

PI74AVC+16268

12-Bit to 24-Bit Registered Bus Exchanger with 3-State Outputs

Product Features

- PI74AVC+16268 is designed for low-voltage operation, V_{CC} =1.65V to 3.6V
- True ±24mA Balanced Drive @ 3.3V
- IOFF supports partial power-down operation
- 3.6 I/O Tolerant Inputs and Outputs
- All outputs contain a patented DDC (Dynamic DriveControl) circuit that reduces noise without degrading propagation delay.
- Industrial operation: -40°C to +85°C
- Available Packages:
 - 56-pin 240 mil wide plastic TSSOP (A)
 - -56-pin 173 mil wide plastic TVSOP (K)

Product Description

Pericom Semiconductor's PI74AVC+ series of logic circuits are produced using the Company's advanced submicron CMOS technology, achieving industry leading speed.

The PI74AVC+16268, a 12-bit to 24-bit registered bus exchanger designed for 1.65V to 3.6V V_{CC} operation, is used for applications in which data must be transferred from a narrow high-speed bus to a wide, lower frequency bus. It provides synchronous data exchange between the two ports. Data is stored in internal registers on the low-to-high transition of the clock (CLK) input when appropriate clock-enable (CLKEN) inputs are low. The select (SEL) line is synchronous with CLK and selects 1B or 2B input data for the A outputs.

For data transfer in the A-to-B direction, a two-stage pipeline is provided in the A-to-1B path, with a single storage register in the A-to-2B path. Proper control of these inputs allows two sequential 12-bit words to be presented synchronously as a 24-bit word on the B-port. Data flow is controlled by the active-low output enables (OEA, OEB). These control terminals are registered so bus direction changes are synchronous with CLK.

To ensure the high-impedance state during power up or power down, a clock pulse should be applied as soon as possible and \overline{OE} should be tied to V_{CC} through a pullup resistor, the minimum value of the resistor is determined by the current-sinking capability of the driver. Because \overline{OE} is being routed through a register, the active state of the outputs cannot be determined prior to the arrival of the first clock pulse.

Logic Block Diagram

PERICOM

PI74AVC+16268 12-Bit to 24-Bit Registered Bus Exchanger w/3-State Outputs

Pin Description

Pin Name	Description
ŌĒ	Output Enable Input (Active LOW)
CLK	Clock
SEL	Select (Active Low)
CLKEN	Clock Enable (Active Low)
A,1B,2B	3-State Outputs
GND	Ground
V _{CC}	Power

Truth Tables⁽¹⁾ **Output Enable**

	Inputs		Out	tputs
CLK	OEA	OEB	Α	1B,2B
—	Н	Н	Ζ	Z
	Н	L	Ζ	Active
	L	Н	Active	Ζ
	L	L	Active	Active

A to B STORAGE (\overline{OEB} = L)

	Inputs		Out	puts	
CLKENA1	CLKENA2	CLK	Α	1B	2B
Н	Н	Х	Х	1B0 ⁽²⁾	$2B0^{(3)}$
L	L	↑	L	L ⁽²⁾	Х
L	L	↑	Н	H ⁽²⁾	Х
Х	L	↑	L	Х	L
Х	L	\uparrow	Н	X	Н

B to A STORAGE (\overline{OEA} = L)

	Inpu	its				Outputs
CLKEN1B	CLKEN2B	CLK	SEL	1 B	2B	Α
Н	Х	X	Н	Х	Х	A0 ⁽³⁾
Х	Н	X	L	Х	Х	A0 ⁽³⁾
L	Х	1	Н	L	Х	L
L	Х	1	Н	Н	Х	Н
Х	L	1	L	Х	L	L
Х	L	1	L	Х	Н	Н

Notes:

1. H = High Signal Level, L = Low Signal Level, X = Irrelevant, Z = High Impedance, $\uparrow =$ Transition, Low to High

2. Two CLK edges are needed to propagate data

3. Output level before indicated steady state input conditions were established.

Pin Configuration

ŌĒĀ	[1	\bigcirc	56 🛛 OEB
CLKEN1B	□ 2		55 🛛 CLKENA2
2B3	□ 3		54 🛛 2B4
GND	□ 4		53 🛛 GND
2B2	□ 5		52 🛛 2B5
2B1	□ 6		51 🛛 2B6
VCC	[7]		50 🛛 VCC
A1	日 8		49 🗋 2B7
A2	□ 9		48 🛛 2B8
A3	[10		47 🗋 2B9
GND	[11		46 🛛 GND
A4	[12		45 🛛 2B10
A5	[13	56-Pin	44 🛛 2B11
A6	[14	A,K	43 🛛 2B12
A7	[15		42 🗍 1B12
A8	[16		41 🛛 1B11
A9	[17		40 🛛 1B10
GND	[18		39 🛛 GND
A10	[19		38 🗍 1B9
A11	□ 20		37 🗍 1B8
A12	[21		36 🛛 1B7
VCC	□ 22		35 🛛 VCC
1B1	□ 23		34 🗍 1B6
1B2	□ 24		33 🗍 1B5
GND	□ 25		32 🛛 GND
1B3	□ 26		31 🗍 1B4
CLKEN2B	[27		30 CLKENA1
SEL	□ 28		29 🛛 CLK

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Supply voltage range, V _{CC} 0.5V to+4.6V
Input voltage range, V _I 0.5V to +4.6V
Voltage range applied to any output in the
high-impedance or power-off state, $V_O^{(1)}$ 0.5V to+4.6V
Voltage range applied to any output in the
high or low state, $V_0^{(1,2)}$ 0.5V to $V_{CC}^{+0.5V}$
Input clamp current, I _{IK} (V _I <0)50mA
Output clamp current, $I_{OK}(V_O < 0)$ 50mA
Continuous output current, I _O ±50mA
Continuous current through each V _{CC} or GND ± 100 mA
Package thermal impedance, $\theta_{JA}^{(3)}$: package A64°C/W
package K48°C/W
Storage Temperature range, T _{stg} 65°C to 150°C

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Notes:

- 1. Input & output negative-voltage ratings may be exceeded if the input and output curent rating are observed.
- 2. Output positive-voltage rating may be exceeded up to 4.6V maximum if theoutput current rating is observed.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

Recommended Operating Conditions⁽¹⁾

		Min.	Max.	Units
V _{CC} Supply Voltage	Operating	1.65	3.6	
	Data retention only	1.2		
V _{IH} High-level Input Voltage	$V_{CC} = 1.2V$	V _{CC}		
	$V_{CC} = 1.65V$ to 1.95V	0.65 x V _{CC}		
	$V_{CC} = 2.3 V$ to 2.7V	1.7		
	$V_{\rm CC} = 3V$ to $3.6V$	2		
V _{IL} Low-level Input Voltage	$V_{CC} = 1.2V$		GND	V
	$V_{CC} = 1.65V$ to 1.95V		0.35 x V _{CC}	
	$V_{CC} = 2.3 V$ to 2.7V		0.7	
	$V_{\rm CC} = 3V$ to $3.6V$		0.8	
V _I Input Voltage	· · · ·	0	3.6	
V _O Output Voltage	Active State	0	V _{CC}	
	3-State	0	3.6	
I _{OH} High-level output current	$V_{CC} = 1.65V$ to 1.95V		- 6	
	$V_{CC} = 2.3 V$ to 2.7V		- 12	
	$V_{CC} = 3V$ to $3.6V$		- 24	
I _{OL} Low-level output current	$V_{CC} = 1.65V$ to 1.95V		6	mA
	$V_{CC} = 2.3 V$ to 2.7V		12	
	$V_{\rm CC} = 3V$ to $3.6V$		24	
$\Delta t \Delta v$ Input transition rise or fall ra	te $V_{CC} = 1.65V$ to 3.6V		5	ns/V
T _A Operating free-air temperatu	re	-40	85	°C

Notes:

1. All unused inputs must be held at V_{CC} or GND to ensure proper device operation.

I	11	11	I	1	11	11	1	Т	L	11	I.	I.	1	1	1	1	11	1	I.	11	1	I.	L	11	Т	1	11	I.	1	11	1	I.	1	11	1	1	11	1	11	11	1	11	1	11	11	1	I.	11	T.	1	I.	11	11	

	Parameters	Test Conditions ⁽¹⁾	V _{CC}	Min.	Max.	Units
V _{OH}		$I_{OH} = -100 \mu A$	1.65V to 3.6V	V _{CC} -0.2V		
		$I_{OH} = -6mA \qquad V_{IH} = 1.07V$	1.65V	1.2		
		$I_{\rm OH} = -12 m A \qquad V_{\rm IH} = 1.7 V$	2.3V	1.75		
		$I_{OH} = -24 \text{mA}$ $V_{IH} = 2 \text{V}$	3V	2.0		
VOL		$I_{OL} = 100 \mu A$	1.65V to 3.6V		0.2	V
		$I_{OL} = 6mA \qquad \qquad V_{IH} = 0.57V$	1.65V		0.45	
		$I_{OL} = 12mA \qquad \qquad V_{IH} = 0.7V$	2.3V		0.55	
		$I_{OL} = 24 \text{mA} \qquad V_{IH} = 0.8 \text{V}$	3V		0.8	
II	Control Inputs	$V_{I} = V_{CC}$ or GND	3.6V		±2.5	
I _{OFF}	•	$V_{\rm I}$ or $V_{\rm O} = 3.6 V$	0		±10	
I _{OZ}		$V_{I} = V_{CC}$ or GND	3.6V		±10	μΑ
I _{CC}		$V_{O} = V_{CC} \text{ or } GND \qquad I_{O} = 0$	3.6V		40	
CI	Control Inputs	$V_{I} = V_{CC}$ or GND	2.5V		4	
			3.3V		4	
	Data Inputs		2.5V		6	
			3.3V		6	pF
Co	Outputs	$V_{O} = V_{CC}$ or GND	2.5V		8	
			3.3V		8	

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}C + 85^{\circ}C$)

Note:

1. Typical values are measured at $T_A = 25^{\circ}C$.

Timing Requirements (Over Operating Range)

			V _{CC} =	= 1.2V		= 1.5V 1V		= 1.8V 15V		= 2.5V .2V		= 3.3V .3V	
Parameters		Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
f _{CLOCK}	Clock frequency							150		180		180	MHz
t _W	Pulse duration, CLK high or low						3		3		3		
t _{SU}	Setup	A data before CLK↑	2.2		2.2		2.0		1.5		1.5		
	time	B data before CLK↑	1.6		1.5		1.5		1.0		0.8		
		SEL before CLK↑	2.0		1.8		1.5		1.3		1.1		
		CLKENA1 or CLKENA2 before CLK↑	3.2		2.2		2.0		1.8		1.7		
		CLKENB1 or CLKENB2 before CLK↑	3.2		2.4		2.0		1.8		1.7		ns
		OE before CLK↑	3.2		2.5		2.2		2.2		2.0		
t _H	Hold time	A data after CLK↑	0.5		0.5		0.2		0.2		0.1		
		B data after CLK↑	1.0		1.0		1.0		1.0		1.0		
		SEL after CLK↑	1.4		1.4		1.0		1.0		0.8		
		$\frac{\overline{\text{CLKENA1}}}{\overline{\text{CLKENA2}}}$ after CLK \uparrow	0		0		0.2		0.6		0.6		
		CLKENB1 or CLKENB2 after CLK↑	0		0		0.1		0.6		0.6		
		OE after CLK↑	0		0.2		0.2		0.5		0.5		

Note:

1. Unused control inputs must be held HIGH or LOW to prevent them from floating.

Parameter	From (Input)	To (Output)	$V_{CC} = 1.2V$	V _{CC} = ±0.		V _{CC} = ±0.	= 1.8V 15V	V _{CC} = ±0.		V _{CC} = ±0.		Units
			Typical	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
f _{max}						150		180		180		MHz
t _{pd}	CLK	В	8.1		5.0	2.0	4.8	1.8	4.0	1.3	3.1	
		A(1B)	9.0		5.5	2.1	5.0	1.7	4.2	1.2	3.4	
		B(2B)	8.0		5.5	2.1	5.0	1.8	4.3	1.3	3.4	
		A(SEL)	9.3		6.5	2.5	5.4	2.4	4.3	1.7	3.6	20
t _{en}	CLK	В	9.3		6.4	2.8	5.8	2.6	4.4	1.8	3.8	ns
t _{dis}		В	9.0		7.0	3.0	6.0	2.5	3.8	1.8	3.8	
t _{en}		А	9.0		6.5	2.1	5.5	1.8	4.2	1.3	3.6	
t _{dis}		А	8.8		6.3	2.3	5.5	2.1	3.5	1.5	3.8	

Switching Characteristics (Over Operating Range)

Notes:

1. Unused control inputs must be held HIGH or LOW to prevent them from floating.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

Operating Characteristics, $T_A = 25^{\circ}C$

Paramo	eters	Test Conditions	V _{CC} = 1.8V ±0.15V Typical	$V_{CC} = 2.5V$ $\pm 0.2V$ Typical	$V_{CC} = 3.3V$ $\pm 0.3V$ Typical	Units
Cpd Power	Outputs Enabled	$C_L = 0 p F,$	60	65	76	чE
Dissipation Capacitance	Outputs Disabled	f = 10 MHz	40	45	55	pF

PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.2V and 1.5V $\pm 0.1V$

Figure 1. Load Circuit and Voltage Waveforms

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0 \text{ ns}$, $t_F \le 2.0 \text{ ns}$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. t_{PZL} and t_{PZH} are the same as t_{en}
- G. t_{PLH} and t_{PHL} are the same as t_{pd}

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8V \pm 0.15V$

Figure 2. Load Circuit and Voltage Waveforms

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0ns$, $t_F \le 2.0ns$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. t_{PZL} and t_{PZH} are the same as t_{en}
- G. t_{PLH} and t_{PHL} are the same as t_{pd}

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5V \pm 0.2V$

Figure 3. Load Circuit and Voltage Waveforms

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0 \text{ ns}$, $t_F \le 2.0 \text{ ns}$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. t_{PZL} and t_{PZH} are the same as t_{en}
- G. t_{PLH} and t_{PHL} are the same as t_{pd}

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3V \pm 0.3V$

Figure 4. Load Circuit and Voltage Waveforms

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, $t_R \le 2.0$ ns, $t_F \le 2.0$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. t_{PZL} and t_{PZH} are the same as t_{en}
- G. t_{PLH} and t_{PHL} are the same as t_{pd}

56-pin TSSOP (A) Package

56-pin TVSOP (K) Package

Ordering Information

Ordering Data	Description
PI74AVC+16268A	56-pin, 240 mil wide plastic TSSOP
PI74AVC+16268K	56-pin, 173 mil wide plastic TVSOP

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com