB

34.2 dB

36.1 dB

38.1 dB

40.1 dB

Setting prohibited

		Other than above	
-D.	Bomark	Rite 7 to 5 are fixed at 0 of read only	

<R>

Remark Bits 7 to 5 are fixed at 0 of read only.

AMPG14	AMPG13	AMPG12	AMPG11	AMPG10	Gain of Configurable Amplifier Ch1 (Typ.)
0	0	0	0	0	6 dB
0	0	0	0	1	8 dB
0	0	0	1	0	10 dB
0	0	0	1	1	12 dB
0	0	1	0	0	14 dB
0	0	1	0	1	16 dB
0	0	1	1	0	18 dB
0	0	1	1	1	20 dB
0	1	0	0	0	22 dB
0	1	0	0	1	24 dB
0	1	0	1	0	26 dB
0	1	0	1	1	28 dB
0	1	1	0	0	30 dB
0	1	1	0	1	32 dB
0	1	1	1	0	34 dB
0	1	1	1	1	36 dB
1	0	0	0	0	38 dB
1	0	0	0	1	40 dB
	(Other than abov	e		Setting prohibited

Table 4-2. Gain of Configurable Amplifier Ch1 (Inverting Amplifier and Differential Amplifier)

AMPG14	AMPG13	AMPG12	AMPG11	AMPG10	Feedback Resistance of Configurable Amplifier
					Ch1 (Typ.)
0	0	0	0	0	20 κΩ
0	0	0	0	1	
0	0	0	1	0	
0	0	0	1	1	40 κΩ
0	0	1	0	0	
0	0	1	0	1	
0	0	1	1	0	80 κΩ
0	0	1	1	1	
0	1	0	0	0	
0	1	0	0	1	160 kΩ
0	1	0	1	0	
0	1	0	1	1	
0	1	1	0	0	320 kΩ
0	1	1	0	1	
0	1	1	1	0	
0	1	1	1	1	640 kΩ
1	0	0	0	0	
1	0	0	0	1	
	C	Other than abov	е		Setting prohibited

Table 4-3. Feedback Resistance of Configurable Amplifier Ch1 (Transimpedance Amplifier)

(6) Gain control register 2 (GC2)

This register is used to specify the gain and feedback resistance of configurable amplifier Ch2.

The value to specify depends on the configuration of configurable amplifier Ch2.

When using configurable amplifiers Ch1 to Ch3 together as an instrumentation amplifier, be sure to set gain control register 2 (GC2) to 03H.

Reset signal input clears this register to 00H.

Address: 07H After reset: 00H R/W

	7	6	5	4	3	2	1	0
GC2	0	0	0	AMPG24	AMPG23	AMPG22	AMPG21	AMPG20

Table 4-4. Gain of Configurable Amplifier Ch2 (Non-Inverting Amplifier)

AMPG24	AMPG23	AMPG22	AMPG21	AMPG20	Gain of Configurable Amplifier Ch2 (Typ.)
0	0	0	0	0	9.5 dB
0	0	0	0	1	10.9 dB
0	0	0	1	0	12.4 dB
0	0	0	1	1	14.0 dB
0	0	1	0	0	15.6 dB
0	0	1	0	1	17.3 dB
0	0	1	1	0	19.0 dB
0	0	1	1	1	20.8 dB
0	1	0	0	0	22.7 dB
0	1	0	0	1	24.5 dB
0	1	0	1	0	26.4 dB
0	1	0	1	1	28.3 dB
0	1	1	0	0	30.3 dB
0	1	1	0	1	32.2 dB
0	1	1	1	0	34.2 dB
0	1	1	1	1	36.1 dB
1	0	0	0	0	38.1 dB
1	0	0	0	1	40.1 dB
	(Other than abov	e		Setting prohibited

<R> **Remark** Bits 7 to 5 are fixed at 0 of read only.

AMPG24	AMPG23	AMPG22	AMPG21	AMPG20	Gain of Configurable Amplifier Ch2 (Typ.)
0	0	0	0	0	6 dB
0	0	0	0	1	8 dB
0	0	0	1	0	10 dB
0	0	0	1	1	12 dB
0	0	1	0	0	14 dB
0	0	1	0	1	16 dB
0	0	1	1	0	18 dB
0	0	1	1	1	20 dB
0	1	0	0	0	22 dB
0	1	0	0	1	24 dB
0	1	0	1	0	26 dB
0	1	0	1	1	28 dB
0	1	1	0	0	30 dB
0	1	1	0	1	32 dB
0	1	1	1	0	34 dB
0	1	1	1	1	36 dB
1	0	0	0	0	38 dB
1	0	0	0	1	40 dB
	(Other than abov	e		Setting prohibited

Table 4-5. Gain of Configurable Amplifier Ch2 (Inverting Amplifier and Differential Amplifier)

AMPG24	AMPG23	AMPG22	AMPG21	AMPG20	Feedback Resistance of Configurable Amplifier Ch2 (Typ.)
0	0	0	0	0	20 κΩ
0	0	0	0	1	
0	0	0	1	0	
0	0	0	1	1	40 kΩ
0	0	1	0	0	
0	0	1	0	1	
0	0	1	1	0	80 kΩ
0	0	1	1	1	
0	1	0	0	0	
0	1	0	0	1	160 kΩ
0	1	0	1	0	
0	1	0	1	1	
0	1	1	0	0	320 kΩ
0	1	1	0	1	
0	1	1	1	0	
0	1	1	1	1	640 kΩ
1	0	0	0	0	
1	0	0	0	1	
	C	Other than abov	e		Setting prohibited

Table 4-6. Feedback Resistance of Configurable Amplifier Ch2 (Transimpedance Amplifier)

(7) Gain control register 3 (GC3)

This register is used to specify the gain and feedback resistance of configurable amplifier Ch3.

The value to specify depends on the configuration of configurable amplifier Ch3.

When using configurable amplifiers Ch1 to Ch3 together as an instrumentation amplifier, be sure to set gain control register 1 (GC1) and gain control register 2 (GC2) to 03H, respectively.

Reset signal input clears this register to 00H.

Address: 08H After reset: 00H R/W

	7	6	5	4	3	2	1	0
GC3	0	0	0	AMPG34	AMPG33	AMPG32	AMPG31	AMPG30

AMPG34 AMPG33 AMPG32 AMPG31 AMPG30 Gain of Configurable Amplifier Ch3 (Typ.) 9.5 dB 10.9 dB 12.4 dB 14.0 dB 15.6 dB 17.3 dB 19.0 dB 20.8 dB 22.7 dB 24.5 dB 26.4 dB 28.3 dB 30.3 dB

32.2 dB

34.2 dB

36.1 dB

38.1 dB

40.1 dB

Setting prohibited

Table 4-7. Gain of Configurable Amplifier Ch3 (Non-Inverting Amplifier)

<R> Remark Bits 7 to 5 are fixed at 0 of read only.

Other than above

AMPG34	AMPG33	AMPG32	AMPG31	AMPG30	Gain of Configurable Amplifier Ch3 (Typ.)
0	0	0	0	0	6 dB
0	0	0	0	1	8 dB
0	0	0	1	0	10 dB
0	0	0	1	1	12 dB
0	0	1	0	0	14 dB
0	0	1	0	1	16 dB
0	0	1	1	0	18 dB
0	0	1	1	1	20 dB
0	1	0	0	0	22 dB
0	1	0	0	1	24 dB
0	1	0	1	0	26 dB
0	1	0	1	1	28 dB
0	1	1	0	0	30 dB
0	1	1	0	1	32 dB
0	1	1	1	0	34 dB
0	1	1	1	1	36 dB
1	0	0	0	0	38 dB
1	0	0	0	1	40 dB
	(Other than abov	e		Setting prohibited

Table 4-8. Gain of Configurable Amplifier Ch3 (Inverting Amplifier and Differential Amplifier)

AMPG34	AMPG33	AMPG32	AMPG31	AMPG30	Feedback Resistance of Configurable Amplifier Ch3 (Typ.)
0	0	0	0	0	20 κΩ
0	0	0	0	1	
0	0	0	1	0	
0	0	0	1	1	40 κΩ
0	0	1	0	0	
0	0	1	0	1	
0	0	1	1	0	80 κΩ
0	0	1	1	1	
0	1	0	0	0	
0	1	0	0	1	160 kΩ
0	1	0	1	0	
0	1	0	1	1	
0	1	1	0	0	320 kΩ
0	1	1	0	1	
0	1	1	1	0	
0	1	1	1	1	640 κΩ
1	0	0	0	0	
1	0	0	0	1	
	Ot	her than above	e		Setting prohibited

Table 4-9. Feedback Resistance of Configurable Amplifier Ch3 (Transimpedance Amplifier)

AMPG34	AMPG33	AMPG32	AMPG31	AMPG30	Gain of Configurable Amplifier Ch3 (Typ.)
0	0	0	0	0	20 dB
0	0	0	0	1	22 dB
0	0	0	1	0	24 dB
0	0	0	1	1	26 dB
0	0	1	0	0	28 dB
0	0	1	0	1	30 dB
0	0	1	1	0	32 dB
0	0	1	1	1	34 dB
0	1	0	0	0	36 dB
0	1	0	0	1	38 dB
0	1	0	1	0	40 dB
0	1	0	1	1	42 dB
0	1	1	0	0	44 dB
0	1	1	0	1	46 dB
0	1	1	1	0	48 dB
0	1	1	1	1	50 dB
1	0	0	0	0	52 dB
1	0	0	0	1	54 dB
	(Other than abov	e		Setting prohibited

Table 4-10. Gain of Configurable Amplifier Ch3 (Instrumentation Amplifier)

(8) AMP operation mode control register (AOMC)

This register is used to specify the operating mode of configurable amplifiers Ch1 to Ch3.

Reset signal input clears this register to 00H.

Address: 09H After reset: 00H R/W

	7	6	5	4	3	2	1	0
AOMC	0	0	0	0	0	0	CC1	CC0

CC1	CC0	Operating mode of configurable amplifiers Ch1 to Ch3
0	0	High-speed mode
0	1	Mid-speed mode 2
1	0	Mid-speed mode 1
1	1	Low-speed mode

<R> Remarks 1. Bits 5 to 2 can be set to 1, but this has no effect on the function.

2. Bits 7 and 6 are fixed at 0 of read only.

(9) Power control register 1 (PC1)

This register is used to enable or disable operation of the configurable amplifiers and the D/A converters.

Use this register to stop unused functions to reduce power consumption and noise.

When using one of configurable amplifier channels Ch1 to Ch3, be sure to set the control bit that corresponds to the channel (bits 0 to 2) to 1.

Reset signal input clears this register to 00H.

Address: 11H After reset: 00H R/W

_	7	6	5	4	3	2	1	0
PC1	DAC4OF	DAC3OF	DAC2OF	DAC1OF	0	AMP3OF	AMP2OF	AMP1OF

AMP3OF	Operation of configurable amplifier Ch3
0	Stop operation of configurable amplifier Ch3.
1	Enable operation of configurable amplifier Ch3.

AMP2OF	Operation of configurable amplifier Ch2	
0	Stop operation of configurable amplifier Ch2.	
1	Enable operation of configurable amplifier Ch2.	

	AMP10F	Operation of configurable amplifier Ch1	
ſ	0	Stop operation of configurable amplifier Ch1.	
ſ	1	Enable operation of configurable amplifier Ch1.	

Caution Be sure to clear bit 3 to "0".

4.1.4 Procedure for operating the configurable amplifiers

(1) Procedure when using the amplifiers as non-inverting amplifiers

When using the configurable amplifiers as non-inverting amplifiers, follow the procedures below to start and stop the amplifiers.

Example of procedure for starting configurable amplifier Ch1 (non-inverting amplifier)

Example of procedure for stopping configurable amplifier Ch1 (non-inverting amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch2 (non-inverting amplifier)

Example of procedure for stopping configurable amplifier Ch3 (non-inverting amplifier)

(2) Procedure when using the amplifiers as inverting amplifiers

When using the configurable amplifiers as inverting amplifiers, follow the procedures below to start and stop the amplifiers.

Example of procedure for starting configurable amplifier Ch1 (inverting amplifier)

Example of procedure for starting configurable amplifier Ch2 (inverting amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch2 (inverting amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch3 (inverting amplifier)

(3) Procedure when using the amplifiers as differential amplifiers

When using the configurable amplifiers together as a differential amplifier, follow the procedures below to start and stop the amplifier.

Example of procedure for starting configurable amplifier Ch1 (differential amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch1 (differential amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch2 (differential amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch3 (differential amplifier)

(4) Procedure when using the amplifiers as a transimpedance amplifier

When using the configurable amplifiers as transimpedance amplifiers, follow the procedures below to start and stop the amplifiers.

Example of procedure for starting configurable amplifier Ch1 (transimpedance amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch1 (transimpedance amplifier)

Example of procedure for starting configurable amplifier Ch2 (transimpedance amplifier)

Example of procedure for stopping configurable amplifier Ch2 (transimpedance amplifier)

Example of procedure for starting configurable amplifier Ch3 (transimpedance amplifier)

Example of procedure for stopping configurable amplifier Ch3 (transimpedance amplifier)

Remark *: don't care

(5) Procedure when using the amplifiers as an instrumentation amplifier

When using the configurable amplifiers together as an instrumentation amplifier, follow the procedures below to start and stop the amplifier.

Example of procedure for starting configurable amplifiers (instrumentation amplifier)

Remark *: don't care

 Operating

 Set PC1 register

 Set PC1 register

 Operation of configurable amplifiers

 Ch1 to Ch3.

 (AMP1OF, AMP2OF, AMP3OF = 0, 0, 0)

 Operation stops

Example of procedure for stopping configurable amplifiers (instrumentation amplifier)

4.2 Gain Adjustment Amplifier

The RL78/G1E (64-pin products, 80-pin products) has one on-chip gain adjustment amplifier channel.

4. 2. 1 Overview of gain adjustment amplifier features

The features of gain adjustment amplifier are described below.

- Rail-to-rail I/O
- The gain can be specified between 6 dB and 40 dB in 18 steps.
- Includes a power-off function.
- Includes a synchronous detector Note.
- <R>
- CLK_SYNCH = H: Inverted output signal (SYNCH_OUT pin)
- CLK_SYNCH = L: Non-inverted output signal (SYNCH_OUT pin)
- <R> Note 80-pin products only. There are two output pins (GAINAMP_OUT pin, SYNCH_OUT pin), the output from SYNCH_OUT pin can be inverted output or non-inverted output according to the input of CLK_SYNCH pin.

And also, the DAC4_OUT output signals can be used as the reference voltage for gain adjustment amplifier. If D/A converter is powered off, the external reference voltage is to be input to DAC4_OUT/VREFIN4 pin. For details about use of D/A converter, see **4.3 D/A Converter**.

4. 2. 2 Block diagram

• 64-pin products

• 80-pin products

4. 2. 3 Registers controlling the gain adjustment amplifier

The gain adjustment amplifier is controlled by the following 3 registers:

- MPX setting register 3 (MPX3)
- Gain control register 4 (GC4)
- Power control register 2 (PC2)

(1) MPX setting register 3 (MPX3)

This register is used to control MPX7, MPX9, MPX10, and MPX11. When selecting the signal to be input to the gain adjustment amplifier, use bits 2 to 0. Reset signal input clears this register to 00H.

• 64-pin products

Address: 05H After reset: 00H R/W

MPX72	MPX71	MPX70	Source of gain adjustment amplifier input
0	0	0	_
0	0	1	Configurable amplifier Ch1 output signal
0	1	0	Configurable amplifier Ch2 output signal
0	1	1	Configurable amplifier Ch3 output signal
1	0	0	D/A converter Ch4 output signal or VREFIN4 pin
(Other than abov	e	Setting prohibited

Caution Be sure to clear bit 3 to "0".

<R> Remark Bits 7 and 6 are fixed at 0 of read only.

• 80-pin products

Address: 05H After reset: 00H R/W

	7	6	5	4	3	2	1	0
MPX3	0	0	SCF2	SCF1	SCF0	MPX72	MPX71	MPX70

MPX72	MPX71	MPX70	Source of gain adjustment amplifier input
0	0	0	GAINAMP_IN pin
0	0	1	Configurable amplifier Ch1 output signal
0	1	0	Configurable amplifier Ch2 output signal
0	1	1	Configurable amplifier Ch3 output signal
1	0	0	D/A converter Ch4 output signal or VREFIN4 pin
(Other than abov	/e	Setting prohibited

<R> Remark Bits 7 and 6 are fixed at 0 of read only.

(2) Gain control register 4 (GC4)

This register is used to specify the gain of the gain adjustment amplifier. Reset signal input clears this register to 00H.

Address: 0AH After reset: 00H R/W

	7	6	5	4	3	2	1	0
GC4	0	0	0	AMP44	AMP43	AMP42	AMP41	AMP40

AMP44	AMP43	AMP42	AMP41	AMP40	Gain							
0	0	0	0	0	6 dB							
0	0	0	0	1	8 dB							
0	0	0	1	0	10 dB							
0	0	0	1	1	12 dB							
0	0	1	0	0	14 dB							
0	0	1	0	1	16 dB							
0	0	1	1	0	18 dB							
0	0	1	1	1	20 dB							
0	1	0	0	0	22 dB							
0	1	0	0	1	24 dB							
0	1	0	1	0	26 dB							
0	1	0	1	1	28 dB							
0	1	1	0	0	30 dB							
0	1	1	0	1	32 dB							
0	1	1	1	0	34 dB							
0	1	1	1	1	36 dB							
1	0	0	0	0	38 dB							
1	0	0	0	1	40 dB							
	(Other than abov	/e	Other than above								

<R> **Remark** Bits 7 to 5 are fixed at 0 of read only.

(3) Power control register 2 (PC2)

This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise.

When using the gain adjustment amplifier, be sure to set bit 4 to 1.

Reset signal input clears this register to 00H.

• 64-pin products

Address: 12H After reset: 00H R/W

GAINOF	Operation of gain adjustment amplifier	
0	Stop operation of the gain adjustment amplifier.	
1	1 Enable operation of the gain adjustment amplifier.	

Caution Be sure to clear bit 2 to "0".

Remark Bits 7 to 5 can be set to 1, but this has no effect on the function.

• 80-pin products

Address: 12H After reset: 00H R/W

1

Enable operation of the gain adjustment amplifier. **Remark** Bits 7 to 5 can be set to 1, but this has no effect on the function.

4. 2. 4 Procedure for operating the gain adjustment amplifier

Follow the procedures below to start and stop the gain adjustment amplifier.

Example of procedure for starting the gain adjustment amplifier

Remark *: don't care

Example of procedure for stopping the gain adjustment amplifier

4.3 D/A Converter

The RL78/G1E (64-pin products, 80-pin products) has four on-chip D/A converter channels.

4. 3. 1 Overview of D/A converter features

The D/A converters are 8-bit resolution converters that convert digital input signals into analog signals.

The D/A converters have the following features:

- 8-bit resolution (× 4 ch: Ch1 to Ch4)
- R-2R ladder method

<R>

• Analog output voltage: Output voltage can be calculated with the equation shown below.

Output voltage = {(Reference voltage upper limit – Reference voltage lower limit) \times m/256}

+ Reference voltage lower limit

(m = 0 to 255: Value set to DACnC register)

- Controls the reference voltage for the configurable amplifiers, gain adjustment amplifiers, low-pass filter, and highpass filter ^{Note}
- Includes a power-off function.

Note 80-pin products only. **Remark** n = 1 to 4

4. 3. 2 Block diagram

Remark: n = 1 to 4

4. 3. 3 Registers controlling the D/A converters

The D/A converters are controlled by the following 3 registers:

- DAC reference voltage control register (DACRC)
- DAC control registers 1, 2, 3, 4 (DAC1C, DAC2C, DAC3C, DAC4C)
- Power control register 1 (PC1)

(1) DAC reference voltage control register (DACRC)

This register is used to specify the upper (VRT) and lower (VRB) limits of the reference voltage for D/A converter channels Ch1 to Ch4.

When selecting the upper limit of the reference voltage, use bits 3 and 2. When selecting the lower limit of the reference voltage, use bits 1 and 0.

Reset signal input clears this register to 00H.

Address: 0CH After reset: 00H R/W

<R>

VRT1	VRT0	Reference voltage upper limit (Typ.)
0	0	AV _{DD1}
0	1	$AV_{DD1} imes 4/5$
1	0	$AV_{DD1} imes 3/5$
1	1	AV _{DD1}

<R>

VRB1	VRB0	Reference voltage lower limit (Typ.)
0	0	AGND1
0	1	AV _{DD1} × 1/5
1	0	AV _{DD1} × 2/5
1	1	AGND1

Remarks 1. Bits 7 to 4 are fixed at 0 of read only.

2. To calculate the output voltage, see 4. 3. 1 Overview of D/A converter features.

(2) DAC control registers 1, 2, 3, 4 (DAC1C, DAC2C, DAC3C, DAC4C)

This register is used to specify the analog voltage to be output to the DACn_OUT pin. The DACn_OUT output signal can be used as the reference voltage for the configurable amplifiers, gain adjustment amplifier, low-pass filter, and high-pass filter.

Reset signal input sets this register to 80H.

Address: 0DH (n = 1), 0EH (n = 2), 0FH (n = 3), 10H (n = 4) After reset: 80H R/W

_	7	6	5	4	3	2	1	0
DACnC	DACn7	DACn6	DACn5	DACn4	DACn3	DACn2	DACn1	DACn0

Remarks 1. n = 1 to 4

2. To calculate the output voltage, see 4. 3. 1 Overview of D/A converter features.

(3) Power control register 1 (PC1)

This register is used to enable or disable operation of the configurable amplifiers and the D/A converters. Use this register to stop unused functions to reduce power consumption and noise.

When using one of D/A converter channels Ch1 to Ch4, be sure to set the control bit that corresponds to the channel (bits 7 to 4) to 1.

Reset signal input clears this register to 00H.

Address: 11H After reset: 00H R/W

DAC4OF	Operation of D/A converter Ch4	
0	Stop operation of D/A converter Ch4.	
1	Enable operation of D/A converter Ch4.	

DAC3OF	Operation of D/A converter Ch3	
0	Stop operation of D/A converter Ch3.	
1	Enable operation of D/A converter Ch3.	

DAC2OF	Operation of D/A converter Ch2	
0	Stop operation of D/A converter Ch2.	
1	Enable operation of D/A converter Ch2.	

DAC1OF	Operation of D/A converter Ch1
0	Stop operation of D/A converter Ch1.
1	Enable operation of D/A converter Ch1.

Caution Be sure to clear bit 3 to "0".

4.3.4 Procedure for operating the D/A converters

Follow the procedures below to start and stop the D/A converters.

Example of procedure for starting the D/A converters

Example of procedure for stopping the D/A converters

Remark *: don't care n = 1 to 4

4. 3. 5 Notes on using D/A converters

Observe the following points when using the D/A converters:

- (1) Only a very small current can flow from the DACn_OUT pin because the output impedance of the D/A converters is high. If the load input impedance is low, insert a follower amplifier between the load and the DACn_OUT pin. Also, make sure that the wiring between the pin and the follower amplifier or load is as short as possible (because of the high output impedance). If it is not possible to keep the wiring short, take measures such as surrounding the pin with a ground pattern.
- (2) If inputting an external reference power supply to the VREFINn pin, be sure to set the DACnOF bit to 0.

Remark n = 1 to 4

4.4 Low-Pass Filter

The RL78/G1E (64-pin products, 80-pin products) has one on-chip switched-capacitor low-pass filter channel.

4. 4. 1 Overview of low-pass filter features

The features of low-pass filter are described below.

- Butterworth characteristics (Q value = 0.702)
- Cutoff frequency (fc) range: 9 Hz to 4.5 kHz
- External input clock frequency (fcLK_LPF) range: fc \times 2 / 0.009 = 2 kHz to 1 MHz
- <R> Includes a power-off function.

And also, the DAC4_OUT output signals can be used as the reference voltage for low-pass filter. If D/A converter is powered off, the external reference voltage is to be input to DAC4_OUT/VREFIN4 pin. For details about use of D/A converter, see **4.3** D/A Converter.

- **Remarks 1.** The internal control clock (fs) of the low-pass filter has a duty of 50%, so the external input clock is divided by two at the internal D flip-flop before being used for the low-pass filter. If the internal control clock frequency (fs) is 100 kHz, therefore, input a 200 kHz clock signal to the CLK_LPF pin.
 - 2. The phase of the signal input to the low-pass filter inverts after passing the low-pass filter.

4. 4. 2 Block diagram

• 64-pin products

• 80-pin products

<R> 4. 4. 3 Registers controlling the low-pass filter

The low-pass filter is controlled by the following 2 registers:

- MPX setting register 3 (MPX3)
- Power control register 2 (PC2)

(1) MPX setting register 3 (MPX3)

<R> This register is used to control MPX7, MPX9, MPX10, and MPX11.

When selecting the signal to be input to the filter circuits, use bits 5 and 4. When switching the order in which signals are processed by the low-pass and high-pass filters, use bit 3.

Reset signal input clears this register to 00H.

• 64-pin products

Address: 05H After reset: 00H R/W

SCF2	SCF1	Source of input to filter circuits
0	0	_
0	1	MPX7 output signal
1	0	Gain adjustment amplifier output signal
1	1	Setting prohibited

Caution Be sure to clear bit 3 to "0".

<R> Remark Bits 7 and 6 are fixed at 0 of read only.

• 80-pin products

Address: 05H After reset: 00H R/W

_	7	6	5	4	3	2	1	0
MPX3	0	0	SCF2	SCF1	SCF0	MPX72	MPX71	MPX70

SCF2	SCF1	Source of input to filter circuits
0	0	SC_IN pin
0	1	MPX7 output signal
1	0	Gain adjustment amplifier output signal
1	1	Setting prohibited

SCF0	Specification of the order of filter signal processing
0	The MPX9 output signal passes the low-pass filter and then is input to the high-pass filter.
1	The MPX9 output signal passes the high-pass filter and then is input to the low-pass filter.

<R> Remark Bits 7 and 6 are fixed at 0 of read only.

(2) Power control register 2 (PC2)

This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise.

When using the low-pass filter, be sure to set bit 3 to 1.

Reset signal input clears this register to 00H.

• 64-pin products

Address: 12H After reset: 00H R/W

	LPFOF	Operation of low-pass filter
0 Stop operation of the low-pass filter		Stop operation of the low-pass filter.
	1	Enable operation of the low-pass filter.

Caution Be sure to clear bit 2 to "0".

<R> **Remark** Bits 7 to 5 can be set to 1, but this has no effect on the function.

• 80-pin products

Address: 12H After reset: 00H R/W

LPFOF	Operation of low-pass filter
0	Stop operation of the low-pass filter.
1	Enable operation of the low-pass filter.

<R> Remark Bits 7 to 5 can be set to 1, but this has no effect on the function.

4. 4. 4 Procedure for operating the low-pass filter

Follow the procedures below to start and stop the low-pass filter.

Example of procedure for starting the low-pass filter

Example of procedure for stopping the low-pass filter

4.5 High-Pass Filter

The RL78/G1E (80-pin products) has one on-chip switched-capacitor high-pass filter channel Note.

Note The high-pass filter is not provided in the RL78/G1E (64-pin products).

4.5.1 Overview of high-pass filter features

The features of high-pass filter are described below.

- Butterworth characteristics (Q value = 0.702)
- Cutoff frequency (fc) range: 8 Hz to 800 Hz
- External input clock frequency (fclk_HPF) range: fc \times 2 / 0.008 = 2 kHz to 200 kHz
- <R> Includes a power-off function.

And also, the DAC4_OUT output signals can be used as the reference voltage for high-pass filter. If D/A converter is powered off, the external reference voltage is to be input to DAC4_OUT/VREFIN4 pin. For details about use of D/A converter, see **4.3 D/A Converter**.

- Remarks 1. The internal control clock (fs) of the high-pass filter has a duty of 50%, so the external input clock is divided by two at the internal D flip-flop before being used for the low-pass filter. If the internal control clock frequency (fs) is 100 kHz, therefore, input a 200 kHz clock signal to the CLK_HPF pin.
 - 2. The phase of the signal input to the high-pass filter inverts after passing the high-pass filter.

4. 5. 2 Block diagram

4.5.3 Registers controlling the high-pass filter

<R> The high-pass filter is controlled by the following 2 registers:

- MPX setting register 3 (MPX3)
- Power control register 2 (PC2)

(1) MPX setting register 3 (MPX3)

This register is used to control MPX7, MPX9, MPX10, and MPX11.

- <R> When selecting the signal to be input to the filter circuits, use bits 5 and 4. When switching the order in which signals are processed by the low-pass and high-pass filters, use bit 3.
 - 80-pin products

Address: 05H After reset: 00H R/W

_	7	6	5	4	3	2	1	0
MPX3	0	0	SCF2	SCF1	SCF0	MPX72	MPX71	MPX70

<R>

SCF2	SCF1	Source of input to filter circuits
0	0	SC_IN pin
0	1	MPX7 output signal
1	0	Gain adjustment amplifier output signal
1	1	Setting prohibited

SCF0	Specification of the order of filter signal processing
0	The MPX9 output signal passes the low-pass filter and then is input to the high-pass filter.
1	The MPX9 output signal passes the high-pass filter and then is input to the low-pass filter.

Remark Bits 7 and 6 are fixed at 0 of read only.

(2) Power control register 2 (PC2)

This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise.

When using the high-pass filter, be sure to set bit 2 to 1.

Reset signal input clears this register to 00H.

• 80-pin products

Address: 12H After reset: 00H R/W

HPFOF	Operation of high-pass filter
0	Stop operation of the high-pass filter.
1	Enable operation of the high-pass filter.

Remark Bits 7 to 5 can be set to 1, but this has no effect on the function.

4. 5. 4 Procedure for operating the high-pass filter

Follow the procedures below to start and stop the high-pass filter.

Example of procedure for starting the high-pass filter

Remark *: don't care

Example of procedure for stopping the high-pass filter

Stop operation of the high-pass filter. (HPFOF = 0)

4.6 Temperature Sensor

The RL78/G1E (64-pin products, 80-pin products) has one on-chip temperature sensor channel.

4. 6. 1 Overview of temperature sensor features

The features of temperature sensor are described below.

- Output voltage temperature coefficient: -5 mV/°C (Typ.)
- Includes a power-off function.

4.6.2 Block diagram

4. 6. 3 Registers controlling the temperature sensor

The temperature sensor is controlled by power control register 2 (PC2).

(1) Power control register 2 (PC2)

This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise.

When selecting the signal to be input to the temperature sensor, be sure to set bit 0 to 1.

Reset signal input clears this register to 00H.

• 64-pin products

Address: 12H After reset: 00 R/W

	TEMPOF	Operation of temperature sensor			
0 Stop operation of th		Stop operation of the temperature sensor.			
	1	Enable operation of the temperature sensor.			

Caution Be sure to clear bit 2 to "0".

Remark Bits 7 to 5 can be set to 1, but this has no effect on the function.

• 80-pin products

Address: 12H After reset: 00 R/W

TEMPOF	Operation of temperature sensor
0	Stop operation of the temperature sensor.
1	Enable operation of the temperature sensor.

Remark Bits 7 to 5 can be set to 1, but this has no effect on the function.

4. 6. 4 Procedure for operating the temperature sensor

Follow the procedures below to start and stop the temperature sensor.

Example of procedure for starting the temperature sensor

Example of procedure for stopping the temperature sensor

4.7 Variable Output Voltage Regulator

The RL78/G1E (64-pin products, 80-pin products) has one on-chip variable output voltage regulator channel. This is a series regulator that generates a voltage of 3.3 V (default) from a supplied voltage of 5 V.

4.7.1 Overview of variable output voltage regulator features

The features of variable output voltage regulator are described below.

- Output voltage range: 2.0 to 3.3 V (Typ.)
- Output current: 15 mA (Max.)
- Includes a power-off function.

4.7.2 Block diagram

4.7.3 Registers controlling the variable output voltage regulator

The variable output voltage regulator is controlled by the following 2 registers:

- LDO control register (LDOC)
- Power control register 2 (PC2)

(1) LDO control register (LDOC)

This register is used to specify the output voltage of the variable output voltage regulator. Reset signal input sets this register to 0DH.

Address: 0BH After reset: 0DH R/W

_	7	6	5	4	3	2	1	0
LDOC	0	0	0	0	LDO3	LDO2	LDO1	LDO0

LDO3	LDO2	LDO1	LDO0	Output Voltage of Variable Output Voltage Regulator (Typ.)
0	0	0	0	2.0 V
0	0	0	1	2.1 V
0	0	1	0	2.2 V
0	0	1	1	2.3 V
0	1	0	0	2.4 V
0	1	0	1	2.5 V
0	1	1	0	2.6 V
0	1	1	1	2.7 V
1	0	0	0	2.8 V
1	0	0	1	2.9 V
1	0	1	0	3.0 V
1	0	1	1	3.1 V
1	1	0	0	3.2 V
1	1	0	1	3.3 V ^{Note}
	Other the	an above		Setting prohibited

Note Output voltage of 3.3 V is available when the power supply voltage is more than 4 V.

<R> Remark Bits 7 to 4 are fixed at 0 of read only.

(2) Power control register 2 (PC2)

This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise.

When using the variable output voltage regulator and reference voltage generator, be sure to set bit 1 to 1.

Reset signal input clears this register to 00H.

• 64-pin products

Address: 12H After reset: 00H R/W

	7	6	5	4	3	2	1	0
PC2	0	0	0	GAINOF	LPFOF	0	LDOOF	TEMPOF

LDOOF	Operation of variable output voltage regulator and reference voltage generator
0	Stop operation of the variable output voltage regulator and reference voltage generator.
1	Enable operation of the variable output voltage regulator and reference voltage generator.

Caution Be sure to clear bit 2 to "0".

<R> **Remark** Bits 7 to 5 can be set to 1, but this has no effect on the function.

• 80-pin products

Address: 12H After reset: 00H R/W

_	7	6	5	4	3	2	1	0
PC2	0	0	0	GAINOF	LPFOF	HPFOF	LDOOF	TEMPOF

LDOOF	Operation of variable output voltage regulator and reference voltage generator
0	Stop operation of the variable output voltage regulator and reference voltage generator.
1	Enable operation of the variable output voltage regulator and reference voltage generator.

< R> Remark Bits 7 to 5 can be set to 1, but this has no effect on the function.

4.7.4 Procedure for operating the variable output voltage regulator

Follow the procedures below to start and stop the variable output voltage regulator and reference voltage generator.

Example of procedure for starting the variable output voltage regulator and reference voltage generator

Remark *: don't care

Example of procedure for stopping the variable output voltage regulator and reference voltage generator

4.8 Reference Voltage Generator

The RL78/G1E (64-pin products, 80-pin products) has one on-chip reference voltage generator channel.

4.8.1 Overview of reference voltage generator features

<R> The features of reference voltage generator are described below.

- Output reference voltage: 1.21 V (Typ.)
- Includes a power-off function.

4.8.2 Block diagram

4.8.3 Registers controlling the reference voltage generator

The reference voltage generator is controlled by power control register 2 (PC2). For details about the setting of power control register 2, see **4. 7. 3 (2)** Power control register **2 (PC2)**.

4.8.4 Procedure for operating the reference voltage generator

For details about the procedures to start and stop the reference voltage generator, see **4.7.4** Procedure for operating the variable output voltage regulator.

4.8.5 Notes on using the reference voltage generator

Observe the following points when using the reference voltage generator:

(1) Only a very small current can flow from the BGR_OUT pin because the output impedance of the reference voltage generator is high. If the load input impedance is low, insert a follower amplifier between the load and the BGR_OUT pin. Also, make sure that the wiring between the pin and the follower amplifier or load is as short as possible (because of the high output impedance). If it is not possible to keep the wiring short, take measures such as surrounding the pin with a ground pattern.

4.9 SPI

4.9.1 Overview of SPI features

The SPI interface is used to allow control from external devices by using clocked communication via four lines: a serial clock line (\overline{SCLK}), two serial data lines (SDI and SDO), and a chip select input line (\overline{CS}).

Data transmission/reception:

- 16-bit data unit
- MSB first

Figure 4-4. SPI Configuration Example

Caution After turning on DV_{DD}, be sure to generate external reset by inputting a reset signal to ARESET pin before starting SPI communication. For details, see 4.10 Analog Reset.

4.9.2 SPI communication

The SPI transmits and receives data in 16-bit units. Data can be transmitted and received when CS is low. Data is transmitted one bit at a time in synchronization with the falling edge of the serial clock, and is received one bit at a time in synchronization with the rising edge of the serial clock. When the R/W bit is 1, data is written to the SPI control register in accordance with the address/data setting after the 16th rising edge of SCLK has been detected following the fall of \overline{CS} , and the operation specified by the data is executed. When the R/W bit is 0, the data is output from the register in accordance with the address/data setting in synchronization with the 9th and later falling edges of \overline{SCLK} following the fall of \overline{CS} .

Figure 4-5. SPI Communication Timing

Address	SPI Control Register	R/W	After Reset
00H	Configuration register 1 (CONFIG1)	R/W	00H
01H	Configuration register 2 (CONFIG2)	R/W	00H
03H	MPX setting register 1 (MPX1)	R/W	00H
04H	MPX setting register 2 (MPX2)	R/W	00H
05H	MPX setting register 3 (MPX3)	R/W	00H
06H	Gain control register 1 (GC1)	R/W	00H
07H	Gain control register 2 (GC2)	R/W	00H
08H	Gain control register 3 (GC3)	R/W	00H
09H	AMP operation mode control register (AOMC)	R/W	00H
0AH	Gain control register 4 (GC4)	R/W	00H
0BH	LDO control register (LDOC)	R/W	0DH
0CH	DAC reference voltage control register (DACRC)	R/W	00H
0DH	DAC control register 1 (DAC1C)	R/W	80H
0EH	DAC control register 2 (DAC2C)	R/W	80H
0FH	DAC control register 3 (DAC3C)	R/W	80H
10H	DAC control register 4 (DAC4C)	R/W	80H
11H	Power control register 1 (PC1)	R/W	00H
12H	Power control register 2 (PC2)	R/W	00H
13H	Reset control register (RC)	R/W	00H ^{Note}

Table 4-11. SPI Control Registers

<R> Note The reset control register is not initialized by generating internal reset of the reset control register. For details, see 4. 10 Analog Reset.

4.10 Analog Reset

4. 10. 1 Overview of analog reset feature

The RL78/G1E (64-pin products, 80-pin products) has an on-chip analog reset function. The SPI control registers of analog block are initialized by analog reset. Reset can be generated in the following two ways:

- External reset by inputting an external reset signal to the ARESET pin
- Internal reset by writing 1 to the RESET bit of the reset control register (RC)

The functions of the external reset and the internal reset are described below.

- After turning on DV_{DD}, be sure to generate external reset by inputting a reset signal to ARESET pin before starting SPI communication. For the details of ARESET pin, see **2.5.31** ARESET.
- During analog reset, each function of analog block is shifted to the status shown in Table 4-12. The status of each SPI control register after analog reset has been acknowledged is shown in Table 4-13. After analog reset, the status of each pin is shown in Table 4-14.
- External reset is generated when a low-level signal is input to the ARESET pin. On the other hand, internal reset is generated when 1 is written to the RESET bit of the reset control register (RC).
- External reset is subsequently cancelled by inputting a high-level signal to ARESET pin after a low-level signal is input to this pin. On the other hand, internal reset is subsequently cancelled by writing 0 to the RESET bit of the reset control register (RC) after 1 is written to the same bit of this register.

<R> Cautions When generating an external reset, input a low-level signal to the ARESET pin for at least 10 μs.

Function Block	External Reset from ARESET Pin	Internal Reset by Reset Control Register (RC)				
Configurable amplifier	Operation stops.					
Gain adjustment amplifier	Operati	on stops.				
D/A converter	Operati	Operation stops.				
Low-pass filter	Operati	Operation stops.				
High-pass filter Note	Operati	on stops.				
Temperature sensor	Operati	on stops.				
Variable output voltage regulator	Operati	on stops.				
Reference voltage generator	Operation stops.					
SPI	Operation stops.	Operation enabled.				

Note 80-pin products only.

Table 4-13. Statuses of SPI Control Registers after Analog Reset Is Acknowledged

Address	SPI Control Register	Status After a Re	set Is Acknowledged
		External Reset	Internal Reset
00H	Configuration register 1 (CONFIG1)	00H	00H
01H	Configuration register 2 (CONFIG2)	00H	00H
03H	MPX setting register 1 (MPX1)	00H	00H
04H	MPX setting register 2 (MPX2)	00H	00H
05H	MPX setting register 3 (MPX3)	00H	00H
06H	Gain control register 1 (GC1)	00H	00H
07H	Gain control register 2 (GC2)	00H	00H
08H	Gain control register 3 (GC3)	00H	00H
09H	AMP operation mode control register (AOMC)	00H	00H
0AH	Gain control register 4 (GC4)	00H	00H
0BH	LDO control register (LDOC)	0DH	ODH
0CH	DAC reference voltage control register (DACRC)	00H	00H
0DH	DAC control register 1 (DAC1C)	80H	80H
0EH	DAC control register 2 (DAC2C)	80H	80H
0FH	DAC control register 3 (DAC3C)	80H	80H
10H	DAC control register 4 (DAC4C)	80H	80H
11H	Power control register 1 (PC1)	00H	00H
12H	Power control register 2 (PC2)	00H	00H
13H	Reset control register (RC)	00H	01H ^{Note}

<R>

Note The reset control register is not initialized by generating internal reset of the reset control register, but it can be done to 00H by generating external reset from ARESET pin or writing 0 to the RESET bit of the reset control register (RC)..

Pin Name	External Reset from ARESET Pin	Internal Reset by Reset Control Register (RC)
SC_IN	Hi-Z	Hi-Z
CLK_SYNCH	Pull-down input	Pull-down input
SYNCH_OUT	Hi-Z	Hi-Z
GAINAMP_OUT	Hi-Z	Hi-Z
GAINAMP_IN	Hi-Z	Hi-Z
MPXIN61	Hi-Z	Hi-Z
MPXIN51	Hi-Z	Hi-Z
MPXIN60	Hi-Z	Hi-Z
MPXIN50	Hi-Z	Hi-Z
AMP3_OUT	Hi-Z	Hi-Z
DAC3_OUT/VREFIN3	Pull-down input	Pull-down input
AMP2_OUT	Hi-Z	Hi-Z
AMP1_OUT	Hi-Z	Hi-Z
DAC2_OUT/VREFIN2	Pull-down input	Pull-down input
DAC1_OUT/VREFIN1	Pull-down input	Pull-down input
MPXIN41	Hi-Z	Hi-Z
MPXIN31	Hi-Z	Hi-Z
MPXIN40	Hi-Z	Hi-Z
MPXIN30	Hi-Z	Hi-Z
MPXIN21	Hi-Z	Hi-Z
MPXIN11	Hi-Z	Hi-Z
MPXIN20	Hi-Z	Hi-Z
MPXIN10	Hi-Z	Hi-Z
BGR_OUT	Pull down	Pull down
LDO_OUT	Pull down	Pull down
TEMP_OUT	Pull down	Pull down
SCLK	Hi-Z	Pull-up input
SDO	Hi-Z (open drain)	Hi-Z (open drain)
SDI	Hi-Z	Pull-up input
CS	Hi-Z	Pull-up input
DAC4_OUT/VREFIN4	Pull-down input	Pull-down input
HPF_OUT	Hi-Z	Hi-Z
CLK_HPF	Pull-down input	Pull-down input
CLK_LPF	Pull-down input	Pull-down input
LPF_OUT	Hi-Z	Hi-Z

Table 4-14. Pin Statuses after Analog Reset

<R>

4. 10. 2 Registers controlling the analog reset

(1) Reset control register (RC)

This register is used to control the reset feature in the analog block.

<R> An internal reset can be generated by writing 1 to the RESET bit. The reset control register (RC) is not initialized by generating internal reset of the reset control register, but it can be done by generating external reset from ARESET pin. External reset from ARESET pin clears this register to 00H.

Address: 13H After reset: 00H Note R/W

	7	6	5	4	3	2	1	0
RC	0	0	0	0	0	0	0	RESET

RESET	Reset request by internal reset signal
0	Do not make a reset request by using the internal reset signal, or cancel the reset.
1	Make a reset request by using the internal reset signal, or the reset signal is currently being input.

- <R> Note The reset control register is not initialized by generating internal reset of the reset control register, but it can be done to 00H by generating external reset from ARESET pin or by writing 0 to the RESET bit of the reset control register (RC).
 - Caution When the RESET bit is 1, writing to any register other than the reset control register (RC) is ignored. Initializing the reset control register (RC) to 00H by external reset, or writing 0 to the RESET bit enables writing to all the registers.
- <R> **Remark** Bits 7 to 1 are fixed at 0 of read only.

CHAPTER 5 ELECTRICAL SPECIFICATIONS

In this capter, the electrical specification is described for the target products shown below.

Target products	A: Consumer applications	$T_A = -40$ to $+85^{\circ}C$
	R5F10FLCANA, R5F10FLCAN	A, R5F10FLDANA, R5F10FLDANA,
	R5F10FLEANA, R5F10FLEANA	A, R5F10FMCAFB, R5F10FMCAFB,
	R5F10FMDAFB, R5F10FMDAF	B, R5F10FMEAFB, R5F10FMEAFB

- Target productsD: Industrial applicationsTA = -40 to +85°CR5F10FLCDNA, R5F10FLCDNA, R5F10FLDDNA, R5F10FLDDNA, R5F10FLDDNA, R5F10FLEDNA, R5F10FMCDFB, R5F10FMCDFB, R5F10FMCDFB, R5F10FMEDFB, R5F10FMEDFB
- Cautions 1. The RL78/G1E microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product, so that refer to CHAPTER 2 PIN FUNCTIONS. In this Chapter, most of the descriptions use the case of 80-pin products as an example.

5.1 Absolute Maximum Ratings

5.1.1 Absolute maximum ratings of microcontroller block

Absolute maximum ratings (T_A = 25° C)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	Vdd			–0.5 to +6.5	V
	AVDD			–0.5 to +4.6	V
	AVREFP			-0.3 to AV _{DD} +0.3 ^{Note 3}	V
	AVss			–0.5 to +0.3	V
	AVREFM			-0.3 to AV _{DD} +0.3 ^{Note 3}	V
				and AV _{REFM} ≤ AV _{REFP}	
REGC pin input	VIREGC	REGC		-0.3 to 2.8	V
voltage				and	
				-0.3 to Vdd + $0.3^{Note 1}$	
Input voltage	VI1	P00 to P04, P10	to P15, P40 to P42, P50, P51, P70 to P73, P140	-0.3 to V_DD + $0.3^{Note 2}$	V
	Vı3	P121, P122, P13	37, EXCLK, RESET	–0.3 to V _{DD} + 0.3 $^{\text{Note 2}}$	V
	V14	P20 to P24		-0.3 to AV _{DD} + 0.3 ^{Note 3}	V
	V15	I.C pin		–0.5 to +0.3	V
Output voltage	V ₀₁	P00 to P04, P10 P130, P140	to P15, P40 to P42, P50, P51, P70 to P73,	-0.3 to Vdd + $0.3^{Note 2}$	V
	V _{O2}	P20 to P24		-0.3 to AV _{DD} + 0.3 ^{Note 3}	V
Analog input	VAI1	ANI16 to ANI18.	ANI20 to ANI26, ANI28, ANI30	-0.3 to VDD + 0.3	V
voltage				and	
-				-0.3 to AV _{REF(+)} + 0.3 ^{Note 2, 4}	
	VAI2	ANI0 to ANI4		-0.3 to AVDD + 0.3	V
				and	
				-0.3 to AV _{REF(+)} + 0.3 ^{Note 3, 4}	
Output current,	Іон1	Per pin		-40	mA
high		Total of all pins:	P00 to P04, P40 to P42, P130, P140	-70	mA
		–170 mA	P10 to P15, P50, P51, P70 to P73	-100	mA
	Іон2	Per pin	ANI0 to ANI4	-0.1	mA
		Total of all pins		-1.3	mA
Output current,	IOL1	Per pin		40	mA
low		Total of all pins:	P00 to P04, P40 to P42, P130, P140	70	mA
		170 mA	P10 to P15, P50, P51, P70 to P73	100	mA
	IOL2	Per pin	ANI0 to ANI4	0.4	mA
		Total of all pins		6.4	mA

(Notes, Causion and Remarks are listed on the next page.)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not apply any external voltage to this pin.
 - 2. Must be 6.5 V or lower.
 - 3. Must be 4.6 V or lower.
 - 4. Do not exceed AVREF(+)+0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AVREF(+): + side reference voltage of the A/D Conveter.
 - 3. Vss is reference voltage.

5. 1. 2 Absolute maximum ratings of analog block

Absolute maximum ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	AVdda	AVdd1, AVdd2, AVdd3	-0.3 to +6.0	V
	DVDD	DVDD	-0.3 to +6.0	V
	AGND	AGND1, AGND2, AGND3, AGND4	-0.3 to +0.3	V
	DGND	DGND	-0.3 to +0.3	V
Input voltage	VII	MPXIN10, MPXIN11, MPXIN20, MPXIN21,	-0.3 to AV _{DDA} + 0.3 ^{Note}	V
		MPXIN30, MPXIN31, MPXIN40, MPXIN41,		
		MPXIN50, MPXIN51, MPXIN60, MPXIN61,		
		SC_IN, CLK_SYNCH, VREFIN1, VREFIN2,		
		VREFIN3, VREFIN4, CLK_LPF, CLK_HPF,		
		RESET		
	VI2	SCLK, SDI, CS	–0.3 to DV _{DD} + 0.3 ^{Note}	V
Output voltage	V ₀₁	LDO_OUT, BGR_OUT, AMP1_OUT,	-0.3 to AV _{DDA} + 0.3 ^{Note}	V
		AMP2_OUT, AMP3_OUT, GAINAMP_OUT,		
		SYNCH_OUT, LPF_OUT, HPF_OUT,		
		DAC1_OUT, DAC2_OUT, DAC3_OUT,		
		DAC4_OUT, TEMP_OUT		
	V _{O2}	SDO	–0.3 to DV _{DD} + 0.3 ^{Note}	V
Output current	lo1	AMP1_OUT, AMP2_OUT, AMP3_OUT,	1	mA
		GAINAMP_OUT, SYNCH_OUT		
		LPF_OUT, HPF_OUT		
		DAC1_OUT, DAC2_OUT, DAC3_OUT,		
		DAC4_OUT, TEMP_OUT		
	lo2	SDO	-10	mA
	ILDOOUT	LDO_OUT	15	mA

Note Must be 6.0 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

<R> 5.1.3 Absolute maximum ratings (common to microcontroller block and analog block)

Absolute maximum ratings

Parameter	Symbol	Conditions	Ratings	Unit
Operating ambient		In normal operation mode	-40 to +85	°C
temperature	TA	In flash memory programming mode	-40 to +85	°C
Storage temperature	T _{stg}		-40 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

5. 2 Electrical Specifications of Microcontroller Block

5. 2. 1 Oscillator characteristics

5. 2. 1. 1 X1 oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

<r></r>	Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
	X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	1.0		20.0	MHz
		/ Crystal resonator	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		16.0	
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	1.0		8.0	
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	

<R>

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time. Also, be sure to apply to the resonator manufacturer for evaluation on the actual circuit so as to confirm the oscillation characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- <R> Remark When using the X1 oscillator, see 3. 5. 4 System clock oscillator.

<R> 5. 2. 1. 2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Resonator	Symbol	Сс	onditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Note 1, 2	fıн			1		32	MHz
High-speed on-chip oscillator		–20 to + 85 °C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	- 1.0		+ 1.0	%
clock frequency accuracy			$1.6~V \leq V_{\text{DD}} \leq 1.8~V$	- 5.0		+ 5.0	%
		–40 to – 20 °C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	- 1.5		+ 1.5	%
			$1.6~V \leq V_{\text{DD}} \leq 1.8~V$	- 5.5		+ 5.5	%
Low-speed on-chip oscillator clock	fı∟				15		kHz
frequency							
Low-speed on-chip oscillator clock frequency accuracy				– 15		+ 15	%

Notes 1. Frequency can be selected in a high-speed on-chip oscillator. Selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. Indicates only permissible frequency level. Refer to AC Characteristics for instruction execution time.

5. 2. 2 DC characteristics

5. 2. 2. 1 Pin characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit				
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P04, P10 to P15, P40 to P42, P50, P51, P130, P140	$1.6~V \le V_{\text{DD}} \le 5.5~V$			-10.0 ^{Note 2}	mA				
		Per pin for P70 to P73	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0 ^{Note 2}	mA				
		Total of P00 to P04, P40 to P42,	$4.0~V \le V_{\text{DD}} \le 5.5~V$			-55.0	mA				
		P130, P140	$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$			-10.0					
		When duty = 70% ^{Note 3})	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			-5.0					
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$			-2.5						
		Total of P10 to P15, P50, P51,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-80.0	mA				
		P70 to P73	$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$			-19.0					
		(When duty = 70% ^{Note 3})	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			-10.0					
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			-5.0					
						Total of all pins (When duty = 70% ^{Note 3})	$1.6~V \le V_{\text{DD}} \le 5.5~V$			-100.0	mA
	Іон2	Per pin for P20 to P24	$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			-0.1 ^{Note 2}	mA				
		Total of all pins (When duty = 70% ^{Note 3})	$1.6 V \le AV_{DD} \le 3.6$ V			-1.3	mA				

 $(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty \leq 70%.

The output current value that has changed the duty ratio > 70% can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = (IOH \times 0.7) / (n \times 0.01)
 - <Example> When $I_{OH} = -10.0 \text{ mA}$ and n = 80%

Total output current of pins = (-10.0 \times 0.7) / (80 \times 0.01) \cong -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10 to P15 and P50 do not output high level in N-ch open-drain mode.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	Iol1	Per pin for P00 to P04, P10 to P15, P40 to P42, P50 to P51, P130, P140	$1.6~V \le V_{\text{DD}} \le 5.5~V$			20.0 ^{Note 2}	mA
		Per pin for P70 to P73	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			3.0 ^{Note 2}	mA
		Total of P00 to P04, P40 to P42,	$4.0~V \leq V_{DD} \leq 5.5~V$			70.0	mA
		P130, P140 (When duty = 70% ^{Note 3})	$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$			15.0	
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			9.0	
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$			4.5	
		Total of P10 to P15, P50, P51,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
		P70 to P73 (When duty = 70% ^{Note 3})	$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$			35.0	
			$1.8~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$			20.0	
	Total of all pins ^{Note 3}		$1.6~\text{V} \leq \text{V}_{\text{DD}} < 1.8~\text{V}$			10.0	
		Total of all pins ^{Note 3}	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			150.0	mA
	IOL2	Per pin for P20 to P24	$1.6 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			0.4 ^{Note 2}	mA
		Total of all pins ^{Note 3}	$1.6~\text{V} \leq AV_{\text{DD}} \leq 3.6~\text{V}$			5.2	mA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{AV}_{DD} \le \text{V}_{DD}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the Vss pin to an output pin.

- **2.** Do not exceed the total current value.
- Specification under conditions where the duty ≤ 70%.
 The output current value that has changed the duty ratio > 70 % can be calculated with the following expression (when changing the duty ratio to n%).
 - Total output current of pins = $(I_0 \times 0.7) / (n \times 0.01)$ <Example> When $I_0 = 10.0$ mA and n = 80%Total output current of pins = $(10.0 \times 0.7) / (80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P04, P10 to P15, P40 to P42, P50, P51, P70 to P73, P140	Normal input buffer	0.8Vdd		Vdd	V
	VIH2	P01, P03, P04, P10, P11, P13 to P15	TTL input buffer 4.0 V \leq V _{DD} \leq 5.5 V	2.2		Vdd	V
			TTL input buffer $3.3V \le V_{DD} < 4.0 V$	2.0		Vdd	V
			TTL input buffer 1.6 V \leq V _{DD} < 3.3 V	1.5		Vdd	V
	Vінз	P20 to P24		0.7AVdd		AVDD	V
	VIH5	P121, P122, P137, EXCLK, RE	0.8Vdd		Vdd	V	
Input voltage, Iow	VIL1	P00 to P04, P10 to P15, P40 to P42, P50, P51, P70 to P73, P140	Normal input buffer	0		0.2Vdd	V
	VIL2	P01, P03, P04, P10, P11, P13 to P15	TTL input buffer 4.0 V \leq V _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer 3.3 V \leq V _{DD} \leq 4.0 V	0		0.5	V
			TTL input buffer 1.6 V \leq V _{DD} < 3.3 V	0		0.32	V
	VIL3	P20 to P24		0		0.3AVDD	V
	VIL5	P121, P122, P137, EXCLK, RE	0		0.2Vdd	V	

($(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}}, \text{V}_{\text{SS}} = 0 \text{ V})$)
	(17 - 10.00, 100, 0.00, 100, 0.00,	/

Caution The maximum value of V_H of pins P00, P02 to P04, P10 to P15, and P50 is V_{DD}, even in the N-ch opendrain mode.

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P04, P10 to P15, P40 to P42, P50, P51,	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH1 = -10.0 mA	Vdd - 1.5			V
		P130, P140	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{IOH1} = -3.0 \text{ mA}$	V _{DD} – 0.7			V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{IOH1} = -2.0 \text{ mA}$	Vdd - 0.6			V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH1 = -1.5 mA	Vdd - 0.5			V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH1 = -1.0 mA	Vdd - 0.5			V
	Voh2	P20 to P24	1.6 V \leq AVdd \leq 3.6 V, Іон2 = -100 μ A	AVdd - 0.5			V
	V _{OH4}	P70 to P73	4.0 V \leq V_{DD} \leq 5.5 V, IOH4 = -3.0 mA	Vdd - 1.1			V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH4 = -2.0 mA	Vdd - 0.9			V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH4 = -1.5 mA	Vdd - 0.7			V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH4 = -1.0 mA	Vdd - 0.7			V

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \text{ } 1.6 \text{ V} \le \text{AV}\text{dd} \le 3.6 \text{ V}, \text{ } 1.6 \text{ V} \le \text{V}\text{dd} \le 5.5 \text{ V}, \text{ } \text{AV}\text{dd} \le \text{V}\text{dd}, \text{ } \text{V}\text{ss} = 0 \text{ V})$

Caution P00, P02 to P04, P10 to P15 and P50 do not output high level in N-ch open-drain mode.

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	P00 to P04, P10 to P15, P40 to P42, P50, P51,	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOL1 = 20.0 mA			1.5	V
		P130, P140	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOL1 = 8.5 mA			0.7	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			0.6	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 0.6 mA			0.4	V
			$1.6 \text{ V} \le \text{V}_{DD} < 5.5 \text{ V},$ IOL1 = 0.3 mA			0.4	V
	Vol2	P20 to P24	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V},$ $\text{IOL2} = 400 \ \mu\text{A}$			0.4	V
	Vol4	P70 to P73	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOL4 = -3.0 mA			1.0	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOL4 = -1.5 mA			0.6	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ 10L4 = -0.6 mA			0.5	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ 10L4 = -0.3 mA			0.5	V

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{AV}_{DD} \le \text{V}_{DD}, \text{V}_{SS} = 0.000 \text{ V}$) V)
	· · /

Parameter	Symbol		Condition	IS	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	P00 to P04, P10 to P15, P40 to P42, P50, P51, P70 to P73, P140	Vi = Vdd				1	μΑ
	Ілна	P137, RESET	Vi = Vdd				1	μA
	Ішнз	P121, P122 (X1, X2, EXCLK)	VI = VDD	Input port or external clock input selected			1	μA
				Resonator connected			10	μA
	Ілн4	P20 to P24	VI = AVDD				1	μA
Input leakage current, low	ILIL1	P00 to P04, P10 to P15, P40 to P42, P50, P51, P70 to P73, P140	Vi = Vss				-1	μΑ
	Ilil2	P121, P122, P137, RESET	Vı = Vss				-1	μΑ
	Ililis	P121, P122 (X1, X2, EXCLK)	VI = Vss	Input port or external clock input selected			-1	μA
				Resonator connected			-10	μA
	Ilil4	P20 to P24	Vı = AVss				-1	μA
On-chip pull-up resistance	Ru	P00 to P04, P10 to P15, P40 to P42, P50, P51, P70 to P73, P140	Vı = Vss, in	put port selected	10	20	100	kΩ

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \text{ } 1.6 \text{ V} \leq \text{AV}\text{dd} \leq 3.6 \text{ V}, \text{ } 1.6 \text{ V} \leq \text{V}\text{dd} \leq 5.5 \text{ V}, \text{ } \text{AV}\text{dd} \leq \text{V}\text{dd}, \text{ } \text{V}\text{ss} = 0 \text{ V})$

(1/3)

5. 2. 2. 2 Supply current characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD})$	\leq 5.5 V, Vss = 0 V)
---	--------------------------

Parameter	Symbol			Conditions			MIN.	TYP.	MAX	Unit
Supply	IDD1	Operating	HS(High-	fін = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.1		mA
current		mode	speed main)		operation	VDD = 3.0 V		2.1		
Note 1			mode ^{Note 4}		Normal	VDD = 5.0 V		4.6	7.0	mA
					operation	VDD = 3.0 V		4.6	7.0	
				$f_{H} = 24 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	Vdd = 3.0 V		3.7	5.5	
				fıн = 16 MHz ^{Note 3}	Normal	VDD = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	
			LS (Low-	fıн = 8 MHz ^{Note 3}	Normal	VDD = 3.0 V		1.2	1.8	mA
			speed main) mode ^{Note 4}		operation	VDD = 2.0 V		1.2	1.8	
			LV (Low-	fı⊣ = 4 MHz ^{Note 3}	Normal	VDD = 3.0 V		1.2	1.7	mA
			voltage main) mode ^{Note 4}		operation	VDD = 2.0 V		1.2	1.7	
			HS (High-	fмx = 20 MHz ^{Note 2}	Normal	Square wave input		3.0	4.6	mA
			speed main)	VDD = 5.0 V	operation	Resonator connection		3.2	4.8	
			mode ^{Note 4}	fмx = 20 MHz ^{Note 2}	Normal	Square wave input		3.0	4.6	
				$V_{DD} = 3.0 V$	operation	Resonator connection		3.2	4.8	
				f _{MX} = 10 MHz ^{Note 2}	Normal	Square wave input		1.9	2.7	mA
				VDD = 5.0 V	operation	Resonator connection		1.9	2.7	
				f _{MX} = 10 MHz ^{Note 2}	Normal	Square wave input		1.9	2.7	
				VDD = 3.0 V	operation	Resonator connection		1.9	2.7	
			LS (Low-	f _{MX} = 8 MHz ^{Note 2}	Normal	Square wave input		1.1	1.7	mA
			speed main)	Vdd = 3.0 V	operation	Resonator connection		1.1	1.7	
			mode ^{Note 4}	f _{MX} = 8 MHz ^{Note 2}	Normal	Square wave input		1.1	1.7	
				Vdd = 2.0 V	operation	Resonator connection		1.1	1.7	

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pullup/pull-down resistors, and data flash rewriting.

- 2. When the high-speed on-chip oscillator is stopped.
- 3. When the high-speed system clock is stopped.
- 4. The relationship between the operation voltage range, CPU operating frequency, and operating mode is as below.

HS (High-speed main) mode: $V_{DD} = 2.7$ to $5.5 \lor @ 1$ MHz to 32 MHz $V_{DD} = 2.4$ to $5.5 \lor @ 1$ MHz to 16 MHzLS (Low-speed main) mode: $V_{DD} = 1.8$ to $5.5 \lor @ 1$ MHz to 8 MHzLV (Low-voltage main) mode: $V_{DD} = 1.6$ to $5.5 \lor @ 1$ MHz to 4 MHz

- Remarks 1. f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/3)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit		
Supply	DD2 ^{Note 2}	HALT	HS (High-speed	fін = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.54	1.63	mA		
current ^{Note}		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		0.54	1.63			
1				fін = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.28	mA		
					V _{DD} = 3.0 V		0.44	1.28			
	LS (Low-speed	fін = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.00	mA				
					V _{DD} = 3.0 V		0.40	1.00			
		LS (Low-speed	fiн = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA			
		main) mode ^{Note 6}		V _{DD} = 2.0 V		260	530				
		LV (Low-voltage	fiн = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA			
			main) mode ^{Note 6}		V _{DD} = 2.0 V		420	640			
		HS (High-speed	f _{MX} = 20 MHz ^{Note 3}	Square wave input		0.28	1.00	mA			
			main) mode ^{Note 6}	$V_{DD} = 5.0 V$	Resonator connection		0.45	1.17			
				f _{MX} = 20 MHz ^{Note 3}	Square wave input		0.28	1.00			
	V _{DD} =	$V_{DD} = 3.0 V$	Resonator connection		0.45	1.17					
				f _{MX} = 10 MHz ^{Note 3}	Square wave input		0.19	0.60	mA		
				$V_{DD} = 5.0 V$	Resonator connection		0.26	0.67			
				f _{MX} = 10 MHz ^{Note 3}	Square wave input		0.19	0.60			
				$V_{DD} = 3.0 V$	Resonator connection		0.26	0.67			
			LS (Low-speed	f _{MX} = 8 MHz ^{Note 3}	Square wave input		95	330	μA		
					main) mode ^{Note 6}	Vdd = 3.0 V	Resonator connection		145	380	
				f _{MX} = 8 MHz ^{Note 3}	Square wave input		95	330			
				$V_{DD} = 2.0 V$	Resonator connection		145	380			
h	DD3 ^{Note 5}	STOP	$T_A = -40^{\circ}C$	$T_{A} = -40^{\circ}C$			0.15	0.50	μA		
		mode	T _A = +25°C				0.22	0.50			
			T _A = +50°C				0.34	1.10			
			T _A = +70°C				0.46	1.90			
			T _A = +85°C				0.75	3.30			

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pullup/pull-down resistors, and data flash rewriting.
 - 2. When the HALT instruction is executed for the flash memory.
 - **3.** When the high-speed on-chip oscillator is stopped.
 - **4.** When the high-speed system clock is stopped.
 - 5. Not including the current flowing into 12-bit interval timer, watchdog timer.
 - **6.** The relationship between the operation voltage range, CPU operating frequency, and operating mode is as below.

HS (High-speed main) mode:	VDD = 2.7 to 5.5 V @ 1 MHz to 32 MHz
	V_{DD} = 2.4 to 5.5 V @ 1 MHz to 16 MHz
LS (Low-speed main) mode:	V_{DD} = 1.8 to 5.5 V @ 1 MHz to 8 MHz
LV (Low-voltage main) mode:	VDD = 1.6 to 5.5 V @ 1 MHz to 4 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. The TYP. temperature condition in modes other than STOP mode is $T_A = 25^{\circ}C$.

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

(3/3)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Ur
Low-speed on-chip oscillator operating current	I _{fIL} Note 1				0.20		μ
12-bit Interval timer operating current	IIT Note 1, 2, 3				0.02 Note 3		μ
Watchdog timer operating current	IWDT Note 1, 2, 4	fil = 15 kHz, fmain	is stopped		0.22		μ
A/D converter operating current	IADC Note 5, 6	AV _{DD} = 3.0 V, W	hen conversion at maximum speed		420	720	μ
AVREF (+) current	AVREF Note 7	AV _{DD} = 3.0 V, AD		14.0	25.0	μ	
		AV _{REFP} = 3.0 V, A		14.0	25.0	μ	
		ADREFP1 = 1, A	ADREFP1 = 1, ADREFP0 = 0 Note 1			25.0	Ļ
A/D converter reference voltage current	ADREF Note 1, 8	V _{DD} = 3.0 V			75.0		Ļ
Temperature sensor operating current	ITMPS Note 1	V _{DD} = 3.0 V			75.0		μ
LVD operating current	ILVD Note 1, 10				0.08		μ
BGO operating current	IBGO ^{Note 1, 11}				2.5	12.2	n
Selfprogramming operating current	I _{FSP} Note 1, 12				2.5	12.2	n
SNOOZE operating	Isnoz	A/D converter	The mode is performed Note 1, 13		0.50	0.60	n
current		operation	During A/D conversion Note 1		0.60	0.75	n
		$(AV_{DD} = 3.0 V)$	During A/D conversion Note 6		420	720	Ļ
		CSI/UART opera	ition Note 1		0.70	0.84	n

(Notes and Remarks are listed on the next page.)

- <R> Notes 1. Current flowing to VDD.
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer is in operation.
 - 5. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
 - 6. Current flowing to the AVDD.
 - 7. Current flowing from the reference voltage source of A/D converter.
 - 8. Operation current flowing to the internal reference voltage.
 - **9.** Current flowing to the AVREFP.
 - **10.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 11. Current flowing only during data flash rewrite.
 - **12.** Current flowing only during self programming.
 - 13. For shift time to the SNOOZE mode, see 3. 18 Standby Function.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fclk: CPU/peripheral hardware clock frequency
- **3.** The TYP. temperature condition is $T_A = 25^{\circ}C$.

5. 2. 3 AC characteristics

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Instruction cycle	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.03125		1	μs
(minimum instruction		clock (fmain)	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
execution time)		operation	LV (Low-voltage main) mode	$1.6~V \le V_{DD} \le 5.5~V$	0.25		1	μs
			LS (Low-speed main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$	0.125		1	μs
		In the self	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		programming	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		mode	LV (Low-voltage main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$	0.25		1	μs
			LS (Low-speed main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$	0.125		1	μs
External main system	fex	$2.7 V \leq V_{DD} \leq 8$	5.5 V		1.0		20.0	MH
clock frequency		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2$	2.7 V		1.0		16.0	
		1.8 V ≤ V _{DD} < 2	2.4 V		1.0		8.0	
		$1.6 V \le V_{DD} < 7$	1.8 V		1.0		4.0	
External main system	texн,	$2.7 V \leq V_{DD} \leq 8$	5.5 V		24			ns
clock input	texL	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2$	2.7 V		30			
high-level width,		1.8 V ≤ V _{DD} < 2	2.4 V	60				
low-level width		$1.6 V \le V_{DD} < T_{C}$	1.8 V	120				
TI00, TI04, TI07 input high/low level width	tтıн, tтı∟				1/fмск + 10			ns
TO00, TO04, TO07	fто	HS (high-spee	d main) mode	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			16	MH
output frequency					8			
				$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			4	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$					2	
		LV (Low-voltag	ge main) mode	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}$			2	
		LS (Low-speed		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			4	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$					2	
PCLBUZ0 output	f PCL	HS (high-speed main) mode		$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			16	MH:
frequency			,	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$			8	
				$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$			4	
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			2		
		LV (Low-voltag	ge main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			4	
			,	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			2	1
		LS (Low-speed	d main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			4	
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			2	
Interrupt input high level width, low level width	tınıн, tınıl	INTP0, INTP1	, INTP2, INTP6	$1.6~V \le V_{DD} \le 5.5~V$	1			μs
Key interrupt input	tкr	KR0 to KR7		$1.8 V \le V_{DD} \le 5.5 V$	250			ns
high level width, low level width				$\frac{1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}}{1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}}$	1			μs
				$1.6 \text{ V} \le AV_{DD} < 1.8 \text{ V}$				

Remark fMCK: Timer array unit operation clock frequency. (Operation clock to be set by the timer clock select register 0 (TPS0) and CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

<R>

<R> Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

TCY VS VDD (LS (low-speed main) mode)

- When the high-speed on-chip oscillator clock is selected
- --- During self programming
- ---- When high-speed system clock is selected

TCY VS VDD (LV (low-voltage main) mode)

Key Interrupt Input Timing

RESET Input Timing

<R> 5. 2. 4 Peripheral functions characteristics

AC Timing Test Points

<R> 5. 2. 4. 1 Serial array unit

(1) Communication between devices at same potential (UART mode) (dedicated baud rate generator output)

```
(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})
```

Paramete	Symbol	Conditions	HS '	Note 1	LS	lote 2	LV	lote 3	Unit
r			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		f мск/6		fмск/6		fмск/6	bps
rate Note 4		Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}$ Note 6		5.3 Note 5		1.3		0.6	Mbps
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}$ Note 6		5.3 Note 5		1.3		0.6	Mbps
		$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}$ Note 6		5.3 Note 5		1.3 Note 5		0.6	Mbps
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		—		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}$ Note 6		_		1.3 Note 5		0.6	Mbps

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Transfer rate in the SNOOZE mode is 4800 bps.
- 5. The following conditions are required for low voltage interface.
 - 2.4 V \leq VDD < 2.7 V: 2.6 Mbps max.
 - $1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$: 1.3 Mbps max.
 - 1.6 V \leq VDD < 1.8 V: 0.6 Mbps max.
- **6.** f_{CLK} in each operating mode is as below.
 - HS (high-speed main) mode : f_{CLK} = 32 MHz
 - LS (low-speed main) mode : f_{CLK} = 8 MHz
 - LV (low-voltage main) mode : f_{CLK} = 4 MHz
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication between devices at same potential)

UART mode bit width (during communication between devices at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fmck: Serial array unit operating clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

<R> (2) Communication between devices at same potential (CSI mode) (master mode, SCKp ... internal clock output corresponding CSI00 only)

Parameter	Symbol	Conditions	HS™	lote 1	LS™	ote 2	LV N	ote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t _{KCY1}	$\begin{array}{l} 2.7 \ V \leq V_{DD} \ \leq 5.5 \ V \\ t_{KCY1} \ \geq 2/f_{CLK} \end{array}$	83.3 ^{Note 4}		250		500		ns
SCKp high-level width,	t _{KH1} , t _{KL1}	$4.0~V \leq V_{DD}~\leq 5.5~V$	t _{KCY1} /2 -7		t _{KCY1} /2 -50		t _{KCY1} /2 -50		ns
low-level width		$2.7~V \leq V_{DD}~\leq 5.5~V$	t _{KCY1} /2 -10		t _{KCY1} /2 -50		t _{KCY1} /2 -50		
Slp setup time (to SCKp↑) ^{Note 5}	t _{SIK1}	$\begin{array}{l} 4.0 \ V \leq V_{DD} \ \leq 5.5 \ V \\ 2.7 \ V \leq V_{DD} \ \leq 5.5 \ V \end{array}$			110 110		110 110		ns
Slp hold time (from SCKp↑) ^{Note 5}	t _{KSI1}	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 6}	t _{KSO1}	C = 20 pF ^{Note 7}		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq Vdd \leq 5.5 V, Vss = 0 V)

<R> Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. f_{MCK} must be 24 MHz or less.
- This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp↓.
- 6. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp[↑].
- 7. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),

g: PIM and POM numbers (g = 1)

2. fMCK: Serial array unit operating clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00))

<R> (3) Communication between devices at same potenntial (CSI mode) (master mode, SCKp ... internal clock output)

Parameter	Symbol	Conditions	HS [•]	lote 1	LS	lote 2	LV N	lote 3	Uni
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	t
SCKp cycle time	t _{KCY1}	$2.7~V \leq V_{DD} \leq 5.5~V$	125		500		1000		ns
		$t_{KCY1} \geq 4/f_{CLK}$							
		$2.4~V \leq V_{DD} \leq 5.5~V$	250		500		1000		ns
		$t_{KCY1} \ge 4/f_{CLK}$							
		$1.8~V \leq V_{DD} \leq 5.5~V$	500		500		1000		ns
		$t_{KCY1} \geq 4/f_{CLK}$							
		$1.7~V \leq V_{DD} \leq 5.5~V$	1000		1000		1000		ns
		$t_{KCY1} \ge 4/f_{CLK}$							
		$1.6~V \leq V_{DD} \leq 5.5~V$	-		1000		1000		ns
		$t_{KCY1} \geq 4/f_{CLK}$							
SCKp	t _{KH1} ,	$4.0~V \leq V_{DD} \leq 5.5~V$	t _{KCY1} /2		t _{KCY1} /2		t _{KCY1} /2		ns
high-level width	t _{KL1}		-12		-50		-50		
low-level width		$2.7~V \leq V_{DD} \leq 5.5~V$	t _{KCY1} /2		t _{KCY1} /2		t _{KCY1} /2		ns
			-18		-50		-50		
		$2.4~V \leq V_{DD} \leq 5.5~V$	t _{KCY1} /2		t _{KCY1} /2		t _{KCY1} /2		ns
			-38		-50		-50		
		$1.8~V \leq V_{DD} \leq 5.5~V$	t _{KCY1} /2		t _{KCY1} /2		t _{KCY1} /2		ns
			-50		-50		-50		
		$1.7~V \leq V_{DD} \leq 5.5~V$	t _{KCY1} /2		t _{KCY1} /2		t _{KCY1} /2		ns
			-100		-100		-100		
		$1.6~V \leq V_{DD} \leq 5.5~V$	-		t _{KCY1} /2		t _{KCY1} /2		ns
					-100		-100		
Slp setup time	t _{SIK1}	$4.0~V \leq V_{DD} \leq 5.5~V$	44		110		110		ns
(to SCKp↑) ^{Note 4}		$2.7~V \leq V_{DD} \leq 5.5~V$	44		110		110		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$	75		110		110		ns
		$1.8~V \le V_{DD} \le 5.5~V$	110		110		110		ns
		$1.7~V \leq V_{DD} \leq 5.5~V$	220		220		220		ns
		$1.6~V \le V_{DD} \le 5.5~V$	_		220		220		ns
Slp hold time	t _{KSI1}	$1.7~V \leq V_{DD} \leq 5.5~V$	19		19		19		ns
(from SCKp↑) ^{Note 4}		$1.6~V \leq V_{DD} \leq 5.5~V$	-		19		19		1
Slp hold time (from SCKp↑) ^{Note 5}	t _{KSO1}	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ C = 30 pF ^{Note 6}		25		25		25	ns
、		$1.6 V \le V_{DD} \le 5.5 V$ C = 30 pF ^{Note 6}		-		25		25	1

```
(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)
```

(Notes Caution and Remark are listed on the next page.)

<R>

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - **4.** This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp \downarrow .
 - 5. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp[↑].
 - 6. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00, 10, 20, 21), m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 2), g: PIM and POM numbers (g = 0, 1)

<R> (4) Communication between devices at same potential (CSI mode)

(slave mode, SCKp ... External clock input) (1/2)

Parameter	Symbol	Conc	litions	HS™	Note 1	LS Note 2		LV Note 3		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp	t _{KCY2}	$4.0V \leq V_{DD} \leq$	20MHz < f _{мск}	8/f _{MCK}		_		—		ns
cycle time Note 4		5.5V	f _{мск} ≤ 20MHz	6/f _{MCK}		6/f _{MCK}		6/f _{MCK}		ns
		$2.7V \le V_{DD} \le$	16MHz < f _{MCK}	8/f _{MCK}		_		_		ns
		5.5V	$f_{MCK} \leq 16 MHz$	6/f _{MCK}		6/f _{MCK}		6/f _{MCK}		ns
		$2.4~V \le V_{DD} \le 5.8$	5 V	6/f _{MCK}		6/f _{MCK}		6/f _{MCK}		ns
				and		and		and		
				500ns		500ns		500ns		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.9$	5 V	6/f _{MCK}		6/f _{MCK}		6/f _{MCK}		ns
				and		and		and		
				750ns		750ns		750ns		
		$1.7 \text{ V} \leq V_{DD} \leq 5.8$	5 V	6/f _{MCK}		6/f _{MCK}		6/f _{MCK}		ns
				and		and		and		
				1500ns		1500ns		1500ns		
		$1.6~V \le V_{DD} \le 5.8$	5 V	-		6/f _{MCK}		6/f _{MCK}		ns
						and		and		
						1500ns		1500ns		
SCKp	t _{KH2} ,	$4.0~V \le V_{DD} \le 5.8$	5 V	t _{KCY2} /2		t _{KCY2} /2		t _{KCY2} /2		ns
high-level	t _{KL2}			-7		-7		-7		
width		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.9$	5 V	t _{KCY2} /2		t _{KCY2} /2		t _{KCY2} /2		ns
low-level width				-8		-8		-8		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$	5 V	t _{KCY2} /2		t _{KCY2} /2		t _{KCY2} /2		ns
				-18		-18		-18		
		$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$	5 V	t _{KCY2} /2		t _{KCY2} /2		t _{KCY2} /2		ns
				-66		-66		-66		
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.9$	5 V	_		t _{KCY2} /2		t _{KCY2} /2		ns
						-66		-66		

(TA = -40 to +85°C, 1.6 V \leq Vdd \leq 5.5 V, Vss = 0 V) (1/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 10, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), g: PIM and POM numbers (g = 0, 1)

2. fmck: Serial array unit operating clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

<R> (4) Communication between devices at same potential (CSI mode)

(slave mode, SCKp ... External clock input) (2/2)

Parameter	Symbo	(Conditions	HS'	Note 1	LS	lote 2	LV N	lote 3	Unit
	I			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SIp setup time (to SCKp↑) ^{Note 4}	t _{SIK2}	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	1/f _{мск} +20		1/f _{мск} +30		1/f _{мск} +30		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	1/f _{мск} +30		1/f _{MCK} +30		1/f _{мск} +30		ns
		$1.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	1/f _{мск} +40		1/f _{мск} +40		1/f _{мск} +40		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	—		1/f _{мск} +40		1/f _{мск} +40		ns
SIp hold time (from SCKp↑) ^{Note 4}	t _{KSI2}	$1.8 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	1/f _{мск} +31		1/f _{мск} +31		1/f _{мск} +31		ns
		$1.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	1/f _{мск} +250		1/f _{MCK} +250		1/f _{мск} +250		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	—		1/f _{MCK} +250		1/f _{мск} +250		ns
SCKp↓ to SOp	t _{KSO2}	C = 30 pF Note 6	$2.7V \le V_{DD} \le 5.5V$		2/f _{MCK} +44		2/f _{МСК} +110		2/f _{MCK} +110	ns
output ^{Note 5}			$2.4V \le V_{DD} \le 5.5V$		2/f _{MCK} +75		2/f _{мск} +110		2/f _{MCK} +110	ns
			$1.8V \le V_{DD} \le 5.5V$		2/f _{MCK} +110		2/f _{мск} +110		2/f _{MCK} +110	ns
			$1.7V \le V_{DD} \le 5.5V$		2/f _{MCK} +220		2/f _{мск} +220		2/f _{MCK} +220	ns
			$1.6V \le V_{DD} \le 5.5V$		_		2/f _{мск} +220		2/f _{MCK} +220	ns

(TA = -40 to +85°C, 1.6 V \leq Vdd \leq 5.5 V, Vss = 0 V) (2/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- **4.** This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp \downarrow .
- 5. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp¹.
- 6. C is the load capacitance of the SOp output line.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 10, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), g: PIM and POM numbers (g = 0, 1)

2. fMCK: Serial array unit operating clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

CSI mode connection diagram (during communication between devices with the same voltage)

CSI mode serial transfer timing (during communication between devices with the same voltage) (when DAPmn = 0 and CKPmn = 0 or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (during communication between devices with the same voltage) (when DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0)

Remarks 1. p: CSI number (p = 00, 10, 20, 21)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

<R> (5) Communication between devices at same potential (simplified I²C mode) (1/2)

Parameter	Symbol	Conditions	HS	Note 1	LS	lote 2	LV	Note 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	f _{SCL}	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$		1000		400		400	kHz
		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$		Note 4		Note 4		Note 4	
		$1.8~V \leq V_{DD} \leq 5.5~V,$		400		400		400	kHz
		$Cb = 100 \text{ pF}, Rb = 3 \text{ k}\Omega$		Note 4		Note 4		Note 4	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V},$		300		300		300	kHz
		$Cb = 100 \text{ pF}, Rb = 5 \text{ k}\Omega$		Note 4		Note 4		Note 4	
		$1.7 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$		250		250		250	kHz
		$Cb = 100 \text{ pF}, Rb = 5 \text{ k}\Omega$		Note 4		Note 4		Note 4	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$		-		250		250	kHz
		$Cb = 100 \text{ pF}, Rb = 5 \text{ k}\Omega$				Note 4		Note 4	
Hold time	t _{LOW}	$2.7~V \leq V_{DD} \leq 5.5~V,$	475		1150		1150		ns
when SCLr = L		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$1.8~V \leq V_{DD} \leq 5.5~V,$	1150		1150		1150		ns
		$Cb = 100 \text{ pF}, Rb = 3 \text{ k}\Omega$							
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V},$	1550		1550		1550		ns
		$Cb = 100 \text{ pF}, Rb = 5 \text{ k}\Omega$							
		$1.7 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$	1850		1850		1850		ns
		$Cb = 100 \text{ pF}, Rb = 5 \text{ k}\Omega$							
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$	—		1850		1850		ns
		$Cb = 100 \text{ pF}, Rb = 5 \text{ k}\Omega$							
Hold time	t _{HIGH}	$2.7~V \leq V_{DD} \leq 5.5~V,$	475		1150		1150		ns
when SCLr = H		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$1.8~V \leq V_{DD} \leq 5.5~V,$	1150		1150		1150		ns
		$Cb = 100 \text{ pF}, Rb = 3 \text{ k}\Omega$							
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V},$	1550		1550		1550		ns
		$Cb = 100 \text{ pF}, Rb = 5 \text{ k}\Omega$							
		$1.7 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$	1850		1850		1850		ns
		$Cb = 100 \text{ pF}, Rb = 5 \text{ k}\Omega$							
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$	—		1850		1850		ns
		$Cb = 100 \text{ pF}, Rb = 5 \text{ k}\Omega$							

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. The value must also be $f_{CLK}/4$ or lower.

(Caution are listed on the next page, and Remarks are listed on the page after the next page.)

<R> (5) Communication between devices at same potential (simplified I²C mode) (2/2)

Parameter	Symbol	Conditions	HS™	Note 1	LS	lote 2	LV	lote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time	t _{SU:DAT}	$2.7~V \leq V_{DD} \leq 5.5~V,$	1/f _{MCK}		1/f _{MCK}		1/f _{MCK}		ns
(for reception)		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	+85 Note 4		+145 Note 4		+145 Note 4		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	1/f _{MCK}		1/f _{MCK}		1/f _{MCK}		ns
		$Cb = 100 \text{ pF}, \text{Rb} = 3 \text{ k}\Omega$	+145 Note 4		+145 Note 4		+145 Note 4		
		1.8 V \leq V _{DD} < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1/f _{MCK} +230 Note 4		1/f _{MCK} +230 Note 4		1/f _{MCK} +230 Note 4		ns
		$1.7 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ Cb = 100 pF, Rb = 5 k Ω	1/f _{MCK} +290 Note 4		1/f _{MCK} +290 Note 4		1/f _{MCK} +290 Note 4		ns
		1.6 V \leq V _{DD} < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	_		1/f _{MCK} +290 Note 4		1/f _{MCK} +290 Note 4		ns
Data hold time (for transmission)	t _{HD:DAT}	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	0	305	0	305	0	305	ns
		1.8 V \leq V _{DD} \leq 5.5 V, Cb = 100 pF, Rb = 3 kΩ	0	355	0	355	0	355	ns
		1.8 V \leq V _{DD} < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns
		1.7 V \leq V _{DD} < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V},$ $Cb = 100 \text{ pF}, \text{Rb} = 5 \text{ k}\Omega$	-	-	0	405	0	405	ns

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V) (2/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Set the fMCK value so as not to exceed the hold time when SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Simplified I²C connection diagram (during communication between devices at same potential)

Simplified I²C mode serial transfer timing (during communication between devices at same potential)

Remarks 1. Rb $[\Omega]$: Communication line (SDAr) pull-up resistance,

Cb [F]: Communication line (SDAr, SCLr) load capacitance

2. r: IIC number (r = 00, 10, 20), g: PIM number (g = 0, 1), h: POM number (h = 0, 1)

3. fmck: Serial array unit operating clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00 to 03, 10, 11)

<R> (6) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (UART mode) (output from dedicated baud rate generator) (1/2)

Paramete	Symbo		Conditions	HS '	Note 1	LS	lote 2	LV	lote 3	Unit
r	I			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 4}		Reception	$\begin{array}{l} 4.0V \leq V_{DD} \leq 5.5V,\\ 2.7 \underline{V} \leq Vb \leq 4.0V \end{array}$		f _{MCK} /6		f _{мск} /6		f _{мск} /6	bps
			Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}^{Note 7}$		5.3		1.3		0.6	Mbps
			$\begin{array}{l} 2.7 V \leq V_{DD} < 4.0 V, \\ 2.3 V \leq Vb \leq 2.7 V \end{array}$		f _{MCK} /6		f _{MCK} /6		f _{мск} /6	bps
			Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}^{Note 7}$		5.3		1.3		0.6	Mbps
			$\begin{array}{l} 1.8V \leq V_{\text{DD}} < 3.3V, \\ 1.6V \leq Vb \leq 2.0V \end{array} \label{eq:VDD}$		f _{мск} /6		f _{MCK} /6		f _{мск} /6	bps
			Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}^{Note 7}$		5.3 Note 6		1.3		0.6	Mbps

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Transfer rate in the SNOOZE mode is 4,800 bps.
- 5. Specify a value so as to satisfy $V_{DD} \ge Vb$.
- 6. The following conditions are also required for low voltage interface.
 - $2.4~\text{V} \leq \text{V}_\text{DD}$ < 2.7 V: MAX. 2.6 Mbps
 - $1.8~\text{V} \leq \text{V}_\text{DD}$ < 2.4 V: MAX. 1.3 Mbps
- **7.** f_{CLK} in each operating mode is as below.
 - HS (high-speed main) mode: f_{CLK} = 32 MHz
 - LS (low-speed main) mode: $f_{CLK} = 8 \text{ MHz}$
 - LV (low-voltage main) mode: f_{CLK} = 4 MHz

(Caution and Remarks are listed on the next page.)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remarks 1. Vb [V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM numbers (g = 0, 1)
 - **3.** fмск: Serial array unit operating clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - 4. The AC characteristics of serial array units communicating with a device at different potential in UART mode is observed at V_{IH} and V_{IL} below.
 4.0 V ≤ V_{DD} ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V: V_{IH} = 2.2 V, V_{IL} = 0.8 V
 2.7 V ≤ V_{DD} < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V: V_{IH} = 2.0 V, V_{IL} = 0.5 V
 - 1.8 V \leq Vdd < 3.3 V, 1.6 V \leq Vb \leq 2.0 V: Vih = 1.5 V, Vil = 0.32 V
 - 5. UART2 cannot communicate with a device at different potential when bit 1 (PIOR1) of the peripheral I/O redirection register (PIOR) is 1.

<R> (6) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (UART mode) (output from dedicated baud rate generator) (2/2)

Paramete	Symbo		Conditions	HS	Note 1	LS'	Note 2	LV	Note 3	Unit
r	I			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmissio n	$\begin{array}{l} 4.0 V \leq V_{\text{DD}} \leq 5.5 V, \\ 2.7 V \leq V b \leq 4.0 V \end{array}$		Note 4		Note 4		Note 4	bps
			Theoretical value of the maximum transfer rate: Cb = 50 pF, $Rb = 1.4 \text{ k}\Omega,$ Vb = 2.7 V		2.8 Note 5		2.8 Note 5		2.8 Note 5	Mbps
			$\begin{array}{l} 2.7V \leq V_{DD} < 4.0V, \\ 2.3V \leq Vb \leq 2.7V \end{array}$		Note 7		Note 7		Note 7	bps
			Theoretical value of the maximum transfer rate: Cb = 50 pF, Rb = 2.7 k Ω , Vb = 2.3 V		1.2 Note 8		1.2 Note 8		1.2 Note 8	Mbps
			$\begin{split} 1.8 V &\leq V_{DD} < 3.3 V, \\ 1.6 V &\leq Vb \leq 2.0 V^{\text{Note 5}} \end{split}$		Note 9		Note 9		Note 9	bps
			Theoretical value of the maximum transfer rate: Cb = 50 pF, $Rb = 5.5 \text{ k}\Omega,$ Vb = 1.6 V		0.43 Note 10		0.43 Note 10		0.43 Note 10	Mbps

(TA = -40 to +85°C, 1.8 V \leq Vdd \leq 5.5 V, Vss = 0 V) (2/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. The smaller value derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$, $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-Cb \times Rb \times \ln (1 - \frac{2.2}{Vb})\} \times 3}$$
Baud rate error
(theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-Cb \times Rb \times \ln (1 - \frac{2.2}{Vb})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

(Other Notes and Caution are listed on the next page.)

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- 6. Specify a value so as to satisfy $V_{DD} \ge Vb$.
- 7. The smaller value derived by using fMck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V, 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-Cb \times Rb \times \ln (1 - \frac{2.0}{Vb})\} \times 3}$$
Baud rate error
(theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-Cb \times Rb \times \ln (1 - \frac{2.0}{Vb})\}}{(\frac{1}{(Transfer rate}) \times Number of transferred bits} \times 100[\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- 9. The smaller value derived by using fMck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq V_{DD} \leq 3.3 V, 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate
$$\frac{1}{\left\{-Cb \times Rb \times \ln\left(1 - \frac{1.5}{Vb}\right)\right\} \times 3}$$
Baud rate error
(theoretical value)
$$= \frac{\frac{1}{\left[\frac{1}{Transfer rate \times 2} - \left\{-Cb \times Rb \times \ln\left(1 - \frac{1.5}{Vb}\right)\right\}\right]}{\left(\frac{1}{Transfer rate}\right) \times Number of transferred bits} \times 100[\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 10. This value as an example is calculated when the conditions described in the Conditions column are met. See Note 9 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

UART mode connection diagram (during communication between devices at different potential)

UART mode bit width (during communication between devices at different potential) (reference)

- **Remarks 1.** Rb [Ω]: Communication line (TxDq) pull-up resistance, Cb [F]: Communication line (TxDq) load capacitance, Vb [V]: Communication line voltage
 - 2. q: UART number (q = 0 to 2), g: PIM and POM numbers (g = 0, 1)
 - 3. fMCK: Serial array unit operating clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

- m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
- The AC characteristics of serial array units communicating with a device at different potential in UART mode is observed at V_{IH} and V_{IL} below.

 $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$: $\text{V}_{\text{IH}} = 2.2 \text{ V}, \text{V}_{\text{IL}} = 0.8 \text{ V}$

 $2.7~\text{V} \leq \text{V}\text{dd}$ < $4.0~\text{V},~2.3~\text{V} \leq \text{V}\text{b} \leq 2.7~\text{V}\text{:}$ Vih = 2.0~V,~Vil = 0.5~V

1.8 V \leq Vdd < 3.3 V, 1.6 V \leq Vb \leq 2.0 V: Vih = 1.5 V, Vil = 0.32 V

5. UART2 cannot communicate with a device at different potential when bit 1 (PIOR1) of the peripheral I/O redirection register (PIOR) is 1.

<R> (7) Communication between devices at different potential (2.5 V or 3 V) (CSI mode) (master mode, SCKp ... internal clock output corresponding CSI00 only) (1/2)

Parameter	Symbol	Conditions	HS	Note 1	LS	lote 2	LV	lote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq Vb \leq 4.0 \; V, \\ Cb = 20 \; pF, \; Rb = 1.4 \; k\Omega, \\ t_{KCY1} \geq 2/f_{CLK} \end{array}$	200		1150		1150		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq Vb \leq 2.7 \; V, \\ Cb = 20 \; pF, \; Rb = 2.7 \; k\Omega, \\ t_{KCY1} \geq 2/f_{CLK} \end{array}$	300		1150		1150		-
SCKp high level width	tкнı	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \\ 2.7 \; V \leq Vb \leq 4.0 \; V, \\ \mathbf{Cb} = 20 \; pF, \; Rb = 1.4 \; k\Omega \end{array}$	tксү1/2 -50		tксү1/2 -50		tксү1/2 -50		ns
		2.7 V \leq V _{DD} < 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 2.7 k Ω	tксү1/2 -120		tксү1/2 -120		tксү1/2 -120		
SCKp low level width	tĸ∟ı	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq Vb \leq 4.0 \; V, \\ Cb = 20 \; pF, \; Rb = 1.4 \; k\Omega \end{array}$	tксү1/2 -7		tксү1/2 -50		tксү1/2 -50		ns
		2.7 V \leq V _{DD} < 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 2.7 k Ω	tксү1/2 -10		tксү1/2 -50		tксү1/2 -50		
SIp setup time (to SCKp↑) ^{Note 4}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ \text{V}, \\ 2.7 \ \text{V} \leq \text{Vb} \leq 4.0 \ \text{V}, \\ \text{Cb} = 20 \ \text{pF}, \ \text{Rb} = 1.4 \ \text{k}\Omega \end{array}$	58		479		479		ns
		2.7 V \leq V _{DD} < 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 2.7 k Ω	121		479		479		
SIp hold time (from SCKp [↑]) ^{Note 4}	tĸsıı	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; \text{V}, \\ 2.7 \; \text{V} \leq \text{Vb} \leq 4.0 \; \text{V}, \\ \text{Cb} = 20 \; \text{pF}, \; \text{Rb} = 1.4 \; \text{k}\Omega \end{array}$	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq Vb \leq 2.7 \ V, \\ Cb = 20 \ pF, \ Rb = 2.7 \ k\Omega \end{array}$	10		10		10		
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \\ 2.7 \; V \leq Vb \leq 4.0 \; V, \\ \text{Cb} = 20 \; \text{pF}, \; \text{Rb} = 1.4 \; \text{k}\Omega \end{array}$		60		60		60	ns
		$2.7 V \le V_{DD} < 4.0 V,$ $2.3 V \le Vb \le 2.7 V,$ $Cb = 20 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$		130		130		130	

(TA = -40 to +85°C, 2.7 V \leq Vdd \leq 5.5 V, Vss = 0 V) (1/2)

(Notes are listed on the next page.)

<R> (7) Communication between devices at different potential (2.5 V or 3 V) (CSI mode) (master mode, SCKp ... internal clock output corresponding CSI00 only) (2/2)

Parameter	Symbol	Conditions	HS'	Note 1	LS Note 2		LV Note 3		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time	tsiĸ1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	23		110		110		ns
(to SCKp↓) ^{Note 5}		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$							
		$Cb = 20 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$	33		110		110		
		$2.3 V \le Vb \le 2.7 V$,							
		$Cb = 20 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
SIp hold time	t _{KSI1}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	10		10		10		ns
(from SCKp↓) ^{Note 5}		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$							
		$Cb = 20 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$							
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V},$	10		10		10		
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V},$							
		$Cb = 20 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
Delay time	t kso1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$		10		10		10	ns
from SCKp↑ to SOp		$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V},$							
output Note 5		$Cb = 20 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$							
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V},$		10		10		10	
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V},$							
		$Cb = 20 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							

(TA = -40 to +85°C, 2.7 V \leq Vdd \leq 5.5 V, Vss = 0 V) (2/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 5. This indicates the time when DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Rb [Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM numbers (g = 1)
 - 3. The AC characteristics of serial array units communicating with a device at different potential in CSI mode is observed at V_{IH} and V_{IL} below.

4.0 V \leq Vdd \leq 5.5 V, 2.7 V \leq Vb \leq 4.0 V: Vih = 2.2 V, Vil = 0.8 V

 $2.7~\text{V} \leq \text{V}\text{dd}$ < $4.0~\text{V},~2.3~\text{V} \leq \text{V}\text{b} \leq 2.7~\text{V}\text{:}$ Vih = 2.0~V,~Vil = 0.5~V

<R> (8) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (CSI mode) (master mode, SCKp ... internal clock output) (1/2)

Parameter	Symbol	Conditions	HS	lote 1	LS	lote 2	LV	lote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	300		1150		1150		ns
		$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V},$							
		$Cb = 30 \text{ pF}, Rb = 1.4 \text{ k}\Omega$							
		tĸcy1 ≥ 4/fclĸ							_
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V},$	500		1150		1150		
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V},$							
		$Cb = 30 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		tĸcyı ≥ 4/fclĸ							_
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	1150		1150		1150		
		1.6 V \leq Vb \leq 2.0 V, ^{Note 4}							
		$Cb = 30 \text{ pF}, Rb = 5.5 \text{ k}\Omega$							
		t _{KCY1} ≥ 4/fcLK							
SCKp	t ĸн1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		ns
high level width		$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V},$	-75		-75		-75		
		$Cb = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$							_
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V},$	-170		-170		-170		
		$Cb = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		
		1.6 V \leq Vb \leq 2.0 V, ^{Note 4}	-458		-458		-458		
		$Cb = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega$							
SCKp	t ĸ∟1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		ns
low level width		$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V},$	-12		-50		-50		
		$Cb = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$							
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		
		$2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$	-18		-50		-50		
		$Cb = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		
		1.6 V \leq Vb \leq 2.0 V, ^{Note 4}	-50		-50		-50		
		Cb = 30 pF, Rb = 5.5 k Ω							

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes, Caution and Remarks are listed on the next page.)

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - 4. Specify a value so as to satisfy $V_{DD} \ge Vb$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Rb [Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 10, 20), g: PIM and POM numbers (g = 0, 1)
 - The AC characteristics of serial array units communicating with a device at different potential in CSI mode is observed at V_{IH} and V_{IL} below.

 $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}: \text{Vih} = 2.2 \text{ V}, \, \text{Vil} = 0.8 \text{ V}$

 $2.7~\text{V} \leq \text{V}_{\text{DD}}$ < $4.0~\text{V},~2.3~\text{V} \leq \text{Vb} \leq 2.7~\text{V}\text{:}$ Vih = 2.0~V,~Vil = 0.5~V

1.8 V \leq Vdd < 3.3 V, 1.6 V \leq Vb \leq 2.0 V: Vih = 1.5 V, Vil = 0.32 V

4. CSI21 cannot communicate with a device at different potential. Use other CSI channels for communication between devices at different potential.

<R> (8) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (CSI mode) (master mode, SCKp ... internal clock output) (2/2)

Parameter	Symbol	Conditions	HS	Note 1	LS'	Note 2	LV	Note 3	Unit
			MIN	MAX	MIN	MAX	MIN	MAX	
SIp setup time	t _{SIK1}	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$	81		479		479		ns
(to SCKp↑) ^{Note 4}		Cb = 30 pF, Rb = 1.4 kΩ							
		$2.7 \text{ V} \le \text{V}_{\text{DD}}$ < 4.0 V, 2.3 V \le Vb \le 2.7 V,	177		479		479		ns
		Cb = 30 pF, Rb = 2.7 kΩ							
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}, ^{\text{Note 6}}$	479		479		479		ns
		Cb = 30 pF, Rb = 5.5 kΩ							
SIp hold time	t _{KSI1}	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$	19		19		19		ns
(from SCKp^) $^{\rm Note \ 4}$		Cb = 30 pF, Rb = 1.4 kΩ							
		$2.7 \text{ V} \le \text{V}_{\text{DD}}$ < 4.0 V, 2.3 V \le Vb \le 2.7 V,	19		19		19		ns
		Cb = 30 pF, Rb = 2.7 kΩ							
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}, \ ^{\text{Note 6}}$	19		19		19		ns
		Cb = 30 pF, Rb = 5.5 kΩ							
Delay time	t _{KSO1}	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$		100		100		100	ns
from SCKp↓ to		Cb = 30 pF, Rb = 1.4 kΩ							
SOp output Note 4		$2.7 \text{ V} \le \text{V}_{\text{DD}}$ < 4.0 V, 2.3 V \le Vb \le 2.7 V,		195		195		195	ns
		Cb = 30 pF, Rb = 2.7 kΩ							
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}, ^{\text{Note 6}}$		483		483		483	ns
		Cb = 30 pF, Rb = 5.5 kΩ							
SIp setup time	t _{SIK1}	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$	44		110		110		ns
(to SCKp \downarrow) ^{Note 5}		Cb = 30 pF, Rb = 1.4 kΩ							
		$2.7 \text{ V} \le \text{V}_{\text{DD}}$ < 4.0 V, 2.3 V \le Vb \le 2.7 V,	44		110		110		ns
		Cb = 30 pF, Rb = 2.7 kΩ							
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}, ^{\text{Note 6}}$	110		110		110		ns
		Cb = 30 pF, Rb = 5.5 kΩ							
SIp hold time	t _{KSI1}	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$	19		19		19		ns
(from SCKp \downarrow) ^{Note 5}		Cb = 30 pF, Rb = 1.4 kΩ							
		$2.7 \text{ V} \le \text{V}_{\text{DD}}$ < 4.0 V, 2.3 V \le Vb \le 2.7 V,	19		19		19		ns
		Cb = 30 pF, Rb = 2.7 kΩ							
		1.8 V \leq V_{DD} < 3.3 V, 1.6 V \leq Vb \leq 2.0 V, $^{Note~6}$	19		19		19		ns
		Cb = 30 pF, Rb = 5.5 kΩ							
Delay time	t _{KSO1}	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$		25		25		25	ns
from SCKp↑ to		Cb = 30 pF, Rb = 1.4 kΩ							
SOp output Note 5		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$		25		25		25	ns
		Cb = 30 pF, Rb = 2.7 kΩ							
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \ 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}, ^{\text{Note 6}}$		25		25		25	ns
		Cb = 30 pF, Rb = 5.5 kΩ							

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V) (2/2)

(Notes, Caution and Remarks are listed on the next page.)

- Notes 1. HS is condition of HS (high-speed main) mode.
 - 2. LS is condition of LS (low-speed main) mode.
 - 3. LV is condition of LV (low-voltage main) mode.
 - 4. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 5. This indicates the time when DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0.
 - **6.** Specify a value so as to satisfy $V_{DD} \ge Vb$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication between devices at different potential)

- **Remarks 1.** Rb [Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 10, 20), g: PIM and POM numbers (g = 0, 1)
 - 3. The AC characteristics of serial array units communicating with a device at different potential in CSI mode is observed at V_{IH} and V_{IL} below.
 - 4.0 V \leq VDD \leq 5.5 V, 2.7 V \leq Vb \leq 4.0 V: Vih = 2.2 V, ViL = 0.8 V
 - $2.7~\text{V} \leq \text{V}\text{dd}$ < $4.0~\text{V},~2.3~\text{V} \leq \text{V}\text{b} \leq 2.7~\text{V}\text{:}$ Vih = 2.0~V,~Vil = 0.5~V
 - 1.8 V \leq VDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V: VIH = 1.5 V, VIL = 0.32 V
 - 4. CSI21 cannot communicate with a device at different potential. Use other CSI channels for communication between devices at different potential.

CSI mode serial transfer timing: master mode (during communication between devices at different potential) (when DAPmn = 0 and CKPmn = 0 or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing: master mode (during communication between devices at different potential) (when DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0)

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 10, 20), g: PIM and POM numbers (g = 0, 1)
 - **2.** CSI21 cannot communicate with a device at different potential. Use other CSI channels for communication between devices at different potential.

<R> (9) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (CSI mode) (slave mode, SCKp ... External clock input) (1/2)

Parameter	Symbol		Conditions	HS	HS Note 1		LS Note 2		LV Note 3	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp	t _{KCY2}	4.0	$V \leq V_{DD} \leq 5.5 V$,							
cycle time Note 4	Ļ	2.7	$V \le Vb \le 4.0 V$							
			24 MHz < fмск	14/fмск		_		_		ns
			20 MHz < fмск ≤ 24 MHz	12/fмск		_		_		ns
			8 MHz < fмск ≤ 20 MHz	10/ f мск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	8/f мск		16/ f мск		—		ns
			fмск ≤ 4 MHz	6/f мск		10/ f мск		10/ f мск		ns
		2.7	$V \leq V_{DD} < 4.0 V,$							
		2.3	√ ≤ Vb ≤ 2.7 V							
			24 MHz < fмск	20/ f мск		_		_		ns
			20 MHz < fмск ≤ 24 MHz	16/fмск		_		_		ns
			16 MHz < fмск ≤ 20 MHz	14/ f мск		_		_		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		1.8	$V \leq V_{DD} < 3.3 V,$							
		1.6	$V \le Vb \le 2.0 V^{Note 5}$		Γ	1	1	1	Γ	
			24 MHz < fмск	48/f мск		—		—		ns
			20 MHz < fмск ≤ 24 MHz	36/f мск		—		—		ns
			16 MHz < fмск ≤ 20 MHz	32/ f мск				_		ns
			8 MHz < fмск ≤ 16 MHz	26/ f мск				—		ns
			4 MHz < fмск ≤ 8 MHz	16/ f мск		16/fмск		_		ns
			$f_{MCK} \le 4 MHz$	10/ f мск		10/ f мск		10/ f мск		ns

(TA = -40 to +85°C, 1.8 V \leq Vdd \leq 5.5 V, Vss = 0 V) (1/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- 5. Specify a value so as to satisfy $V_{DD} \ge Vb$.
- **Caution** Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

<R> (9) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (CSI mode) (slave mode, SCKp ... External clock input) (2/2)

Parameter	Symbol	Conditions	HS⁵	lote 1	LS	lote 2	LVN	lote 3	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp	t кн2,	$4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V},$	tксү2/2		tксү2/2		t ксү2/2		ns
high-level width	t KL2	$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}$	-12		-50		-50		
low-level width		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$	t ксү2/2		t ксү2/2		tксү2/2		ns
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}$	-18		-50		-50		
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	t ксү2/2		t ксү2/2		t ксү2/2		ns
		$1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}^{\text{Note 4}}$	-50		-50		-50		
SIp setup time (to SCKp↑) ^{Note 5}	tsik2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	1/fмск		1/fмск		1/fмск		ns
		$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}$	+20		+30		+30		
		$2.7 \text{ V} \leq V_{\text{DD}} \leq 4.0 \text{ V},$	1/fмск		1/fмск		1/fмск		ns
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}$	+20		+30		+30		
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	1/fмск		1/fмск		1/fмск		ns
		$1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}^{\text{Note 4}}$	+30		+30		+30		
SIp hold time	tksi2		1/fмск		1/ f мск		1/fмск		ns
(from SCKp↑) ^{Note 5}			+31		+31		+31		
Delay time	t kso2	$4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V},$		2/fмск		2/ f мск		2/fмск	ns
from SCKp↓		$2.7 V \le Vb \le 4.0 V,$		+120		+573		+573	
to SOp output Note 6		$Cb = 30 \text{ pF}, Rb = 1.4 \text{ k}\Omega$							
		$2.7 \text{ V} \leq V_{\text{DD}} \leq 4.0 \text{ V},$		2/fмск		2/ f мск		2/fмск	ns
		$2.3 V \le Vb \le 2.7 V$,		+214		+573		+573	
		Cb = 30 pF, Rb = 2.7 kΩ							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$		2/f мск		2/f мск		2/fмск	ns
		1.6 V \leq Vb \leq 2.0 V ^{Note 4} ,		+573		+573		+573	
		$Cb = 30 \text{ pF}, Rb = 5.5 \text{ k}\Omega$							

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V) (2/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Specify a value so as to satisfy $V_{DD} \ge Vb$.
- **5.** This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp \downarrow .
- 6. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp↑.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication between devices at different potential)

- **Remarks 1.** Rb [Ω]: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance, Vb [V]: Communication line voltage
 - p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 10, 20), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operating clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10, 20))
 - 4. The AC characteristics of serial array units communicating with a device at different potential in CSI mode is observed at VIH and VIL below.

 $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$: $\text{V}_{\text{IH}} = 2.2 \text{ V}, \text{V}_{\text{IL}} = 0.8 \text{ V}$

 $2.7~\text{V} \leq \text{V}\text{dd}$ < $4.0~\text{V},\,2.3~\text{V} \leq \text{V}b \leq 2.7~\text{V}\text{:}$ Vih = $2.0~\text{V},\,\text{V}\text{il}$ = 0.5~V

1.8 V \leq VDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V: VIH = 1.5 V, VIL = 0.32 V

5. CSI01, CSI11, and CSI21 cannot communicate with a device at different potential. Use other CSI channels for communication between devices at different potential.

CSI mode serial transfer timing: slave mode (during communication between devices at different potential) (when DAPmn = 0 and CKPmn = 0 or DAPmn = 1 and CKPmn = 1)

- **Remarks 1.** p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 10, 20), g: PIM and POM numbers (g = 0, 1)
 - **2.** CSI21 cannot communicate with a device at different potential. Use other CSI channels for communication between devices at different potential.

<R> (10) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (simplified I²C mode) (1/2)

Parameter	Symbol	Conditions	HS	Note 1	LS	Note 2	LV Note 3		Uni
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock	f _{SCL}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$		1000		300 Note 4		300 Note 4	kHz
frequency		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$		Note 4					
		$Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$2.7~V \leq V_{DD} \leq 4.0~V,$		1000		300 Note 4		300 Note 4	kH
		$2.3 V \le Vb \le 2.7 V$,		Note 4					
		$Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$		400 Note 4		300 Note 4		300 Note 4	kH
		$2.7 V \le Vb \le 4.0 V$,							
		$Cb = 100 \text{ pF}, Rb = 2.8 \text{ k}\Omega$							
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{ V},$		400 Note 4		300 Note 4		300 Note 4	kH
		$2.3 V \le Vb \le 2.7 V$,							
		$Cb = 100 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$		300 Note 4		300 Note 4		300 Note 4	kH
		$1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}^{\text{Note 5}},$							
		$Cb = 100 \text{ pF}, Rb = 5.5 \text{ k}\Omega$							
Hold time	t _{LOW}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	475		1550		1550		ns
when SCLr = L		$2.7 V \le Vb \le 4.0 V$,							
		$Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$2.7~V \leq V_{DD} \leq 4.0~V,$	475		1550		1550		ns
		$2.3 V \le Vb \le 2.7 V$,							
		$Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	1150		1550		1550		ns
		$2.7 V \le Vb \le 4.0 V$,							
		$Cb = 100 \text{ pF}, Rb = 2.8 \text{ k}\Omega$							
		$2.7~V \leq V_{DD} \leq 4.0~V,$	1150		1550		1550		ns
		$2.3 V \le Vb \le 2.7 V$,							
		$Cb = 100 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	1550		1550		1550		ns
		$1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}^{\text{Note 5}},$							
		$Cb = 100 \text{ pF}, Rb = 5.5 \text{ k}\Omega$							
Hold time	t _{HIGH}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	245		610		610		ns
when SCLr = H		$2.7 V \le Vb \le 4.0 V$,							
		$Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$2.7 \text{ V} \leq V_{\text{DD}} \leq 4.0 \text{ V},$	200		610		610		ns
		$2.3 V \le Vb \le 2.7 V$,							
		$Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$4.0~V \leq V_{DD} \leq 5.5~V,$	675		610		610		ns
		$2.7 V \le Vb \le 4.0 V$,							
		$Cb = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega$							
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{ V},$	600		610		610		ns
		$2.3 V \leq Vb \leq 2.7 V$,							
		$Cb = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	610		610		610		ns
		$1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}^{\text{Note 5}},$							
		Cb = 100 pF, Rb = 5.5 kΩ							

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes are listed on the next page.)

<R> (10) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (simplified I²C mode) (2/2)

Parameter	Symbol	Conditions	HS	lote 1	LS	lote 2	LV Note 3		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (for reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5V, \\ 2.7 \; V \leq Vb \leq 4.0 \; V, \\ Cb = 50 \; pF, \; Rb = 2.7 \; k\Omega \end{array}$	1/f _{MCK} +135 Note 6		1/f _{MCK} +190 Note 6		1/f _{MCK} +190 Note 6		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 4.0 \; V, \\ 2.3 \; V \leq Vb \leq 2.7 \; V, \\ Cb = 50 \; pF, \; Rb = 2.7 \; k\Omega \end{array}$	1/f _{MCK} +135 Note 6		1/f _{MCK} +190 Note 6		1/f _{MCK} +190 Note 6		ns
		$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq Vb \leq 4.0 \; V, \\ Cb = 100 \; pF, \; Rb = 2.8 \; k\Omega \end{array}$	1/f _{MCK} +190 Note 6		1/f _{MCK} +190 Note 6		1/f _{MCK} +190 Note 6		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 4.0 \; V, \\ 2.3 \; V \leq Vb \leq 2.7 \; V, \\ Cb = 100 \; pF, \; Rb = 2.7 \; k\Omega \end{array}$	1/f _{MCK} +190 Note 6		1/f _{MCK} +190 Note 6		1/f _{MCK} +190 Note 6		ns
		$ \begin{split} & 1.8 \; V \leq V_{DD} < 3.3 \; V, \\ & 1.6 \; V \leq Vb \leq 2.0 \; V^{\text{Note 5}}, \\ & Cb = 100 \; pF, \; Rb = 5.5 \; k\Omega \end{split} $	1/f _{MCK} +190 Note 6		1/f _{MCK} +190 Note 6		1/f _{MCK} +190 Note 6		ns
Data hold time (for transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 V, \\ 2.7 \; V \leq Vb \leq 4.0 \; V, \\ Cb = 50 \; pF, \; Rb = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 4.0 \; V, \\ 2.3 \; V \leq Vb \leq 2.7 \; V, \\ Cb = 50 \; pF, \; Rb = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq Vb \leq 4.0 \; V, \\ Cb = 100 \; pF, \; Rb = 2.8 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 4.0 \; V, \\ 2.3 \; V \leq Vb \leq 2.7 \; V, \\ Cb = 100 \; pF, \; Rb = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$ \begin{split} & 1.8 \; V \leq V_{DD} < 3.3 \; V, \\ & 1.6 \; V \leq Vb \leq 2.0 \; V^{ \text{Note 5}}, \\ & Cb = 100 \; pF, \; Rb = 5.5 \; k\Omega \end{split} $	0	405	0	405	0	405	ns

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V) (2/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. The value must also be $f_{CLK}/4$ or lower.
- **5.** Specify a value so as to satisfy $V_{DD} \ge Vb$.
- 6. Set the fMCK value so as not to exceed the hold time when SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication between devices at different potential)

Simplified I²C mode serial transfer timing (during communication between devices at different potential)

- **Remarks 1.** Rb [Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10, 20), g: PIM and POM numbers (g = 0, 1)
 - **3.** fMCK: Serial array unit operating clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 01, 02, 10))

5. 2. 5 Analog block characteristics

5. 2. 5. 1 A/D converter characteristics

<r></r>	Division of A/D Converte	er Characteristics		
	Reference voltage	Reference voltage (+) = AVREFP	Reference voltage (+) = AVDD	Reference voltage (+)
		Reference voltage (-) = AVREFM	Reference voltage (-) = AVss	= Internal refrence voltage
	Input channel			Reference voltage (-) = AVss
	High-accuracy channe;	See 5. 2. 5. 1 (1)	See 5. 2. 5. 1 (3)	See 5. 2. 5. 1 (6)
	ANI0 to ANI4	See 5. 2. 5. 1 (2)		
	(input buffer power supply: AVDD)			
	Normal channel;	See 5. 2. 5. 1 (4)	See 5. 2. 5. 1 (5)	
	ANI16 to ANI18, ANI20 to ANI26,			
	ANI28, ANI30			
	(input buffer power supply: VDD)			
	Internal reference voltage,	See 5. 2. 5. 1 (4)	See 5. 2. 5. 1 (5)	-
	temperature sensor output			

See the section shown above for the electrical specifications depending on both input channel and reference voltage.

<R> (1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI4

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}, \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				12	bit
Overall error ^{Notes 1, 2, 3}	AINL	12-bit resolution		±1.7	±3.3	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	3.375			μs
Zero-scale error ^{Notes 1, 2, 3}	Ezs	12-bit resolution		±1.3	±3.2	LSB
Full-scale error ^{Notes 1, 2, 3}	Efs	12-bit resolution		±0.7	±2.9	LSB
Integral linearity error Notes 1, 2, 3	ILE	12-bit resolution		±1.0	±1.4	LSB
Differential linearity error ^{Notes 1, 2, 3}	DLE	12-bit resolution		±0.9	±1.2	LSB
Analog input voltage	Vain		0		AVREFP	V

- <R> Notes 1. TYP. Value is the average value at AV_{DD} = AV_{REFP} = 3 V and T_A = 25°C. MAX. value is the average value $\pm 3\sigma$ at normalized distribution.
 - 2. These values are the results of characteristic evaluation and are not checked for shipment.
 - 3. Excludes quantization error ($\pm 1/2$ LSB).

<R> Cautions 1. Route the wiring so that noise will not be superimposed on each power line and ground line, and insert a capacitor to suppress noise. In addition, separate the reference voltage line of AVREFP from the other power lines to keep it free from the influences of noise.

2. During A/D conversion, keep a pulse, such as a digital signal, that abruptly changes its level from being input to or output from the pins adjacent to the converter pins and P20 to P27.

<R> (2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI4 (ANI pins that use AVDD as their power source)

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}, \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}}, \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{P}_{\text{SS}} = 0 \text{ V}, \text{P}_{\text{SS}$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~\text{V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~\text{V}$	8		12	bit
			$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	8		10 ^{Note 1}	
			$1.6~V \le AV_{\text{REFP}} \le AV_{\text{DD}} \le 3.6~V$		8 ^{Note 2}		
Overall error ^{Note 3}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	ļ
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
Conversion time	t CONV	ADTYP = 0,	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	3.375			μs
		12-bit resolution					ļ
		ADTYP = 0,	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	6.75			
		10-bit resolution ^{Note 1}					
		ADTYP = 0,	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	13.5			
		8-bit resolution ^{Note 2}					
		ADTYP = 1,	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	2.5625			
		8-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	5.125			
			$1.6~\text{V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~\text{V}$	10.25			
Zero-scale	EZS	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±4.5	LSB
error ^{Notes 3}		10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
Full-scale	EFS	12-bit resolution	$2.4~\text{V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~\text{V}$			±4.5	LSB
error ^{Notes 3}		10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	
Integral linearity	ILE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	LSB
error ^{Note 3}		10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±1.0	
Differential	DLE	12-bit resolution	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	LSB
linearity error ^{Note 3}		10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±1.5]
		8-bit resolution	$1.6 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±1.0	
Analog input voltage	Vain			0		AVREFP	V

Notes 1. The lower 2 bits of the ADCR register cannot be used.

2. The lower 4 bits of the ADCR register cannot be used.

3. Excludes quantization error ($\pm 1/2$ LSB).

<R> (3) When reference voltage (+) = AV_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AV_{SS} (ADREFM = 0), target for conversion: ANI0 to ANI4 (ANI pins that use AV_{DD} as their power source)

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{A}_{\text{V}_{\text{DD}}} \le 3.6 \text{ V}, \text{A}_{\text{V}_{\text{DD}}} \le \text{V}_{\text{DD}}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{A}_{\text{V}_{\text{SS}}} = 0 \text{ V}, \text{reference voltage (+)} = 0 \text{ V}, \text{A}_{\text{V}_{\text{SS}}} = 0 \text{ V}, \text{A}_{\text{SS}} = 0 $
AV _{DD} , reference voltage (-) = AV _{SS} = 0 V)

Parameter	Symbol	Conditions	-	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
			$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$	8		10 ^{Note 1}	
			$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$		8 ^{Note 2}		
Overall error ^{Note 3}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±7.5	LSB
		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±5.5	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.0	
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$	13.5			
		ADTYP = 1, 8-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	2.5625			
			$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$	5.125			
			$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$	10.25			
Zero-scale	EZS	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±6.0	LSB
error ^{Notes 3}		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
Full-scale	EFS	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±6.0	LSB
error ^{Notes 3}		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
Integral linearity	ILE	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.0	LSB
error ^{Note 3}		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±1.5	
Differential	DLE	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	LSB
linearity error ^{Note 3}		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±1.5	
Analog input voltage	Vain			0		AVdd	V

Notes 1. The lower 2 bits of the ADCR register cannot be used.

2. The lower 4 bits of the ADCR register cannot be used.

3. Excludes quantization error ($\pm 1/2$ LSB).

<R> (4) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI16 to ANI18, ANI20 to ANI26, ANI28, and ANI30 (ANI pins that use VDD as their power source), interanal reference voltage, temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{REFP} \le \text{AV}_{DD} \le 3.6 \text{ V}, \text{AV}_{REFP} \le \text{AV}_{DD} \le \text{V}_{DD}, \text{V}_{SS} = 0 \text{ V}, \text{AV}_{SS} = 0 \text{ AV}_{SS} = 0 \text{ AV}_{S$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
			$1.8~\text{V} \leq A\text{V}_{\text{REFP}} \leq A\text{V}_{\text{DD}} \leq 3.6~\text{V}$	8		10 ^{Note 1}	
			$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$		8 ^{Note 2}		
Overall error ^{Note 3}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±7.0	LSB
		10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±5.5	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±3.0	
Conversion time	t CONV	ADTYP = 0,	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$	4.125			μs
		12-bit resolution					
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	57.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	3.3125			
		8-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25			
Zero-scale error ^{Notes 3}	EZS	12-bit resolution	$2.4 \text{ V} \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8~\text{V} \leq A\text{V}_{\text{REFP}} \leq A\text{V}_{\text{DD}} \leq 3.6~\text{V}$			±5.0	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
Full-scale error ^{Notes 3}	EFS	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±5.0	LSB
		10-bit resolution	$1.8~\text{V} \leq A\text{V}_{\text{REFP}} \leq A\text{V}_{\text{DD}} \leq 3.6~\text{V}$			±5.0	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
Integral linearity	ILE	12-bit resolution	$2.4~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±3.0	LSB
error ^{Note 3}		10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±1.5	
Differential linearity	DLE	12-bit resolution	$2.4~\text{V} \leq A\text{V}_{\text{REFP}} \leq A\text{V}_{\text{DD}} \leq 3.6~\text{V}$			±2.0	LSB
error ^{Note 3}		10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	
		8-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq AV_{\text{DD}} \leq 3.6~V$			±1.5	
Analog input voltage	VAIN			0		AVREFP	V
						and	
		-				Vdd	
		Intenal reference volta	age		$V_{BGR}^{Note 4}$		V
		(2.4 V \leq V _{DD} \leq 5.5 V,	HS (high-speed main) mode)				
		Temperature sensor c	output voltage	,	TMPS25 Note	4	V
		(2.4 V \leq V _{DD} \leq 5.5 V,	HS (high-speed main) mode)				

Notes 1. The lower 2 bits of the ADCR register cannot be used.

- 2. The lower 4 bits of the ADCR register cannot be used.
- 3. Excludes quantization error (±1/2 LSB).
- 4. Refer to 5. 2. 5. 2 Temperature sensor, internal reference voltage output characteristics.

<R> (5) When reference voltage (+) = AV_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AV_{SS} (ADREFM = 0), target for conversion: ANI16 to ANI18, ANI20 to ANI26, ANI28, and ANI30 (ANI pins that use V_{DD} as their power source), interanal reference voltage, temperature sensor output voltage

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \text{ 1.6 V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ 1.6 V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}, \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{reference voltage (+)} = 0 \text{ V}, \text{AV}_{\text{SS}} =$
AV _{DD} , reference voltage (-) = AV _{SS} = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	8		12	bit
			$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$	8		10 ^{Note 1}	
			$1.6 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$		8 ^{Note 2}		
Overall error ^{Note 3}	AINL	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±8.5	LSB
		10-bit resolution	$1.8 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	
		8-bit resolution	$1.6 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±3.5	
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$	57.5			
		ADTYP = 1, 8-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$	3.3125			
			$1.8 \text{ V} \leq AV_{DD} \leq 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq AV_{DD} \leq 3.6 \text{ V}$	54.25			
Zero-scale error ^{Notes 3}	EZS	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±8.0	LSB
		10-bit resolution	$1.8~V \le AV_{\text{DD}} \le 3.6~V$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq AV_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	
Full-scale errorNotes 3	EFS	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±8.0	LSB
		10-bit resolution	$1.8~V \le AV_{\text{DD}} \le 3.6~V$			±5.5	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.0	
Integral linearity	ILE	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±3.5	LSB
error ^{Note 3}		10-bit resolution	$1.8~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±1.5	
Differential linearity	DLE	12-bit resolution	$2.4~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.5	LSB
error ^{Note 3}		10-bit resolution	$1.8~V \le AV_{\text{DD}} \le 3.6~V$			±2.5	
		8-bit resolution	$1.6~V \leq AV_{\text{DD}} \leq 3.6~V$			±2.0	
Analog input voltage	VAIN			0		AVDD	V
						and	
						Vdd	
		Intenal reference voltage		VBGR Note 4		V	
		(2.4 V \leq V dd \leq 5.5 V, HS (high-sp	eed main) mode)				
		Temperature sensor output voltag	١	/TMPS25 Note	4	V	
		(2.4 V ≤ Vɒɒ ≤ 5.5 V, HS (high-sp	eed main) mode)				

Notes 1. The lower 2 bits of the ADCR register cannot be used.

- 2. The lower 4 bits of the ADCR register cannot be used.
- **3.** Excludes quantization error ($\pm 1/2$ LSB).
- 4. Refer to 5. 2. 5. 2 Temperature sensor, internal reference voltage output characteristics.

<R> (6) When reference voltage (+) = internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), target for conversion: ANI0 to ANI4, ANI16 to ANI18, ANI20 to ANI26, ANI28, and ANI30

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}, \text{AV}_{\text{DD}} \le \text{V}_{\text{DD}}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{AV}_{\text{SS}} = 0 \text{ V}, \text{AV}_$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		8			bit
Conversion time	t CONV	8-bit resolution	16			μs
Zero-scale error ^{Notes}	EZS	8-bit resolution			±4.0	LSB
Integral linearity error ^{Note}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error ^{Note}	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= internal reference voltage (V _{BGR})	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error ($\pm 1/2$ LSB).

5. 2. 5. 2 Temperature sensor, internal reference voltage output characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that		-3.6		mV/°C
		depends on the temperature				
Operation stabilization wait time	tamp		10			μs

5. 2. 5. 3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Vpor	When power supply voltage is rising	1.47	1.51	1.55	V
	VPDR	When power supply voltage is falling	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode or if the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset before V_{DD} rises to V_{POR} after having fallen below 0.7 V.

5. 2. 5. 4 LVD circuit characteristics

• LVD detection voltage of reset mode and interrupt mode

 $(T_A = -40 \text{ to } +85^{\circ}C, \text{ VPDR} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD10	When power supply voltage is rising	3.98	4.06	4.14	V
voltage			When power supply voltage is falling	3.90	3.98	4.06	V
		VLVD11	When power supply voltage is rising	3.68	3.75	3.82	V
			When power supply voltage is falling	3.60	3.67	3.74	V
		VLVD12	When power supply voltage is rising	3.07	3.13	3.19	V
			When power supply voltage is falling	3.00	3.06	3.12	V
Minimum pul	Minimum pulse width			300			μs
Detection delay time						300	μs

• LVD detection voltage of interrupt & reset mode

Parameter	Symbol		Co	nditions	MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDB0	VPOC	2, VPOC1, VPOC0 = 0,	0, 1	1.80	1.84	1.87	V
reset mode		reset	release when power supp	bly voltage is falling				
	VLVDB3		LVIS1, LVIS0 = 0, 0	Reset release voltage when	3.07	3.13	3.19	V
				power supply voltage is rising				
				Interrupt generating voltage when	3.00	3.06	3.12	V
				power supply voltage is falling				
	VLVDC0	VPOC	2, VPOC1, VPOC0 = 0,	1, 0	2.40	2.45	2.50	V
		reset	release when power supp	bly voltage is falling				
	VLVDC3		LVIS1, LVIS0 = 0, 0	Reset release voltage when	3.68	3.75	3.82	V
				power supply voltage is rising				
				Interrupt generating voltage when	3.60	3.67	3.74	V
				power supply voltage is falling				
	VLVDD0	VPOC	2, VPOC1, VPOC0 = 0,	1, 1	2.70	2.75	2.81	V
		reset	release when power supp	bly voltage is falling				
	VLVDD3		LVIS1, LVIS0 = 0, 0	Reset release voltage when	3.98	4.06	4.14	V
				power supply voltage is rising				
				Interrupt generating voltage when	3.90	3.98	4.06	V
				power supply voltage is falling				

<R>

Caution Set the detection voltage (V_{LVD}) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 5.5 V@1 MHz to 32 MHz

VDD = 2.4 to 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 5.5 V@1 MHz to 8 MHz

LV (low voltage main) mode: V_{DD} = 1.6 to 5.5 V@1 MHz to 4 MHz

5. 2. 5. 5 Supply voltage rise slope characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage rise	SVDD				54	V/ms

Caution Be sure to maintain the internal reset state until V_{DD} reaches the operating voltage range specified in 5. 2. 3 AC Characteristics, by using the LVD circuit or external reset pin.

5. 2. 6 Data memory STOP mode low supply voltage data retention characteristics

<R> (T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effective, but data is not retained when a POR reset is effective.

5. 2. 7 Flash memory programming characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditio	MIN.	TYP.	MAX.	Unit	
System clock frequency	fclк	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	1		32	MHz	
Number of code flash rewrites	Cerwr	Retained for 20 years	$TA = 85^{\circ}C^{\text{ Note 3}}$	1,000			time
Note 1, 2							s
Number of data flash rewrites Note 1, 2		Retained for 1 year	$T_A = 25^{\circ}C^{\text{Note 3}}$		1,000,000		
		Retained for 5 years	$TA = 85^{\circ}C^{\text{ Note 3}}$	100,000			
		Retained for 20 years	$TA = 85^{\circ}C^{\text{ Note 3}}$	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using a flash memory programmer and a Renesas Electronics self programming library.
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

<R> 5. 2. 8 Dedicated flash memory programmer communication (UART)

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		When programming for flash memory	115.2 k		1 M	bps

<R> 5. 2. 9 Timing specs for switching flash memory programming modes

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MAX.	Unit		
How long from when a external reset ends	tsuinit	POR and LVD resets must end			100	ms
until the initial communication settings are		before the external reset ends.				
specified						
How long from when the TOOL0 pin is placed	tsu	POR and LVD resets must end	10			μs
at the low level until a external reset ends		before the external reset ends.				
How long the TOOL0 pin must be kept at the	tнD	POR and LVD resets must end	1			ms
low level after a reset ends		before the external reset ends.				
(except flash firmware processing time)						

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD resets must end before the external reset ends.).

<3> The TOOL0 pin is set to the high level.

<4> The flash memory programming mode is set by UART reception and the baud rate setting completes.

- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - tsu: How long from when the TOOL0 pin is placed at the low level until a external reset ends.
 - th: How long to keep the TOOL0 pin at the low level from when the external or internal resets end (except flash firmware processing time).

5.3 Electrical Specifications of Analog Block

<R> 5. 3. 1 Operating conditions of analog block

Parameter	Symbol	Conditions		Ratings		
			MIN	TYP.	MAX.	
Power supply voltage range	Vddop	AVdd1, AVdd2, AVdd3, DVdd	3.0	_	5.5	V

5. 3. 2 Supply current characteristics

Parameter	Symbol	Cor		Unit			
				MIN	TYP	MAX	
Supply	Istby11 ^{Note}	PC1 = 00H,	$T_A = -40^{\circ}C$	-	100	150	nA
current		PC2 = 00H	T _A = +25°C	-	140	210	nA
			$T_A = +50^{\circ}C$	-	290	550	nA
			T _A = +85°C	-	850	1850	nA
	lm111 ^{Note}	PC1 = 47H (configurable amplifie	_	1.55	3.6	mA	
		Ch3 are operating)					
		PC2 = 00H, CC1, CC0 = 0, 0, DA					
	Im112 ^{Note}	PC1 = F7H, PC2 = 13H (configur	-	3.4	7.6	mA	
		converters Ch1 to Ch4, gain adju					
		voltage regulator, reference volta					
		sensor are operating), CC1, CC0					
	lm113 ^{Note}	PC1 = 7FH, PC2 = 0FH (configur	-	4.5	11.0	mA	
		converters Ch1 to Ch4, low-pass					
		output voltage regulator, reference					
		temperature sensor are operating					
	lm114 ^{Note}	PC1 = F7H, PC2 = 1FH (configur	able amplifiers Ch1 to Ch3, D/A	_	4.5	11.3	mA
		converters Ch1 to Ch4, general c	operational amplifier, low-pass filter,				
		high-pass filter, gain adjustment a					
		regulator, reference voltage gene					
		operating),					
		CC1, CC0 = 0, 0, DACRC = 00H					
	lm121 ^{Note}	PC1 = 47H (configurable amplifie	ers Ch1 to Ch3 and D/A converters	_	0.73	1.8	mA
		Ch1 to Ch3 are operating),					
		CC1, CC0 = 1, 1, DACRC = 00H					
	Im122 ^{Note}	PC1 = F7H, PC2 = 13H (configur	able amplifiers Ch1 to Ch3, D/A	-	2.6	5.8	mA
		converters Ch1 to Ch4, gain adju	stment amplifier, variable output				
		voltage regulator, reference volta	ge generator, and temperature				
		sensor are operating),					
		CC1, CC0 = 1, 1, DACRC = 00H					
	Im123 ^{Note}	PC1 = F7H, PC2 = 0FH (configur	able amplifiers Ch1 to Ch3, D/A	-	3.7	9.2	mA
		converters Ch1 to Ch4, low-pass	filter, high-pass filter, variable				
		output voltage regulator, reference	e voltage generator, and				
		temperature sensor are operating	g),				
		CC1, CC0 = 1, 1, DACRC = 00H					
	lm124 ^{Note}	PC1 = F7H, PC2 = 1FH (configur	able amplifiers Ch1 to Ch3, D/A	_	3.9	9.5	mA
		converters Ch1 to Ch4, low-pass					
		adjustment amplifier, variable out	put voltage regulator, reference				
		voltage generator, and temperatu	ire sensor are operating),				
		CC1, CC0 = 1, 1, DACRC = 00H					

(Note is listed on the next page.)

Note Total current flowing to internal power supply pins AV_{DD1}, AV_{DD2}, AV_{DD3}, and DV_{DD}. Current flowing through the pull-up resistor is not included. The input leakage current flowing when the level of the input pin is fixed to AV_{DD1}, AV_{DD2}, AV_{DD3} or DV_{DD}, or AGND1, AGND2, AGND3, AGND4, or DGND is included. See the table below to check the definition of those symbols of the current flowing.

			Analog function with power on										
Parameter	Symbol		Configurable amplifier		Gain	D)/A co	nvert	er	Low-	High-	Temperature	Variable output
		Ch1	Ch2	Ch3	adjustment amplifier	Ch1	Ch2	Ch3	Ch4	pass filter	pass filter	sensor	voltage regulator
	lm111 ^{Note 1}	ON	ON	ON	_	-	_	ON	-	-	-	_	_
	Im112 ^{Note 1}	ON	ON	ON	ON	ON	ON	ON	ON	-	_	ON	ON
	Im113 ^{Note 1}	ON	ON	ON	_	ON	ON	ON	ON	ON	ON	ON	ON
Supply	lm114 ^{Note1}	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON
current	Im121 ^{Note 2}	ON	ON	ON	_	-	_	ON	_	-	-	_	_
	Im122 Note 2	ON	ON	ON	ON	ON	ON	ON	ON	-	_	ON	ON
	Im123 ^{Note 2}	ON	ON	ON	-	ON	ON	ON	ON	ON	ON	ON	ON
	lm124 ^{Note 2}	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON

Notes 1. CC1, CC0 = 0, 0

2. CC1, CC0 = 1, 1

5. 3. 3 Electrical specifications of each block

5. 3. 3. 1 Configurable amplifier characteristics

 $(-40^{\circ}C \le T_A \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, non-inverting amplifier) (1/2)$

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Current	Icc00	CC1, CC0 = 0, 0	-	330	720	μA
consumption Note	Icc01	CC1, CC0 = 0, 1	-	175	390	μA
	lcc10	CC1, CC0 = 1, 0	-	125	275	μA
	lcc11	CC1, CC0 = 1, 1	-	55	120	μA
Input voltage	VINL		AGND1 - 0.1	-	-	V
	VINH		_	_	AVDD1 - 1.5	V
Output voltage	VOUTL	IOL = -200 μA	-	AGND1 + 0.02	AGND1 + 0.06	V
	VOUTH	IOH = 200 μA	AV _{DD1} - 0.06	AVDD1 - 0.02	-	V
Setting time	tset_ampoo	GCn = 00H (9.5 dB), CC1, CC0 = 0, 0, CL	_	_	9	μs
		= 30 pF, output voltage = 1VPP, output				
		convergence voltage VPP = 999 mV				
	tSET_AMP01	GCn = 00H (9.5 dB), CC1, CC0 = 0, 1, CL	-	-	18	μs
		= 30 pF, output voltage = 1V _{PP} , output				
		convergence voltage VPP = 999 mV				
	tSET_AMP10	GCn = 00H (9.5 dB), CC1, CC0 = 1, 0, CL	-	-	28	μs
		= 30 pF, output voltage = 1VPP, output				
		convergence voltage VPP = 999 mV				
	tset_AMP11	GCn = 00H (9.5 dB), CC1, CC0 = 1, 1, CL	-	-	71	μs
		= 30 pF, output voltage = 1VPP, output				
		convergence voltage VPP = 999 mV				
Gain bandwidth	GBW00	CL = 30 pF, CC1, CC0 = 0, 0	-	2.3		MHz
		GCn = 11H (40.1 dB)				
	GBW01	CL = 30 pF,CC1, CC0 = 0, 1	-	1.1		MHz
		GCn = 11H (40.1 dB)				
	GBW10	CL = 30 pF, CC1, CC0 = 1, 0	-	0.71		MHz
		GCn = 11H (40.1 dB)				
	GBW11	CL = 30 pF, CC1, CC0 = 1, 1	-	0.22		MHz
		GCn = 11H (40.1 dB)				
Equivalent input	En00	CC1, CC0 = 0, 0	-	64	-	nV/√ Hz
noise		f = 1 kHz, GCn = 11H (40.1 dB)				
	En01	CC1, CC0 = 0, 1	-	85	-	nV/√ Hz
		f = 1 kHz, GCn = 11H (40.1 dB)				
	En10	CC1, CC0 = 1, 0	_	107	-	nV/√ Hz
		f = 1 kHz, GCn = 11H (40.1 dB)				
	En11	CC1, CC0 = 1, 1	_	159	-	nV/√ Hz
		f = 1 kHz, GCn = 11H (40.1 dB)				

Note These are the values for one channel of configurable amplifier.

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Input conversion	VOFF00	CC1, CC0 = 0, 0, T _A = 25°C	-7	-	7	mV
offset voltage		GCn = 07H (20.8 dB)				
	VOFF01	CC1, CC0 = 0, 1, T _A = 25°C	-10	-	10	mV
		GCn = 07H (20.8 dB)				
	VOFF10	CC1, CC0 = 1, 0, T _A = 25°C	-10	-	10	mV
		GCn = 07H (20.8 dB)				
	VOFF11	CC1, CC0 = 1, 1, T _A = 25°C	-12	-	12	mV
		GCn = 07H (20.8 dB)				
Input conversion	VOTC		-	±6	_	μV/°C
offset voltage						
temperature						
coefficient						
Slew rate	SR00	CC1, CC0 = 0, 0, CL = 30 pF,	-	0.68	-	V/µs
		GCn = 00H (9.5 dB)				
	SR01	CC1, CC0 = 0, 1, CL = 30 pF,	-	0.35	-	V/µs
		GCn = 00H (9.5 dB)				
	SR10	CC1, CC0 = 1, 0, CL = 30 pF,	-	0.25	-	V/µs
		GCn = 00H (9.5 dB)				
	SR11	CC1, CC0 = 1, 1, CL = 30 pF,	-	0.09	-	V/µs
		GCn = 00H (9.5 dB)				
Power supply	PSRR00	CC1, CC0 = 0, 0, GCn = 00H (9.5 dB),	-	70	-	dB
rejection ratio		f = 1 kHz				
	PSRR01	CC1, CC0 = 0, 1, GCn = 00H (9.5 dB),	-	68	-	dB
		f = 1 kHz				
	PSRR10	CC1, CC0 = 1, 0, GCn = 00H (9.5 dB),	-	62	-	dB
		f = 1 kHz				
	PSRR11	CC1, CC0 = 1, 1, GCn = 00H (9.5 dB),	-	50	-	dB
		f = 1 kHz				
Gain setting error	GAIN_Accu1	$T_A = 25^{\circ}C$	-0.6	-	0.6	dB
	GAIN_Accu2	$T_{\rm A} = -40 \text{ to } 85^{\circ}\text{C}$	-1.0	-	1.0	dB

$(-40^{\circ}C \le T_{A} \le 85^{\circ}C, \text{ AVDD1} = \text{AVDD2} = \text{AVDD3} = \text{DVDD} = 5.0 \text{ V}, \text{ VREFIN1} = \text{VREFIN2} = \text{VREFIN3} = 1.7 \text{ V}, \text{ AMP1OF} = $
AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, non-inverting amplifier) (2/2)

Parameter	Symbol	Conditions		Ratings	•	Unit
			MIN	TYP	MAX	
Current	Icc00	CC1, CC0 = 0, 0	-	330	720	μA
consumption Note	lcc01	CC1, CC0 = 0, 1	-	175	390	μA
	lcc10	CC1, CC0 = 1, 0	-	125	275	μA
	lcc11	CC1, CC0 = 1, 1	-	55	120	μA
Input voltage	VINL		AGND1 - 0.1	-	-	V
	VINH		_	_	AV _{DD1} - 1.5	V
Output voltage	VOUTL	IOL = -200 μA	-	AGND1 + 0.02	AGND1 + 0.06	V
	VOUTH	IOH = 200 μA	AV _{DD1} - 0.06	AV _{DD1} - 0.02	_	V
Settling time	tset_ampoo	GCn = 00H (6 dB), CC1, CC0 = 0, 0, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV	-	_	9	μs
	tset_ampo1	GCn = 00H (6 dB), CC1, CC0 = 0, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV	_	_	18	μs
	tset_amp10	GCn = 00H (6 dB), CC1, CC0 = 1, 0, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV	_	_	28	μs
	tset_amp11	GCn = 00H (6 dB), CC1, CC0 = 1, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV	_	_	71	μs
Gain bandwidth	GBW00	CL = 30 pF,CC1, CC0 = 0, 0 GCn = 11H (40 dB)	-	1.5		MHz
	GBW01	CL = 30 pF,CC1, CC0 = 0, 1 GCn = 11H (40 dB)	-	0.9		MHz
	GBW10	CL = 30 pF,CC1, CC0 = 1, 0 GCn = 11H (40 dB)	-	0.67		MHz
	GBW11	CL = 30 pF,CC1, CC0 = 1, 1 GCn = 11H (40 dB)	-	0.22		MHz
Equivalent input noise	En00	CC1, CC0 = 0, 0 f = 1 kHz, GCn = 11H (40 dB)	-	63	-	nV/√ Hz
	En01	CC1, CC0 = 0, 1 f = 1 kHz, GCn = 11H (40 dB)	-	85	-	nV/√ Hz
	En10	CC1, CC0 = 1, 0 f = 1 kHz, GCn = 11H (40 dB)	-	105	-	nV/√ Hz
	En11	CC1, CC0 = 1, 1 f = 1 kHz, GCn = 11H (40 dB)	_	150	-	nV/√ Hz

 $(-40^{\circ}C \le TA \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, inverting amplifier) (1/2)$

Note These are the values for one channel of configurable amplifier.

Parameter	Symbol	Conditions		Ratings		
			MIN	TYP	MAX	
Input conversion offset voltage	VOFF00	CC1, CC0 = 0, 0, T _A = 25°C GCn = 07H (20 dB)	-7	-	7	mV
	VOFF01	CC1, CC0 = 0, 1, $T_A = 25^{\circ}C$ GCn = 07H (20 dB)	-10	-	10	mV
	VOFF10	CC1, CC0 = 1, 0, T _A = 25°C GCn = 07H (20 dB)	-10	-	10	mV
	VOFF11	CC1, CC0 = 1, 1, T _A = 25°C GCn = 07H (20 dB)	-12	-	12	mV
Input conversion offset voltage temperature coefficient	VOTC		-	±6	_	μV/°C
Slew rate	SR00	CC1, CC0 = 0, 0, CL = 30 pF, GCn = 00H (6 dB)	-	0.68	-	V/µs
	SR01	CC1, CC0 = 0, 1, CL = 30 pF, GCn = 00H (6 dB)	-	0.35	-	V/µs
	SR10	CC1, CC0 = 1, 0, CL = 30 pF, GCn = 00H (6 dB)	-	0.25	-	V/µs
	SR11	CC1, CC0 = 1, 1, CL = 30 pF, GCn = 00H (6 dB)	-	0.09	-	V/µs
Power supply rejection ratio	PSRR00	CC1, CC0 = 0, 0 GCn = 00H (6 dB), f = 1 kHz	-	70	-	dB
	PSRR01	CC1, CC0 = 0, 1 GCn = 00H (6 dB), f = 1 kHz	-	68	-	dB
	PSRR10	CC1, CC0 = 1, 0 GCn = 00H (6 dB), f = 1 kHz	-	62	-	dB
	PSRR11	CC1, CC0 = 1, 1 GCn = 00H (6 dB), f = 1 kHz	-	50	-	dB
Gain setting error	GAIN_Accu1	$T_A = 25^{\circ}C$	-0.6	-	0.6	dB
-	GAIN_Accu2	$T_{A} = -40 \text{ to } 85^{\circ}\text{C}$	-1.0	-	1.0	dB

 $(-40^{\circ}C \le TA \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, inverting amplifier) (2/2)$

Parameter	Symbol	Conditions		Ratings		
			MIN	TYP	MAX	
Current	lcc00	CC1, CC0 = 0, 0	_	330	720	μA
consumption Note	lcc01	CC1, CC0 = 0, 1	_	175	390	μA
	lcc10	CC1, CC0 = 1, 0	_	125	275	μA
	lcc11	CC1, CC0 = 1, 1	-	55	120	μA
Input voltage	VINL		AGND1 - 0.1	-	-	V
	VINH		_	_	AVDD1 - 1.5	V
Output voltage	VOUTL	IOL = -200 μA	_	AGND1 + 0.02	AGND1+ 0.06	V
	VOUTH	IOH = 200 μA	AV _{DD1} - 0.06	AV _{DD1} - 0.02	_	V
Settling time	tset_ampoo	GCn = 00H (6 dB), CC1, CC0 = 0, 0, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	_	9	μs
	tset_ampo1	GCn = 00H (6 dB), CC1, CC0 = 0, 1, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	_	18	μs
	tset_amp10	GCn = 00H (6 dB), CC1, CC0 = 1, 0, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	-	28	μs
	tset_amp11	GCn = 00H (6 dB), CC1, CC0 = 1, 1, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	-	71	μs
Gain bandwidth	GBW00	CL = 30 pF, CC1, CC0 = 0, 0, GCn = 11H (40 dB)	-	1.5	-	MHz
	GBW01	CL = 30 pF, CC1, CC0 = 0, 1, GCn = 11H (40 dB)	-	1.0	-	MHz
	GBW10	CL = 30 pF, CC1, CC0 = 1, 0, GCn = 11H (40 dB)	-	0.67	-	MHz
	GBW11	CL = 30 pF, CC1, CC0 = 1, 1, GCn = 11H (40 dB)	-	0.22	-	MHz
Equivalent input noise	En00	CC1, CC0 = 0, 0 f = 1 kHz, GCn = 11H (40 dB)	-	63	-	nV/√ Hz
	En01	CC1, CC0 = 0, 1 f = 1 kHz, GCn = 11H (40 dB)	-	85	-	nV/√ Hz
	En10	CC1, CC0 = 1, 0 f = 1 kHz, GCn = 11H (40 dB)	-	106	_	nV/√ Hz
	En11	CC1, CC0 = 1, 1 f = 1 kHz, GCn = 11H (40 dB)	-	160	-	nV/√ Hz

 $(-40^{\circ}C \le T_A \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, differential amplifier) (1/2)$

Note These are the values for one channel of configurable amplifier.

<R>

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Input conversion offset voltage	VOFF00	CC1, CC0 = 0, 0, T _A = 25°C GCn = 07H (20 dB)	-7	-	7	mV
	VOFF01	CC1, CC0 = 0, 1, T _A = 25°C GCn = 07H (20 dB)	-10	-	10	mV
	VOFF10	CC1, CC0 = 1, 0, T _A = 25°C GCn = 07H (20 dB)	-10	-	10	mV
	VOFF11	CC1, CC0 = 1, 1, T _A = 25°C GCn = 07H (20 dB)	-12	-	12	mV
Input conversion offset voltage temperature coefficient	VOTC		-	±6	_	μV/°C
Slew rate	SR00	CC1, CC0 = 0, 0, CL = 30 pF, GCn = 00H (6 dB)	-	0.68	-	V/µs
	SR01	CC1, CC0 = 0, 1, CL = 30 pF, GCn = 00H (6 dB)	-	0.35	-	V/µs
	SR10	CC1, CC0 = 1, 0 CL = 30 pF, GCn = 00H (6 dB)	-	0.25	-	V/ <i>µ</i> s
	SR11	CC1, CC0 = 1, 1, CL = 30 pF, GCn = 00H (6 dB)	-	0.09	-	V/µs
Common mode rejection ratio	CMRR00	CC1, CC0 = 0, 0, GCn = 11H (40 dB), f = 1 kHz	-	84	-	dB
	CMRR01	CC1, CC0 = 0, 1, GCn = 11H (40 dB) f = 1 kHz	-	82	-	dB
	CMRR10	CC1, CC0 = 1, 0, GCn = 11H (40 dB) f = 1 kHz	-	80	-	dB
	CMRR11	CC1, CC0 = 1, 1, GCn = 11H (40 dB) f = 1 kHz	-	76	-	dB
Power supply rejection ratio	PSRR00	CC1, CC0 = 0, 0, GCn = 00H (6 dB), f = 1 kHz	-	70	_	dB
	PSRR01	CC1, CC0 = 0, 1, GCn = 00H (6 dB) f = 1 kHz	-	68	_	dB
	PSRR10	CC1, CC0 = 1, 0, GCn = 00H (6 dB) f = 1 kHz	-	62	_	dB
	PSRR11	CC1, CC0 = 1, 1, GCn = 00H (6 dB) f = 1 kHz	-	50	_	dB
Gain setting error	GAIN_Accu1	$T_{A} = 25^{\circ}C$	-0.6		0.6	dB
5	GAIN_Accu2		-1.0	_	1.0	dB

$(-40^{\circ}C \le T_A \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, differential amplifier) (2/2)$

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Current	Icc00	CC1, CC0 = 0, 0	-	330	720	μA
consumption Note	Icc01	CC1, CC0 = 0, 1	-	175	390	μA
	lcc10	CC1, CC0 = 1, 0	-	125	275	μA
	lcc11	CC1, CC0 = 1, 1	_	55	120	μA
Input current	IINL	GCn = 0FH (Rfb = 640 kΩ)	(10)	_	_	nA
Output voltage	VOUTL	IOL= -200 μA	-	AGND1 + 0.02	AGND1 + 0.06	V
	VOUTH	IOH = 200 μA	AVDD1- 0.06	AV _{DD1} - 0.02	-	V
Settling time	tset_AMP00	GCn = 00H (20 kΩ), CC1, CC0 = 0, 0	_	_	9	μs
		$CL = 30 \text{ pF}$, output voltage = $1V_{PP}$, output				<i>μ</i>
		convergence voltage VPP = 999 mV				
	tSET_AMP01	$GCn = 00H (20 k\Omega), CC1, CC0 = 0, 1$	_	_	18	μs
		$CL = 30 \text{ pF}$, output voltage = $1V_{PP}$, output			_	1
		convergence voltage $V_{PP} = 999 \text{ mV}$				
	tSET_AMP10	$GCn = 00H (20 k\Omega), CC1, CC0 = 1, 0$	_	_	28	μs
	CSET_AWF TO	$CL = 30 \text{ pF}$, output voltage = $1V_{PP}$, output			20	μο
		convergence voltage $V_{PP} = 999 \text{ mV}$				
	tset_AMP11	$GCn = 00H (20 k\Omega), CC1, CC0 = 1, 1$	_	_	71	μs
	USET_AWPTT	$CL = 30 \text{ pF}$, output voltage = $1V_{PP}$, output			,,	μ3
		convergence voltage $V_{PP} = 999 \text{ mV}$				
Current-to-voltage	GBW00_0	CL = 30 pF, CC1, CC0 = 0, 0		1.3	_	MHz
conversion gain	00000_0	$GCn = 00H (Rfb = 20 k\Omega)$		1.5		
bandwidth	GBW00_1	CL = 30 pF, CC1, CC0 = 0, 0		1.0	_	MHz
Danuwidin	GBW00_1	$GCn = 0FH (Rfb = 640 k\Omega)$	_	1.0	_	
	GBW01 0	CL = 30 pF, CC1, CC0 = 0, 1		0.79		MHz
	GBW01_0	• • • •	_	0.79	_	IVITIZ
		GCn = 00H (Rfb = 20 kΩ)		0.54		N411-
	GBW01_1	CL = 30 pF, CC1, CC0 = 0, 1	_	0.51	_	MHz
		GCn = 0FH (Rfb = 640 kΩ)		0.50		N 41 1-
	GBW10_0	CL = 30 pF, CC1, CC0 = 1, 0	-	0.58	-	MHz
	000440	$GCn = 00H (Rfb = 20 k\Omega)$				
	GBW10_1	CL = 30 pF, CC1, CC0 = 1, 0	-	0.31	-	MHz
	000444	$GCn = 0FH (Rfb = 640 k\Omega)$		0.05		
	GBW11_0	CL = 30 pF, CC1, CC0 = 1, 1	-	0.25	-	MHz
		$GCn = 00H (Rfb = 20 k\Omega)$				
	GBW11_1	CL = 30 pF, CC1, CC0 = 1, 1	-	0.09	-	MHz
		$GCn = 0FH (Rfb = 640 k\Omega)$				
Equivalent input	En00	CC1, CC0 = 0, 0	-	66	-	nV/√ Hz
noise		$f = 1 \text{ kHz}, \text{ GCn} = 00 \text{H} (\text{Rfb} = 20 \text{ k}\Omega)$				
	En01	CC1, CC0 = 0, 1	-	90	-	nV/√ Hz
		$f = 1 \text{ kHz}, \text{ GCn} = 00 \text{H} (\text{Rfb} = 20 \text{ k}\Omega)$				
	En10	CC1, CC0 = 1, 0	-	116	-	nV/√ Hz
		$f = 1 \text{ kHz}, \text{ GCn} = 00\text{H} (\text{Rfb} = 20 \text{ k}\Omega)$				
	En11	CC1, CC0 = 1, 1	-	193	-	nV/√ Hz
		f = 1 kHz, GCn = 00H (Rfb = 20 k Ω)				

$(-40^{\circ}C \le TA \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, transimpedance amplifier) (1/2)$

Note These are the values for one channel of configurable amplifier.

Remark 1. In the ratings column, values in parentheses are the target design values and therefore are not tested for

shipment.

2. n = 1 to 3

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Input conversion offset voltage	VOFF00	CC1, CC0 = 0, 0, $T_A = 25^{\circ}C$, GCn = 07H (Rfb = 80 k Ω)	-7	_	7	mV
	VOFF01	CC1, CC0 = 0, 1, $T_A = 25^{\circ}C$, GCn = 07H (Rfb = 80 k Ω)	-10	-	10	mV
	VOFF10	CC1, CC0 = 1, 0, T _A = 25°C, GCn = 07H (Rfb = 80 kΩ)	-10	-	10	mV
	VOFF11	CC1, CC0 = 1, 1, T _A = 25°C, GCn = 07H (Rfb = 80 kΩ)	-12	-	12	mV
Input conversion offset voltage temperature coefficient	VOTC		-	±6	_	μV/°C
Slew rate	SR00	CC1, CC0 = 0, 0, CL = 30 pF, GCn = 00H (Rfb = 20 kΩ)	-	0.68	-	V/µs
	SR01	CC1, CC0 = 0, 1, CL = 30 pF, GCn = 00H (Rfb = 20 kΩ)	-	0.35	-	V/µs
	SR10	CC1, CC0 = 1, 0, CL = 30 pF, GCn = 00H (Rfb = 20 kΩ)	-	0.25	-	V/µs
	SR11	CC1, CC0 = 1, 1, CL = 30 pF, GCn = 00H (Rfb = 20 kΩ)	-	0.09	_	V/µs
Power supply rejection ratio	PSRR00	CC1, CC0 = 0, 0, GCn = 00H (Rfb = 20 kΩ)	-	70	_	dB
	PSRR01	CC1, CC0 = 0, 1, GCn = 00H (Rfb = 20 kΩ)	-	68	_	dB
	PSRR10	CC1, CC0 = 1, 0, GCn = 00H (Rfb = 20 kΩ)	-	62	_	dB
	PSRR11	CC1, CC0 = 1, 1, GCn = 00H (Rfb = 20 kΩ)	-	50	_	dB
Rfb setting error	Rfb_Accu1	$T_A = 25^{\circ}C$	-25	_	25	%
	Rfb_Accu2	$T_{A} = -40$ to $85^{\circ}C$	-35	-	35	%

 $(-40^{\circ}C \le TA \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, transimpedance amplifier) (2/2)$

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Current consumption	Icc00	AMP1OF = AMP2OF = AMP3OF = 1, CC1, CC0 = 0, 0	-	970	2,150	μA
	lcc01	AMP1OF = AMP2OF = AMP3OF = 1, CC1, CC0 = 0, 1	-	510	1,150	μA
	lcc10	AMP1OF = AMP2OF = AMP3OF = 1, $CC1, CC0 = 1, 0$	-	350	780	μA
	lcc11	AMP1OF = AMP2OF = AMP3OF = 1, CC1, CC0 = 1, 1	-	140	330	μA
Input voltage	VINL		AGND1 - 0.1	_	_	V
	VINH		_	_	AVDD1 - 1.5	V
Output voltage	VOUTL	IOL = -200 μA	_	AGND1 + 0.02	AGND1 + 0.06	V
e alp at renage	VOUTH	$IOH = 200 \ \mu A$	AVDD1- 0.06	AV _{DD1} - 0.02	_	V
Settling time	tset_ampoo	GC3 = 00H (20 dB), CC1, CC0 = 0, 0, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	_	_	9	μs
	tset_ampo1	GC3 = 00H (20 dB), CC1, CC0 = 0, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV	-	-	18	μs
	tset_amp10	GC3 = 00H (20 dB), CC1, CC0 = 1, 0, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV	-	_	28	μs
	tset_amp11	GC3 = 00H (20 dB), CC1, CC0 = 1, 1, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	_	71	μs
Gain bandwidth	GBW00	CL = 30 pF, CC1, CC0 = 0, 0 GC3 = 11H (54 dB)	-	1.82	-	MHz
	GBW01	CL = 30 pF, CC1, CC0 = 0, 1 GC3 = 11H (54 dB)	-	1.03	-	MHz
	GBW10	CL = 30 pF, CC1, CC0 = 1, 0 GC3 = 11H (54 dB)	-	0.69	-	MHz
	GBW11	CL = 30 pF, CC1, CC0 = 1, 1 GC3 = 11H (54 dB)	-	0.22	-	MHz
Equivalent input noise	En00	CC1, CC0 = 0, 0 GC3 = 11H (54 dB) f = 1 kHz	-	90	_	nV/√ Hz
	En01	CC1, CC0 = 0, 1 GC3 = 11H (54 dB) f = 1 kHz	-	119	-	nV/√ Hz
	En10	CC1, CC0 = 1, 0 GC3 = 11H (54 dB) f = 1 kHz	-	150	_	nV/√ Hz
	En11	CC1, CC0 = 1, 1 GC3 = 11H (54 dB) f = 1 kHz	-	260	_	nV/√ Hz

 $(-40^{\circ}C \le TA \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, GC1 = GC2 = 03H, instrumentation amplifier) (1/2)$

<R>

Parameter	Symbol	Conditions		Ratings	1	Unit
			MIN	TYP	MAX	
Input conversion	VOFF00	CC1, CC0 = 0, 0, T _A = 25°C,	-7	_	7	mV
offset voltage		GC3 = 00H (20 dB)				
C C	VOFF01	CC1, CC0 = 0, 1, T _A = 25°C,	-10	_	10	m۷
		GC3 = 00H (20 dB)				
	VOFF10	CC1, CC0 = 1, 0, T _A = 25°C,	-10	_	10	m∖
		GC3 = 00H (20 dB)				
	VOFF11	$CC1, CC0 = 1, 1, T_A = 25^{\circ}C,$	-12	_	12	m∖
		GC3 = 00H (20 dB)				
Input conversion	VOTC		_	±6.0	_	μV/°
offset voltage	VOID			_010		μ
temperature						
coefficient						
Slew rate	SR00	CC1, CC0 = 0, 0, CL = 30 pF,		0.68	_	V/μ
Clew rate	Cittoo	GC3 = 00H (20 dB)		0.00		v / µ
	SR01	CC1, CC0 = 0, 1, CL = 30 pF,		0.35	_	V/μ
	Citor	GC3 = 00H (20 dB)		0.00		v / µ
	SR10	CC1, CC0 = 1, 0, CL = 30 pF,		0.25	_	V/μ
	CITIO	GC3 = 00H (20 dB)		0.20		viµ
	SR11	CC1, CC0 = 1, 1, CL = 30 pF,	_	0.09		V/μ
	SIXTI	GC3 = 00H (20 dB)		0.03	_	VIμ
Common mode	CMRR00	CC1, CC0 = 0, 0		86		dB
rejection ratio	CIVICICO	GC3 = 11H (54 dB)	_	80	-	uD
rejection ratio		f = 1 kHz				
	CMRR01	CC1, CC0 = 0, 1		84		dB
	CIVICICOT	GC3 = 11H (54 dB)	_	04	-	UD UD
		f = 1 kHz				
	CMRR10	CC1, CC0 = 1, 0		82		dB
	CIVIRKIU	GC3 = 11H (54 dB)	-	02	-	uв
		f = 1 kHz				
	CMRR11	CC1, CC0 = 1, 1		76		db
	CIVIRRIT	GC3 = 11H (54 dB)	-	76	-	dB
		f = 1 kHz				
Device events	DCDD00	CC1, CC0 = 0, 0		70		dB
Power supply	PSRR00		-	70	-	aв
rejection ratio		GC3 = 00H (20 dB)				
		f = 1 kHz CC1, CC0 = 0, 1		<u></u>		
	PSRR01		-	68	-	dB
		GC3 = 00H (20 dB)				
	000040	f = 1 kHz				
	PSRR10	CC1, CC0 = 1, 0	-	62	-	dB
		GC3 = 00H (20 dB)				
	DODD	f = 1 kHz				
	PSRR11	CC1, CC0 = 1, 1	-	50	-	dB
		GC3 = 00H (20 dB)				
2		f = 1 kHz				
Gain setting error	GAIN_Accu1	$T_A = 25^{\circ}C$	-0.6	_	0.6	dB
	GAIN_Accu2	$T_{A} = -40 \text{ to } 85^{\circ}\text{C}$	-1.0	_	1.0	dB

 $(-40^{\circ}C \le TA \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, GC1 = GC2 = 03H, instrumentation amplifier) (2/2)$

<R>

<R>

5. 3. 3. 2 Gain adjustment amplifier characteristics

(1) 64-pin products

 $(-40^{\circ}C \le T_A \le 85^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 5.0 \text{ V}, \text{ VREFIN4} = 1.7 \text{ V}, \text{ GAINOF} = 1, \text{ DAC4OF} = 0)$

Parameter	Symbol	Conditions	Ratings			Unit
			MIN	TYP	MAX	
Current consumption	IccA		-	530	1,300	μA
Input voltage	VINL		AGND2 - 0.1	-	-	V
	VINH		-	-	AVDD1 - 0.05	V
Output voltage	VOUTL1	IOL = -100 μA	_	AGND2 + 0.02	AGND2 + 0.05	V
	VOUTH1	IOH = 100 μA	AVDD1 - 0.05	AV _{DD1} - 0.02	-	V
Gain bandwidth	GBW2	CL = 30 pF, GC4 = 11H (40 dB)	-	0.86	-	MHz
Input conversion offset voltage	VOFF	GC4 = 00H (6 dB), T _A = 25°C, GAINAMP_IN = 2.5 V	-30	-	30	mV
Input conversion offset voltage temperature coefficient	VOTC2	CLK_SYNCH = L, GAINAMP_OUT pin	_	±18	_	μN/°C
Slew rate	SR	CL = 30 pF	-	0.9	-	V/µs
Equivalent input noise	En_Gain	f = 1 kHz, GC4 = 11H (40 dB)	_	700	_	nV/√ Hz
Power supply rejection ratio	PSRR2	f = 1 kHz, GC4 = 00H (6 dB)	-	45	-	dB
Gain setting error	GAIN_Accu1	$T_A = 25^{\circ}C$	-0.6	_	0.6	dB
	GAIN_Accu2	T _A = -40 to 85°C	-1.0	-	1.0	dB

(2) 80-pin products

 $(-40^{\circ}C \leq T_{\text{A}} \leq 85^{\circ}C, \text{ AV}_{\text{DD1}} = \text{AV}_{\text{DD2}} = \text{AV}_{\text{DD3}} = \text{DV}_{\text{DD}} = 5.0 \text{ V}, \text{ VREFIN4} = 1.7 \text{ V}, \text{ GAINOF} = 1, \text{ DAC4OF} = 0)$

Parameter	Symbol	Conditions		Ratings			
			MIN	TYP	MAX		
Current	IccA		-	530	1,300	μA	
consumption							
Input voltage	VINL		AGND2 - 0.1	-	-	V	
	VINH		-	-	AVDD1 - 0.05	V	
Output voltage	VOUTL1	IOL = -100 µA, GAINAMP_OUT pin	_	AGND2 + 0.02	AGND2 + 0.05	V	
	VOUTH1	IOH = 100 μA, GAINAMP_OUT pin	AV _{DD1} - 0.05	AV _{DD1} - 0.02	-	V	
	VOUTL2	IOL = -100 μA, SYNCH_OUT pin	-	AGND2 + 0.03	AGND2 + 0.06	V	
	VOUTH2	IOH = 100 μ A, SYNCH_OUT pin	AV _{DD1} - 0.06	AV _{DD1} - 0.03	-	V	
Gain bandwidth	GBW1	CLK_SYNCH = H, SYNCH_OUT pin	-	1.38	-	MHz	
		CL = 30 pF, GC4 = 11H (40 dB)					
	GBW2	CLK_SYNCH = L, SYNCH_OUT or	-	0.86	-	MHz	
		GAINAMP_OUT pin					
		CL = 30 pF, GC4 = 11H (40 dB)					
Input conversion	VOFF	GC4 = 00H (6 dB), T _A = 25°C,	-30	_	30	mV	
offset voltage		GAINAMP_IN = 2.5 V					
Input conversion	VOTC1	CLK_SYNCH = H, SYNCH_OUT pin	_	±6	-	μV/°C	
offset voltage	VOTC2	CLK_SYNCH = L, GAINAMP_OUT pin	-	±18	_	μV/°C	
temperature							
coefficient							
Slew rate	SR	CL = 30 pF	-	0.9	-	V/µs	
Equivalent input	En_Gain	f = 1 kHz, GC4 = 11H (40 dB)	-	700	_	nV/√ Hz	
noise		GAINAMP_OUT pin					
Power supply	PSRR1	CLK_SYNCH = H,	-	60	_	dB	
rejection ratio		SYNCH_OUT pin,					
		f = 1 kHz, GC4 = 00H (6 dB)					
	PSRR2	CLK_SYNCH = L,	-	45	-	dB	
		SYNCH_OUT or GAINAMP_OUT pin,					
		f = 1 kHz, GC4 = 00H (6 dB)					
Gain setting error	GAIN_Accu1	$T_A = 25^{\circ}C$	-0.6	-	0.6	dB	
	GAIN_Accu2	T _A = -40 to 85°C	-1.0	_	1.0	dB	
CLK_SYNCH low-level	Vilclk_synch				$0.3 imes AV_{DD1}$	V	
input voltage							
CLK_SYNCH	VIHCLK_SYNCH		$0.7 imes AV_{DD1}$			V	
high-level							
input voltage							

<R>

5. 3. 3. 3 D/A converter characteristics

 $(-40^{\circ}C \le T_A \le 85^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 5.0 \text{ V}, DAC1OF = DAC2OF = DAC3OF = DAC4OF = 1)$

Parameter	Symbol	Conditions		Ratings		Unit
			MIN.	TYP.	MAX.	
DAC ALL ON current	I_DAC_ON1	DAC1OF = DAC2OF = DAC3OF =	-	1400	2950	μA
consumption 1		DAC4OF = 1, VRB1, VRB0 = 0, 0				
DAC ALL ON current	I_DAC_ON2	DAC1OF = DAC2OF = DAC3OF =	-	1620	3360	μA
consumption 2		DAC4OF = 1, VRB1, VRB0 ≠ 0, 0				
Buffer AMP ON current	LDAC_Buff1	DACxOF = 1, VRB1, VRB0 = 0, 0	-	390	820	μA
consumption 1 Note 1		(x = 1, 2, 3, 4)				
Buffer AMP ON current	LDAC_Buff2	DACxOF = 1, VRB1, VRB0 ≠ 0, 0	-	610	1320	μA
consumption 2 Note 1		(x = 1, 2, 3, 4)				
DAC1 GAMP ON	LDAC_AMP1	DAC1OF = 1	-	140	320	μA
current consumption						
DAC2 GAMP ON	I_DAC_AMP2	DAC2OF = 1	-	120	265	μA
current consumption						
DAC3 GAMP ON	I_DAC_AMP3	DAC3OF = 1	-	120	265	μA
current consumption						
DAC4 GAMP ON	LDAC_AMP4	DAC4OF = 1	-	630	1370	μA
current consumption						
Resolution	Res		-	-	8	bit
Settling time	tse⊤	output voltage = 1 Vpp	-	-	100	μs
		output convergence voltage Vpp = 990 mV				
Differential non-linearity	DNL	VRT1 = VRT0 = 0,	-2	-	2	LSB
error Note 2		VRB1 = VRB0 = 0				
Integral non-linearity	INL	VRT1 = VRT0 = 0,	-2	-	2	LSB
error		VRB1 = VRB0 = 0				

- Notes 1. Buffer amplifier is powered on when one of DACx (x = 1, 2, 3, 4) is powered on at least. For example, the current consumption (I_EXAMPLE) is shown as a following equation when "DAC1OF=DAC2OF=1", and "VRB1, VRB0=0, 0". I_EXAMPLE = I_DAC_Buff1 + I_DAC_AMP1 + I_DAC_AMP2
 - **2.** Guaranteed monotonic.

5. 3. 3. 4 Low-pass filter characteristics

Parameter	Symbol	Conditions		Ratings		Unit
			MIN.	TYP.	MAX.	
Current consumption	IccA		-	800	1800	μA
Input voltage	VILLPF		AGND4 +0.2	_	_	V
	VIHLPF		-	-	AVdd3 -1.5	V
Output voltage	VOLLPF	IOL = -200 μA	-	AGND4 +0.22	AGND4 +0.25	V
	VOHLPF	IOH = 200 μA	AVDD3 -1.55	AVDD3 -1.52	-	V
Cutoff frequency	fc1	fclk_lpf = 2 kHz	_	9	_	Hz
	fc2	fclk_lpf = 1 MHz	-	4.5	-	kHz
CLK_LPF low-level input voltage	VILCLK_LPF				$0.3 \times AV_{DD3}$	V
CLK_LPF high-level input voltage	VIHCLK_LPF		$0.7 \times AV_{DD3}$			V
CLK_LPF Input frequency	f _{clk_lpf}		2	-	1000	kHz
CLK_LPF Input low-level-width Input high-level-width	t _{ILW_LPF} t _{IHW_LPF}		200	_	_	ns

<R>

Clock Timing

<R>

5. 3. 3. 5 High-pass filter characteristics

Parameter	Symbol	Conditions		Ratings		Unit
			MIN.	TYP.	MAX.	
Current consumption	IccA		-	800	1800	μA
Input voltage	VILHPF		AGND4 +0.2	-	_	V
	VIHHPF		_	-	AV _{DD3} - 1.5	V
Output voltage	Volhpf	IOL = -200 μA	-	AGND4 +0.22	AGND4 +0.25	V
	VOHHPF	IOH = 200 μA	AVDD3 -1.55	AVDD3 -1.52	_	V
Cutoff frequency	fc1	fclk_hpf = 2 kHz	-	8	_	Hz
	fc2	fclk_hpf = 200 kHz	-	800	_	Hz
CLK_HPF low-level input voltage	Vilclk_hpf				$0.3 imes AV_{DD3}$	V
CLK_HPF high-level input voltage	VIHCLK_HPF		$0.7 \times AV_{DD3}$			V
CLK_HPF Input frequency	f _{clk_hpf}		2	_	200	kHz
CLK_HPF Input low-level-width Input high-level-width	t _{ILW_HPF} t _{IHW_HPF}		200	_	_	ns

Clock Timing

5. 3. 3. 6 Temperature sensor characteristics

Parameter	Symbol	Conditions	Ratings			Unit
			MIN.	TYP.	MAX.	
Current consumption	IccA		-	105	220	μA
Output voltage	Vo	$T_A = 25^{\circ}C$	-	1.67	-	V
Temperature sensitivity	Tse		-	-5.0	-	mV/°C

 $(-40^{\circ}C \le T_A \le 85^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = AV_{DD4} = DV_{DD} = 5.0 \text{ V}, \text{TEMPOF} = 1)$

5. 3. 3. 7 Variable output voltage regulator characteristics

 $(-40^{\circ}C \le TA \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = AVDD4 = DVDD = 5.0 V, LDOOF = 1)$

Parameter	Symbol	Conditions	Ratings		Unit	
			MIN	TYP	MAX	
Current consumption	IccON	lout = 0 mA	_	150	320	μA
Output voltage accuracy	V_Accu	lout = 0 mA	-10	-	10	%
Load current characteristics	Vout_load	lout = 0 to 5 mA	_	15	30	mV
Output current	lo		-	-	15	mA
Dropout voltage Note	Vd	lout = 15 mA	-	-	0.4	V
Power supply rejection ratio	PSRR	f = 1 kHz, CL = 4.7 μ F, Io = 5 mA, AV _{DD2} = 5.0 V, LDOC = 0DH (3.3 V)	-	60	-	dB
Discharge resistance	Rs	LDOOF = 0	540	715	1200	Ω
Settling time	Tset_rise	$CL = 4.7 \ \mu F$, $CBGR_OUT = 0.1 \ \mu F$	-	_	5.0	ms
	Tset_fall	CL = 4.7 μF, CBGR_OUT = 0.1 μF	_	_	45	ms

Note The output voltage range is determined not only by dropout voltage but also by output voltage accuracy.

5. 3. 3. 8 Reference voltage generator characteristics

 $(-40^{\circ}C \le T_A \le 85^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = AV_{DD4} = DV_{DD} = 5.0 \text{ V}, LDOOF = 1)$

Parameter	Symbol	Conditions		Ratings		Unit
			MIN.	TYP.	MAX.	
Output voltage	VBGR		-	1.21	-	V

<R>

<R> 5. 3. 3. 9 SPI characteristics

Parameter	Symbol	Conditions		Ratings		Unit
			MIN.	TYP.	MAX.	
Input voltage, high	V _{IH}	CS pin, SDI pin, SCLK pin, RESET pin	2.0	DVDD	DV _{DD} + 0.1	V
Input voltage, low	V _{IL}	$\frac{\overline{\text{CS}} \text{ pin, SDI pin, } \overline{\text{SCLK}} \text{ pin,}}{\overline{\text{RESET}} \text{ pin}}$	-0.1	DGND	0.7	V
Leakage current during	I _{leak_Hi1}	CS pin, SDI pin, SCLK pin	-1	-	2	μA
high level input	I _{leak_Hi2}	RESET pin	-1	_	2	μA
Leakage current during	I _{leak_Lo1}	$\overline{\text{CS}}$ pin, SDI pin, $\overline{\text{SCLK}}$ pin	50	100	200	μA
low level input Note	I _{leak_Lo2}	RESET pin	-1	-	2	μA
Low-level output voltage at SDO pin	$V_{SDO_{Lo}}$	IO = -5 mA	-	400	830	mV
Leakage current when SDO pin is off	I _{leak_SDO}		-1	_	2	μA
Pull-up resistance	Rspi	CS pin, SDI pin, SCLK pin	32.5	50	67.5	kΩ
SCLK cycle time	t _{KCYA}		100	_	-	ns
SCLK high-level width	t _{KHA} , t _{KLA}		0.9t _{KCYA} /2	-	-	ns
SDI setup time (to SCLK↑)	t _{SIKA}		40	_	_	ns
SDI hold time (from SCLK↑)	t _{KSIA}		20	_	-	ns
Delay time from $\overline{\text{SCLK}}$ to SDO output	t _{ksoar}	Pull-up resistance = 10 k Ω , CL = 5 pF, VSDO = 5 V	-	250	300	ns
	t _{ksoaf}	Pull-up resistance = 10 k Ω , CL = 5 pF, VSDO = 5 V	-	-	20	ns
CS high-level width	t _{SHA}		200	_	-	ns
Delay time from $\overline{CS}\downarrow$ to $\overline{SCLK}\downarrow$ output	t _{SKA}		200	_	-	ns
Delay time from $\overline{\text{SCLK}}^{\uparrow}$ to $\overline{\text{CS}}^{\uparrow}$ output	t _{KSA}		200	_	-	ns

Note Including the current flowing into each pull-up resistor

CHAPTER 6 PACKAGE DRAWINGS

R5F10FLCANA, R5F10FLDANA, R5F10FLEANA, R5F10FLCDNA, R5F10FLDDNA, R5F10FLEDNA

64-PIN PLASTIC WQFN (9 x 9)

© 2012 Renesas Electronics Corporation. All rights reserved.

R5F10FMCAFB, R5F10FMDAFB, R5F10FMEAFB, R5F10FMCDFB, R5F10FMDDFB, R5F10FMEDFB

80-PIN PLASTIC LQFP (FINE PITCH) (12 × 12)

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12x12-0.50	PLQP0080KE-B	P80GK-50-GAK-2	0.53

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

© 2012 Renesas Electronics Corporation. All rights reserved.

APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE)

• Configurable amplifier

Output response (Non-inverting amplifier)

Output response (Non-inverting amplifier)

• Low-pass filter and high-pass filter

• Temperature sensor

• Variable output voltage regulator

Output voltage vs. Load current

5.0

10.0

IOUT (mA)

15.0

3.270 L 0.0

APPENDIX B REVISION HISTORY

B. 1 Major Revisions in This Edition

		(1/4
Page	Description	Classification
R01UH0353	$EJ0100 \rightarrow R01UH0353EJ0200$	
CHAPTER 1	OUTLINE	
p.1	Modification of 1.1 Features	(c)
p.4	Deletion of Note form 1. 2 List of Part Numbers	(c)
p.5-14	Modification of SCK00, SCK10, SCK20, SCK21 in 1. 3 Pin Configuration (Top View), in 1. 4 Pin	(a)
	Identification and 1. 5 Block Diagram	
p.15-17	Modification of 1. 6 Outline of Functions	(c)
CHAPTER 2	2 PIN FUNCTIONS	
p.18-21	Modification of the alternative function and Remark in 2. 1 Pin Functions in Microcontroller Block	(C)
	(1) (2)	
p.23, 24	Modification of the table structure, Caution and Remark in 2. 1. 1. 1 64-pin products	(c)
p.25, 26	Modification of the table structure, Caution and Remark in 2. 1. 1. 2 80-pin products	(c)
p.28	Modification of the function name and Remark in 2. 1. 2. 1 Functions available for each product	(C)
p.30, 31	Modification of the function name, Caution and Remark in 2. 1. 2. 2 Description of each function	(c)
p.32	Modification of the description in 2. 2 Pin Functions in Analog Block	(c)
p.32	Modification of the table structure in 2. 2. 1 64-pin products	(c)
p.33	Modification of the table structure in 2. 2. 2 80-pin products	(c)
p.34, 35	Modification of Table 2-3. Connections of Unused Pins	(c)
p.36-46	Modification of 2. 4 Block Diagram of Pins	(c)
p.50	Modification of 2. 5. 2 Port 1 (P10 to P15)	(a)
p.54	Modification of 2. 5. 6 Port 7 (P70 to P73)	(a)
CHAPTER 3		
p.77	Change of the register name of OSMC to "Subsystem clock supply mode control register" in Table 3-3.	(c)
p.83	Change of the register name of OSMC to "Subsystem clock supply mode control register" in Table 3-4.	(C)
p.90	Modification of the descriptions in 3. 4. 2. 1 Port 0	(C)
p.90	Modification of the descriptions in 3. 4. 2. 2 Port 1	(c)
p.91	Modification of the descriptions in 3. 4. 2. 5 Port 4	(c)
p.91	Modification of the descriptions in 3. 4. 2. 6 Port 5	(c)
p.91	Modification of the descriptions in 3. 4. 2. 8 Port 7	(c)
p.93, 94	Addition of 3. 4. 3 Registers controlling port function	(c)
p.93, 94	Modification of Caution and Remark in 3. 4. 3 Registers controlling port function	(c)
p.95	Modification of 3. 4. 3. 1 Port mode register (PMxx)	(c)
p.96	Modification of 3. 4. 3. 2 Port register (Pxx)	(c)
p.97	Modification of 3. 4. 3. 3 Pull-up resistor option register (PUxx)	(c)

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,

(d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

Page	Description	(2/4) Classificatior
p.97	Modification of 3. 4. 3. 4 Port input mode register (PIMxx)	(c)
p.98	Modification of 3. 4. 3. 5 Port output mode register (POMxx)	(c)
p.98	Modification of 3. 4. 3. 6 Port mode control register (PMCxx)	(c)
p.101	Addition of Remark in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR)	(c)
p.102	Addition of 3. 4. 4. 4 Handling different potential (1.8 V,2.5 V or 3 V) by using EVDD ≤ VDD	(c)
p.103, 104	Modification of 3. 4. 4. 5 Handling different potential (1.8 V,2.5 V or 3 V) by using I/O buffers	(c)
p.105	Modification of 3. 4. 5 Register settings when using alternate function	(c)
p.106, 107	Modification of 3. 5. 1 Functions of clock generator	(c)
p.108	Modification of Table 3-6. Configuration of Clock Generator	(c)
p.109	Modification of Figure 3-1. Block Diagram of Clock Generator	(c)
p.111	Modification of 3. 5. 3. 1 Clock operation mode control register (CMC)	(c)
p.116	Modification of 3. 5. 3. 7 Subsystem clock supply mode control register (OSMC)	(c)
p.118-121	Modification of 3. 5. 7 Resonator and oscillator constants	(c)
p.126	Modification of 3. 6. 1. 2 <1> One-shot pulse output	(C)
p.134	Modification of 3. 6. 3. 1 Peripheral enable register 0 (PER0)	(C)
p.135-139	Modification of 3. 6. 3. 3 Timer mode register mn (TMRmn)	(C)
p.144	Modification of 3. 6. 3. 15 Registers controlling port functions of pins to be used for timer I/O	(C)
p.147	Modification of 3. 8. 2 Configuration of 12-bit interval timer	(a)
p.148	Modification of 3. 8. 3. 2 Subsystem clock supply mode control register (OSMC)	(c)
p.153	Modification of 3. 9. 3. 2 Registers controlling port functions of pins used for clock or buzzer	(c)
	output	
p.155, 156	Modification of 3. 11. 1 Function of A/D converter	(c)
p.157	Modification of Figure 3-8. Block Diagram of A/D converter	(C)
p.160	Modification of 3. 11. 3. 1 Peripheral enable register 0 (PER0)	(c)
p.161	Modification of 3. 11. 3. 3 A/D converter mode register 1 (ADM1)	(c)
p.167	Modification of 3. 11. 3. 11 Registers controlling port function of analog input pins	(c)
p.173	Modification of Table 3-12. Configuration of Serial Array Unit	(c)
p.175	Modification of Figure 3-9. Block Diagram of Serial Array Unit 0	(a)
p.176	Modification of Figure 3-10. Block Diagram of Serial Array Unit 1	(c)
p.177	Modification of 3. 12. 2. 1 Shift register	(C)
p.177, 178	Modification of 3. 12. 2. 2 Lower 8/9 bits of the serial data register mn (SDRmn)	(c)
p.179	Modification of 3. 12. 3. 1 Peripheral enable register 0 (PER0)	(c)
p.180, 181	Modification of 3. 12. 3. 3 Serial mode register mn (SMRmn)	(c)
p.182-184	Modification of 3. 12. 3. 4 Serial communication operation setting register mn (SCRmn)	(C)
p.188	Modification of 3. 12. 3. 17 Registers controlling port functions of serial input/output pins	(c)
p.194-196	Modification of Table 3-13. Interrupt Source List	(c)
p.200, 202	Modification of Table 3-14. Flags Corresponding to Interrupt Request Sources	(a)

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,

(d): Addition/change of package, part number, or management division, (e): Addition/change of related

documents

	(3/4)
Description	Classification
Modification of Table 3-17. Configuration of Key Interrupt	(c)
Modification of Figure 3-14. Block Diagram of Key Interrupt	(c)
Modification Addition of 3. 17. 3. 2 Key return mode registers 0 (KRM0)	(c)
Modification of 3. 21. 1 Functions of voltage detector	(c)
Modification of Figure 3-15. Block Diagram of Voltage Detector	(c)
Modification of Format of User Option Byte (000C1H/010C1H) (1/2) (2/2)	(c)
Modification of 3. 22. 1 Overview of safety functions	(c)
Modification of 3. 24. 1. 1 User option byte (000C0H to 000C2H/010C0H to 010C2H)	(c)
Modification of 3. 24. 2 Format of user option byte	(c)
Modification of 3. 25. 1 Serial Programming Using Flash Memory Programmer	(c)
Modification of Table 3-18. Wiring Between RL78/G1E and Dedicated Flash Memory Programmer	(c)
Modification of 3. 25. 2 Serial programming using external device (that Incorporates UART)	(c)
Modification of 3. 25. 4 Serial programming method	(c)
Modification of 3. 25. 5 Processing time for each command when PG-FP5 Is in use (Reference	(c)
value)	
Modification of 3. 25. 6 Self-programming	(c)
Modification of 3. 25. 7 Security Settings	(c)
Modification of 3. 25. 8 Data flash	(c)
Modification of Figure 3-16. Connection Example of E1 On-chip Debugging Emulator and	(c)
RL78/G1E	
ANALOG BLOCK	-
Addition of Remark to 4. 1. 3 (5) Gain control register 1 (GC1)	(c)
Addition of Remark to 4. 1. 3 (6) Gain control register 2 (GC2)	(c)
Addition of Remark to 4. 1. 3 (7) Gain control register 3 (GC3)	(c)
Addition of Remark to 4. 1. 3 (8) AMP operation mode control register (AOMC)	(c)
Modification of 4. 2. 1 Overview of gain adjustment amplifier features	(c)
Modification of 4. 2. 3 Registers controlling the gain adjustment amplifier	(c)
Modification of 4. 3. 1 Overview of D/A converter features	(c)
Modification of 4. 3. 3 Registers controlling the D/A converters	(c)
Modification of 4. 3. 3 (1) DAC reference voltage control register (DACRC)	(c)
Modification of 4. 4. 1 Overview of low-pass filter features	(c)
Modification of 4. 4. 3 Registers controlling the low-pass filter	(c)
Modification of 4.5.1 Overview of low-pass filter features	(c)
Modification of 4.5.3 Registers controlling the high-pass filter	(c)
Addition of Remark to 4. 7. 3 (1) LDO control register (LDOC)	(c)
Addition of Remark to 4. 7. 3 (2) Power control register 2 (PC2)	(c)
Modification of Note in Table 4-11. SPI Control Registers	(c)
	Modification of Table 3-17. Configuration of Key Interrupt Modification of Figure 3-14. Block Diagram of Key Interrupt Modification of 3. 21. 1 Functions of voltage detector Modification of 3. 21. 1 Functions of voltage detector Modification of Figure 3-15. Block Diagram of Voltage Detector Modification of a. 21. 1 Overview of safety functions Modification of 3. 24. 1 Overview of safety functions Modification of 3. 24. 2 Format of user option byte (000C0H to 000C2H/010C0H to 010C2H) Modification of 3. 24. 2 Format of user option byte Modification of 3. 24. 2 Format of user option byte Modification of 3. 25. 1 Serial Programming Using Flash Memory Programmer Modification of 3. 25. 5 Serial programming using external device (that Incorporates UART) Modification of 3. 25. 6 Self-programming method Modification of 3. 25. 6 Self-programming Modification of 3. 25. 7 Security Settings Modification of 3. 25. 8 Data flash Modification of 3. 25. 8 Data flash Modification of Figure 3-16. Connection Example of E1 On-chip Debugging Emulator and RL78/G1E ANALOG BLOCK Andtion of Remark to 4. 1. 3 (5) Gain control register 1 (GC1) Addition of Aemark to 4. 1. 3 (6) Gain control register 3 (GC3) Addition of A. 2. 1 Overview of gain adjustment amplifier features Mod

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,

(d): Addition/change of package, part number, or management division, (e): Addition/change of related

documents

(4/4)

Page	Description	(4/4) Classification
-		
p.315	Modification of Caution in 4. 10. 1 Overview of analog reset feature	(c) (c)
p.316	Modification of Note in Table 4-13. Statuses of SPI Control Registers after Analog Reset Is Acknowledged	(0)
p.317	Modification of Table 4-14. Pin Statuses after Analog Reset	(c)
p.318	Modification of 4. 10. 2 Registers controlling the analog reset	(c)
CHAPTER 5	ELECTRICAL SPECIFICATIONS	
p.323	Modification of 5. 1. 3 Absolute maximum ratings (common to microcontroller block and analog block)	(c)
p.324	Modification of 5. 2. 1. 1 X1 oscillator characteristics	(c)
p.325	Modification of 5. 2. 1. 2 On-chip oscillator characteristics	(c)
p.335, 336	Modification of 5. 2. 2. 2 Supply current characteristics	(c)
p.337	Modification of 5. 2. 3 AC characteristics	(a)
p.338-340	Modification of two figures about Minimum Instruction Execution Time during Main System Clock	(c)
	Operation and AC Timing Test Points	
p.342	Addition of AC Timing Test Points to 5. 2. 4 Peripheral functions characteristics	(c)
p.342	Modification of 5. 2. 4. 1 Serial array unit (1)	(c)
p.344	Modification of 5. 2. 4. 1 Serial array unit (2)	(c)
p.345	Modification of 5. 2. 4. 1 Serial array unit (3)	(c)
p.347, 348	Modification of 5. 2. 4. 1 Serial array unit (4)	(c)
p.350, 351	Modification of 5. 2. 4. 1 Serial array unit (5)	(c)
p.353, 355	Modification of 5. 2. 4. 1 Serial array unit (6)	(c)
p.358, 359	Modification of 5. 2. 4. 1 Serial array unit (7)	(C)
p.360, 362	Modification of 5. 2. 4. 1 Serial array unit (8)	(c)
p.365, 366	Modification of 5. 2. 4. 1 Serial array unit (9)	(C)
p.369, 370	Modification of 5. 2. 4. 1 Serial array unit (10)	(c)
p.372-377	Modification of 5. 2. 5. 1 A/D converter characteristics	(C)
p.379	Correction of the Caution in 5. 2. 5. 4 LVD circuit characteristics	(a)
p.381	Modification of 5. 2. 6 Data memory STOP mode low supply voltage data retention characteristics	(C)
p.382	Addition of 5. 2. 8 Dedicated flash memory programmer communication (UART)	(C)
p.383	Modification of 5. 2. 9 Timing specs for switching flash memory programming modes	(c)
p.384	Change of the title to 5. 3. 1 "Operating conditions of analog block"	(c)
o.392, 395, 396	Modification of 5. 3. 3. 1 Configurable amplifier characteristics	(c)
p.399	Modification of 5. 3. 3. 3 D/A converter characteristics	(c)
p.400	Modification of 5. 3. 3. 4 Low-pass filter characteristics	(c)
p.401	Modification of 5. 3. 3. 5 High-pass filter characteristics	(c)
p.403	Modification of 5. 3. 3. 9 SPI characteristics	(C)

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,

(d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

B. 2 Revision History of Preceding Editions

Here is the revision history of the preceding editions. Chapter indicates the chapter of each edition.

Edition	Description	Chapter
Rev.1.00	The structure of CHAPTERS and Sessions are drastically changed.	Whole pages
	Modification of 1. 1 Features	CHAPTER 1
	Addition of Packaging, modification of Part Numbers and addition of Cautions in 1.2 List of	OUTLINE
	Part Numbers	
	Modification of Note 7. for 64-pin products in 1. 3 Pin Configuration	
	Modification of Note 6. for 80-pin products in 1. 3 Pin Configuration	
	Addition of Items and Notes in 1.6 Outline of Functions	
	Error correction of the descriptions in 1.6 Outline of Functions	
	Modification of the tables for Comparison of port functions with RL78/G1A in 2. 1 Pin	CHAPTER 2
	Functions in Microcontroller Block	PIN FUNCTIONS
	Error correction of the descriptions in 2. 1. 1 Port functions	
	Addition of the descriptions in 2. 1. 2 Functions other than port Functions	
	Error correction of the descriptions in 2. 2 Pin Functions in Analog Block	
	Addition of Notes about the pin of ARESET in 2.3 Recommended Connection of Unused	
	Pins	
	Addition of the descriptions for the pin of RESET and the pin of ARESET in 2.5 Instruction	
	of Pin Functions	
	Addition of the items listed on the tables in 3. 2 Comparison of Each Function with	CHAPTER 3
	RL78/G1A (64-pin products)	MICROCONTROLLER
	Error correction of the descriptions on the tables in 3. 2 Comparison of Each Function	
	with RL78/G1A (64-pin products)	
	Modification of the tables for List of Differences in Special Function Registers (SFRs) in	
	3. 3. 2. 4 Special function registers (SFRs)	
	Modification of the tables for List of Differences in Expanded Special Function Registers	
	(2nd SFRs) in 3. 3. 2. 5 Expanded special function registers (2nd SFRs)	
	Addition of the descriptions for each port in 3. 4. 2 Port configuration	
	Error correction of the descriptions for each port in 3. 4. 2 Port configuration	
	Addition of registers listed in 3. 4. 3 Registers controlling port functions	
	Modification of the frequency for oscillation about the function of high-speed on-chip	
	oscillator and addition of the table about the frequency for oscillation in 3. 5. 1 Functions of	
	clock generator	
	Addition of the registers listed in 3. 5. 3 Registers controlling clock generator	
	Error correction of the descriptions about a crystal resonator in 3.5.7 Resonator and	
	oscillator constants	
	Addition of "Port mode control register" to Table 3-8.	
	Modification of the figures for Block Diagram on Figure 3-4. and Figure 3-5. in 3. 6. 2	
	Configuration of timer array unit	
	Addition of the registers listed in 3. 6. 3 Registers controlling timer array unit	
	Addition of the registers listed in 3. 8. 3 Registers controlling 12-bit interval timer	

(2/6)

		(2/6)
Edition	Description	Chapter
Rev.1.00	Addition of the registers listed in 3. 9. 3 Registers controlling clock output/buzzer output	CHAPTER 3
	controller	MICROCONTROLLER
	Addition of the registers listed in 3. 11. 3 Registers used in A/D converters	BLOCK
	Addition and Modification of Cautions in 3 . 11 . 3 . 7 Analog input channel specification	
	register (ADS)	
	Addition of the registers listed in 3. 12. 3 Registers controlling serial array unit	
	Error correction of the number of maskable interrupts (internal) in 3. 16 Interrupt Functions	
	Addition of the registers listed in 3. 16. 3 Registers controlling interrupt functions	
	Error correction of the number of key interrupt input channels for 64-pin products in 3. 17	
	Key Interrupt Function	
	Addition of the registers listed in 3. 17. 3 Registers controlling key interrupt	
	Addition of Caution in 3. 17. 3. 2 Key return mode registers 0 (KRM0)	
	Error correction of the descriptions in 3. 21. Voltage Detector	
	Addition of the registers listed in 3. 21. 3 Registers controlling voltage detector	
	Error correction of the descriptions about user option byte (000C1H/010C1H) in 3. 21. 3	
	Registers controlling voltage detector	
	Addition of the registers listed in 3. 22. 3 Operation of safety functions	
	Error correction of the descriptions about user option byte (000C1H/010C1H) in 3. 24. 2	
	Format of user option byte	
	Addition of 3. 25 Flash Memory	
	Addition of 3. 26. 1 Connecting E1 on-chip debugging emulator to RL78/G1E	
	Addition of the descriptions about the reference voltage in 4. 1. 1 Overview of configurable	CHAPTER 4
	amplifier features	ANALOG BLOCK
	Modification of the registers listed in 4.1.3 Registers controlling the configurable	
	amplifiers	
	Addition of the descriptions about the reference voltage in 4. 2. 1 Overview of gain	
	adjustment amplifier features	
	Modification of the registers listed in 4. 2. 3 Registers controlling the gain adjustment	
	amplifier	
	Modification of the equation for calculation of analog output voltage in 4. 3. 1 Overview of	
	D/A converter features	
	Addition of the descriptions about the reference voltage in 4. 4. 1 Overview of low-pass	
	filter features	
	Modification of the registers listed in 4. 4. 3 Registers controlling the low-pass filter	
	Addition of the descriptions about the reference voltage in 4.5.1 Overview of high-pass	
	filter features	
	Modification of the registers listed in 4.5.3 Registers controlling the high-pass filter	
	Modification of the description in 4.8.3 Registers controlling the reference voltage	
	generator	
	Modification of Caution in 4. 9. 1 Overview of SPI features	
	Addition of Note to Table 4-11.	

(3/6)

Edition	Description	Chapter
Rev.1.00	Addition and Modification of the descriptions in 4. 10. 1 Overview of analog reset feature	CHAPTER 4
	Modification of the description and Note on Table 4-13 .	ANALOG BLOCK
	Modification of the description and Note , and addition of Caution in 4. 10. 2 (1) Reset control register (RC)	
	Erase the description of "(target)"	CHAPTER 5
	Modification of the description and addition of Remark 3 in 5. 1. 1 Absolute Maximum	ELECTRICAL
	Ratings	SPECIFICATIONS
	Addition of "5. 1. 3 Absolute maximum ratings (common to microcontroller block and analog block) "	
	Modification of the description and Note in 5. 2. 1. 1 X1 oscillator characteristics	
	Modification of Note 3 in 5. 2. 2. 1 Pin characteristics	
	Addition of the specifications for P70 to P73 in terms of output current/voltage high and	
	output current/voltage low in 5. 2. 2. 1 Pin characteristics	
	Modification of the description and Notes in 5. 2. 2. 2 Supply current characteristics	
	Change of the specification of the typical value for I_{DD3} (T_A =+50°C) in 5. 2. 2. 2 Supply current characteristics	
	Addition of operation current flowing to low-speed on-chip oscillator (fill) in 5. 2. 2. 2 Supply	
	current characteristics	
	Addition of the descriptions and modification of Remark in 5. 2. 3 AC characteristics	
	Modification of the description in 5. 2. 4. 1 Serial array unit (1)	
	Modification of the description in 5. 2. 4. 1 Serial array unit (2)	
	Modification of the description in 5. 2. 4. 1 Serial array unit (3)	
	Modification of the description in 5. 2. 4. 1 Serial array unit (4)	
	Modification of the description in 5. 2. 4. 1 Serial array unit (5)	
	Modification of the description in 5. 2. 4. 1 Serial array unit (6)	
	Modification of the description in 5. 2. 4. 1 Serial array unit (7)	
	Modification of the description in 5. 2. 4. 1 Serial array unit (8)	
	Modification of the description in 5. 2. 4. 1 Serial array unit (9)	
	Modification of the description in 5. 2. 4. 1 Serial array unit (10)	
	Addition of "Internal reference voltage" and "Temperature sensor output voltage" to the input	
	channel in 5. 2. 5. 1 A/D converter characteristics	
	Change of the symbol for the internal reference voltage in 5. 2. 5. 2 Temperature sensor,	
	internal reference voltage output characteristics	
	Addition of Note in 5. 2. 5. 3 POR circuit characteristics	
	Error correction of the description in 5. 2. 5. 4 LVD circuit characteristics	
	Change of the specification for the slope in 5. 2. 5. 5 Supply voltage rise slope	
	characteristics	
	Change of the specification for the data retention supply voltage in 5. 2. 6 Data memory	
	STOP mode low supply voltage data retention characteristics	
	Addition of Notes in 5. 2. 7 Flash memory programming characteristics	

(4/6)

– 192		(4/6)
Edition	Description	Chapter
Rev.1.00	Modification of the description in 5. 2. 8 Timing specs for switching flash memory	CHAPTER 5
	programming modes	ELECTRICAL
	Addition of the specification depending on the products in 5. 3. 3. 2 Gain adjustment	SPECIFICATIONS
	amplifier characteristics	
	Addition of the specification for "CLK_SYNCH input voltage" in 5. 3. 3. 2 Gain adjustment	
	amplifier characteristics (2) 80-pin products	
	Error correction of the description and addition of the specification for "CLK_SYNCH input	
	voltage" in 5. 3. 3. 4 Low-pass filter characteristics	
	Error correction of the description and addition of the specification for "CLK_SYNCH input	
	voltage" in 5. 3. 3. 5 High-pass filter characteristics	
Rev.0.04	Change of the name for CS from "Slave Select" to "Chip Select"	Whole pages
	Deletion of the word "interface" from the name of SPI	
	Error correction of the figures in 1. 4 Pin Configuration (Top View)	CHAPTER 1
	Error correction of the description (deletion of "SCLA0", "SCLA1") in 1. 4. 3 Pin	OUTLINE
	identification (Microcontroller Block)	
	Error correction of the figures in 1. 5 Block Diagram	
	Error correction of the function names and modification of the description for the function in	CHAPTER 2
	2. 2 Pin Functions in Analog Block	PIN FUNCTIONS
	Error correction of the description for the pin of ANI30 (D/A converter -> A/D converter) in 2.	
	3. 4 P40 to P42 (port 4)	
	Modification of the description in 2. 3. 43 I.C	
	Addition of "Remarks" on the tables in 3. 1 Differences in Functions between RL78/G1E	CHAPTER 3
	and RL78/G1A	MICROCONTROLLER
	Modification of the description on the tables (deletion of the same registers as RL78/G1A) in	FUNCTION
	3. 2 Differences in (Expanded) Special-Function Registers between RL78/G1E and	
	RL78/G1A	
	Modification of the description and change of the sequence flow of the setting procedure (2)	
	in 3. 3. 3 Connecting to an external device with different potential (1.8 V, 2.5 V, 3 V)	
	Addition of 3. 4. 4 Resonator and Oscillator Constants	
	Error correction of the description on Table 3-14.	
	Addition of 3. 13 Safety Functions	
	Modification of the gain setting of non-inverting amplifier in 5.1 Overview of Configurable	CHAPTER 5
	Amplifier Features and in 5. 3 Registers Controlling the Configurable Amplifiers	CONFIGURABLE
		AMPLIFIERS
	Modification of the description in 8. 1 Overview of Low-Pass Filter Features	CHAPTER 8
		LOW-PASS FILTER
	Modification of the description in 9. 1 Overview of High-Pass Filter Features	CHAPTER 8
		HIGH-PASS FILTER
	Addition of Note in 11. 3 Registers Controlling the Variable Output Voltage Regulator	CHAPTER 11
		VARIABLE OUTPUT
		VOLTAGE REGULATOR

(5/6)

Edition	Description	Chapter
Rev.0.04	Change of the specification for the typical value of I _{m124} in 15. 3. 2 Supply current characteristics	CHAPTER 15 ELECTRICAL
	Addition of the table which describes the operation state of the circuit in 15. 3. 2 Supply current characteristics	SPECIFICATIONS (TARGET)
	Error correction of the description and change of the specification in 15. 3. 3 Electrical specifications of each block	
	Modification of the description for the current consumption and addition of the Notes in 15 . 3. 3 Electrical specifications of each block (3) D/A converter	
	Addition of the definition for "CLK_LPF" in 15. 3. 3 Electrical specifications of each block (4) Low-pass filter	
	Addition of the definition for "CLK_HPF" in 15. 3. 3 Electrical specifications of each block (5) High-pass filter	
	Error correction of the description and addition of Note for the dropout voltage in 15. 3. 3 Electrical specifications of each block (7) Variable output voltage regulator	
	Error correction of the description in 15. 3. 3 Electrical specifications of each block (9) SPI	•
Rev.0.03	Change of Block Diagram in 1. 5. 2 RL78/G1E (80-pin)	CHAPTER 1 OUTLINE
	Change of Table 3-12. Analog Input Channels of A/D Converter	CHAPTER 15
	Change of ratings in 15. 1 Absolute Maximum Ratings	ELECTRICAL SPECIFICATIONS (TARGET)
	Change of 15. 2. 1 (1) X1 oscillator characteristics	
	Change of conditions and ratings in 15. 2. 2 (2) Supply current characteristics	
	Addition of SNOOZE operating current to 15. 2. 2 (3) Supply current characteristics of peripheral functions	
	Addition of diagrams (AC Timing Test Points to RESET Input Timing) to 15. 2. 3 AC characteristics	
	Detection of Remarks 4 in Simplified I2C connection diagram (during communication between devices with the different voltages)	
	Addition of Division of A/D Converter Characteristics in 15. 2. 5. 1 A/D converter characteristics	
	Change of ratings in 15. 2. 5. 2 Temperature sensor characteristics	
	Change of ratings in 15. 2. 5. 3 POR circuit characteristics	
	Change of conditions and ratings in 15. 3. 2 Supply current characteristics	
	Change of conditions in 15. 3. 3 (4) Variable output voltage regulator	
	Change of conditions in 15. 3. 3 (9) SPI interface	
Rev.0.02	Change of conditions and ratings in 15. 2. 2 (2) Supply current characteristics	CHAPTER 15
	Change of ratings in 15. 2. 4. 1 (7) Communication between devices with different voltages	ELECTRICAL SPECIFICATIONS (TARGET)
	Change of ratings in 15. 2. 5. (1) A/D converter characteristics	

(6/6)

Edition	Description	Chapter
Rev.0.02	Addition of new conditions (Retained for 20 years) to 15. 2. 10 Flash memory programming characteristics	CHAPTER 15 ELECTRICAL
	Change of condition and ratings in 15. 3. 2 Supply Current characteristics	SPECIFICATIONS
	Change of conditions and ratings and addition of settling time in 15. 3. 3 (1) Configurable amplifier block characteristics	(TARGET)
	Change of conditions and ratings in 15. 3. 3 (2) Gain Adjustment amplifier	
	Change of conditions and ratings in 15. 3. 3 (3) D/A converter	
	Change of conditions and ratings in 15. 3. 3 (4) Low-pass filter	
	Change of conditions and ratings in 15. 3. 3 (5) Temperature sensor	
	Change of conditions and ratings in 15. 3. 3 (7) Variable output voltage regulator	
	Change of conditions and ratings in 15. 3. 3 (9) SPI interface	

RL78/G1E User's Manual: Hardware

Publication Date: Rev.2.00 Mar. 31, 2014

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information. **California Eastern Laboratories, Inc.** 4590 Patrick Henry Drive, Santa Clara, California 95054, U.S.A. Tel: +1-408-919-2500, Fax: +1-408-988-0279

Tel: +1-408-919-2500, Fax: +1-408-988-0279 Renesas Electronics Europe Limited Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 D üsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

> © 2014 Renesas Electronics Corporation. All rights reserved. Colophon 2.0

RL78/G1E

