MAX14714

Compact 6A Smart Power Path Selector

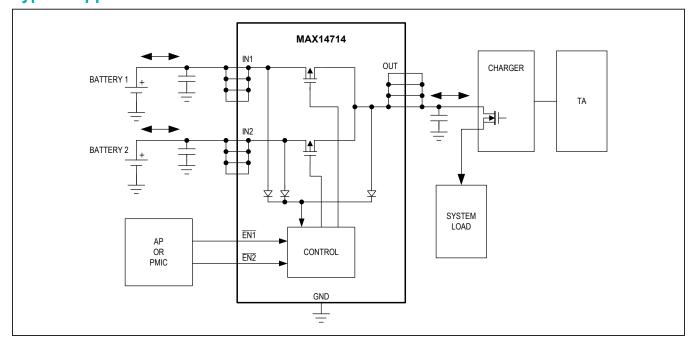
General Description

The MAX14714 compact 6A smart power path selector features a low, $11m\Omega$ (typ) R_{ON} internal FET and provides the system power from two separate power sources. The device has two switches in SPDT configuration, with bidirectional current-blocking capability when the switch is off.

The MAX14714 features two individual enable inputs to control each power path. Each enable input controls the corresponding path as an independent switch. However, when both paths are enabled, the internal comparator controls the path based on the voltage at input nodes. The device also features an ultra-low supply current in the operating or off states for longer battery-life.

The device is available in a 15-bump (1.2mm x 2.0mm) wafer-level package (WLP) and operates over the -40°C to +85°C extended temperature range.

Applications


- Smartphones
- Tablet PCs
- e-Readers
- Wearables

Features and Benefits

- Provides Robust Bidirectional Power Path
 - Wide Operating Input Voltage: +1.6V to +5.5V
 - · 6A Continuous Current Capability
 - Integrated Two 11mΩ (typ) MOSFET Switches
- Enables Simple Power Switch Design
 - Individual Path Control
 - Automatic Power Path Control
 - Automatic Soft-Start
 - · Powered by IN1, IN2, or OUT
- · Significantly Extends Battery Life
 - Ultra-Low Quiescent Supply Current 2.5µA (typ)
 - · Fast Switchover
 - · Optimum Soft-Start Feature
- Compact Package Saves Board Space
 - 15-Bump 1.2mm x 2.0mm WLP

Ordering Information appears at end of data sheet.

Typical Application Circuit

Absolute Maximum Ratings

0.3V to +6V
0.3V to +6V
0.3V to +6V
6A
9A

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
WLP (derate 16.4mW/°C above +70°C)	1312mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Soldering Temperature (reflow)	+260°C

Note 1: DC current is limited by thermal design of the system.

Package Thermal Characteristics (Note 2)

WLP

Junction-to-Ambient Thermal Resistance (θ_{JA})52°C/W

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{IN1}, V_{IN2} = 1.6V \text{ to } 5.5V; T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{IN1}, V_{IN2} = 4.3V; T_A = +25^{\circ}\text{C}.)$ (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY OPERATION						
Operating Voltage	V _{IN1} V _{IN2}		1.6		5.5	V
Shutdown Current	I _{SHDN}	EN1 = high and EN2 = high			5.75	μA
Quiescent Current	I _{IN1} I _{IN2}	EN1 or EN2 = low, I _{LOAD} = 0mA		2.5	7.5	μA
INTERNAL FET						
R _{ON} (IN1 or IN2 to OUT)	R _{ON}	V _{IN} _ = 4.3V, I _{OUT} = 1A, T _A = +25°C		11	15	mΩ
Soft-Start Trigger Voltage	V _{IN} - V _{OUT}			0.95		V
Soft-Start Time	t _{SS}		1	5	10	ms
Soft-Start Output dV/dt Limit	I _{LIM_SS}	C _{LOAD} = 100μF		60		mV/μs
IN1 - IN2 Comparator Rising Threshold	V _{THR_IN}	$V_{\rm IN1}$ = 4.3V, $V_{\rm IN2}$ = 4.0V, OUT is initially connected to IN1, $V_{\rm IN2}$ rises until OUT connects to IN2	500		mV	
IN1 - IN2 Comparator Falling Threshold	V _{VTHF_IN}	V _{IN1} = 4.3V, V _{IN2} = 4.6V, OUT is initially connected to IN2, V _{IN2} falls until OUT connects to IN1	-500		mV	
LOGIC INPUT (EN1, EN2)						
EN1, EN2 Input Logic High	V _{IH}		1.4			V
EN1, EN2 Input Logic Low	V _{IL}				0.4	V
EN1, EN2 Input Leakage Current	I _{LEAK}	V _{EN} _ = 0V, 5.5V	-1		1	μA

Electrical Characteristics (continued)

 $(V_{IN1}, V_{IN2} = 1.6V \text{ to } 5.5V; T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{IN1}, V_{IN2} = 4.3V; T_A = +25^{\circ}\text{C}.)$ (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DYNAMIC PERFORMANCE (NOTE 4)							
Single-Path Turn-On Time	t _{ON}	Time from EN_ low to OUT reaches 90% of IN_ voltage, no load. (Figure 2)		6.5		μs	
Single-Path Turn-Off Time $ \begin{array}{c} V_{\text{IN}} = 3\text{V, } V_{\overline{\text{EN}}} = 0\text{V to 3V, } R_{\text{LOAD}} = 1\text{k}\Omega. \\ \text{Time from } \overline{\text{EN}}_{} \text{ high to OUT reaches 10\% of its initial value. (Figure 2)} \\ \end{array} $			8		μs		
Automatic Switchover Enable Time	t _{ASO}	V_{IN1} = 3.8V, V_{IN2} = 4.3V $V_{\overline{E}N1}$ = 0V, $V_{\overline{E}N2}$ = 3V to 0V to OUT reaches 90% of IN2. (Figure 2)		2	5	μs	
Automatic Switchover Break-Before-Make	t _{BBM}	V_{IN1} = 3.7V, V_{IN2} = 3V to 4.3V $V_{\overline{E}N1}$ = 0V, $V_{\overline{E}N2}$ = 0V, OUT = 100mA and no load capacitor.	0	0.4	2	μs	
Automatic Switchover Debounce Time	t _{ASDEB}	V_{IN1} = 3.3V, V_{IN2} = 4.3V to 3V $V_{\overline{EN1}}$ = 0V, $V_{\overline{EN2}}$ = 0V. (Figure 3)		2		μs	

Note 3: All devices are 100% production tested at T_A = +25°C. Specifications over the operating temperature range are guaranteed by design.

Note 4: All timing is measured using 20% and 80% levels unless otherwise specified.

Timing Diagrams

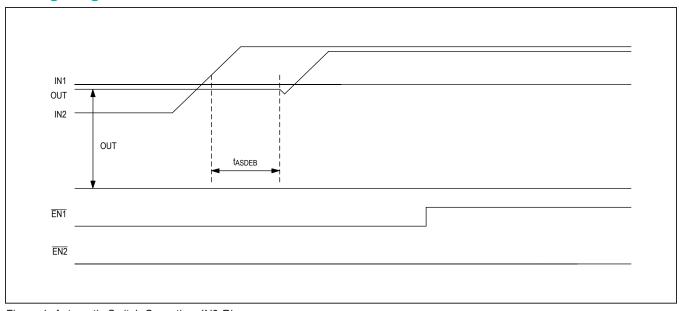


Figure 1. Automatic Switch Operation: IN2 Rise

www.maximintegrated.com Maxim Integrated | 3

Timing Diagrams (continued)

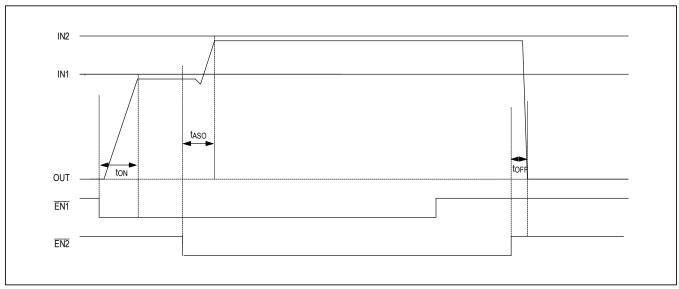
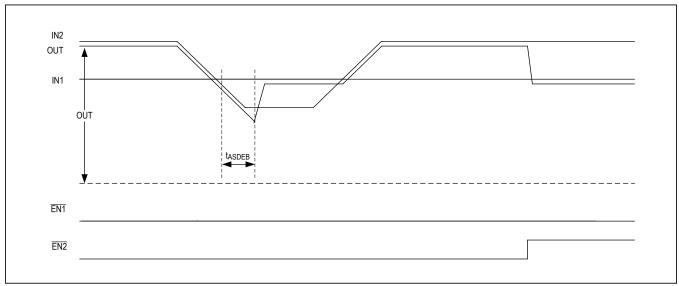
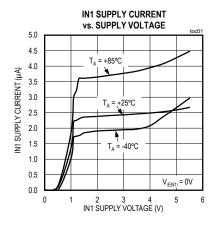
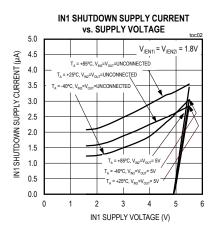
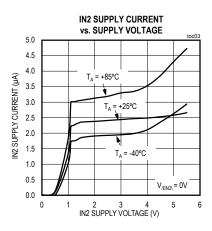
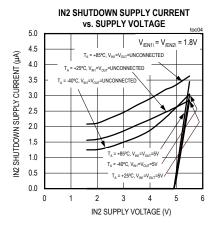
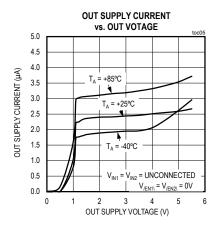


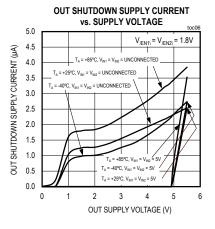
Figure 2. Automatic Switch Operation: EN2 On (Time scale is exaggerated for easy recognition in the waveform)

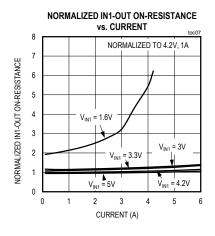




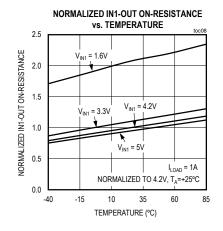

Figure 3: Automatic Switch Operation: IN2 Sag (Time scale is exaggerated for easy recognition in the waveform)

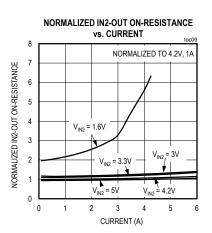

Typical Operating Characteristics

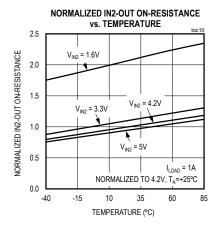

 $(C_{IN1,IN2} = 0.1 \mu F, C_{OUT} = 100 \mu F, T_A = +25 ^{\circ}C$, unless otherwise noted.)

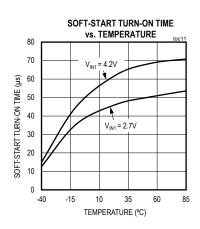


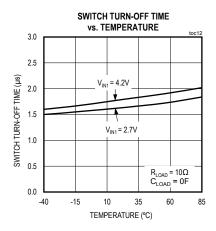


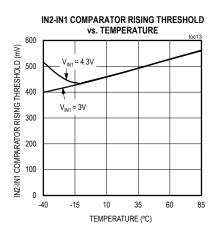


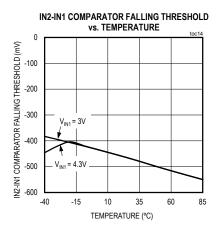


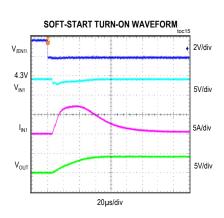


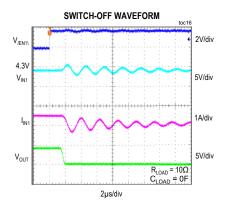


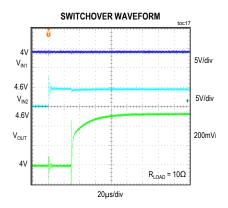


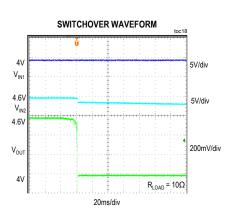

Typical Operating Characteristics (continued)

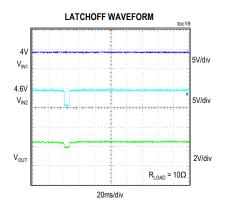

 $(C_{IN1,IN2} = 0.1 \mu F, C_{OUT} = 100 \mu F, T_A = +25 ^{\circ}C$, unless otherwise noted.)

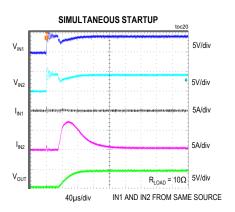


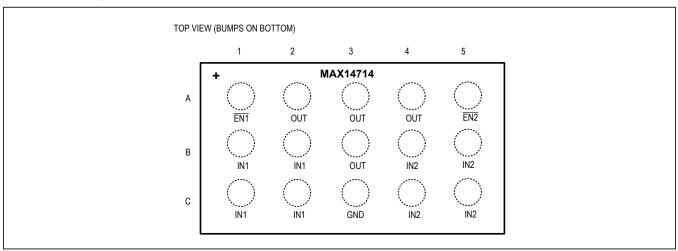











Typical Operating Characteristics (continued)

 $(C_{IN1,IN2}$ = 0.1µF, C_{OUT} = 100µF, T_A = +25°C, unless otherwise noted.)

Bump Configuration

Bump Description

BUMP	NAME	FUNCTION	
A1	EN1	Active-Low Enable Input for IN1, Switch 1.	
A2, A3, A4, B3	OUT	Common Switch Output.	
A5	EN2	Active-Low Enable Input for IN2, Switch 2.	
B1, B2, C1, C2 IN1 Power Input 1.			
B4, B5, C4, C5	IN2	Power Input 2.	
C3	GND	Ground.	

www.maximintegrated.com Maxim Integrated | 7

Detailed Description

The MAX14714 compact 6A smart power path selector device features a low, $11m\Omega$ (typ) R_{ON} internal FET and provides the system power from two separate power sources. The device has two switches in SPDT configuration, with a bidirectional current-blocking capability when the switch is turned off.

The MAX14714 features two individual enable inputs to control each power path. Each enable input controls the corresponding path as an independent switch. However, when both paths are enabled, the internal comparator controls the path based on voltage at input nodes to auto-select the higher voltage input.

Enable Inputs

EN1 and EN2 active-low enable inputs control the two switches position. (Table 1)

Soft-Start

When a switch is enabled, and if the voltage difference between IN_ and OUT is greater than 0.95V (typ), the device performs soft-start for 5ms (typ) to prevent high inrush current. During soft-start, the output dV/dt is limited to $60\text{mV/}\mu\text{s}$ (typ). The soft-start feature is bidirectional for either IN_ or OUT supply.

Auto-Selection

When both $\overline{\text{EN1}}$ and $\overline{\text{EN2}}$ are low, the device is in autoselection mode and the switch with higher voltage on input is turned on. A difference of V_{THR IN} (500mV, typ)

Table 1. Enable Control

EN1	EN2	SWITCH STATUS		
0	0	Auto Selection: switch 1 or switch 2 on*		
1	0	Switch 2 on, switch 1 off		
0	1	Switch 1 on, switch 2 off		
1	1	Switch 1 and switch 2 both off		

*When voltages on IN1 and IN2 are about the same, the device selects IN2 as the supply source. Please refer to Auto-Selection for details.

between IN1 and IN2 is required in order to switch to the higher supply voltage.

Once the device selects the switch, the switch is on as long as the other input is not higher by V_{THR_IN} . If frequent jittering is expected from the power source, manual selection is recommended once the power source is stabilized. If auto-selection latchoff is preferred, please contact the factory for a latchoff option.

In case voltages on IN1 and IN2 are about the same, and $\overline{\text{EN1}}$ and $\overline{\text{EN2}}$ both go from high to low, the device selects IN2 as the supply source. After this initial choice, normal auto-selection resumes.

Bidirectional Current-Blocking

The bidirectional FET switch prevents current flowing from either side when the switch is off.

Ordering Information

PART	ENABLE POLARITY	TEMP RANGE	BUMP-PACKAGE
MAX14714EWL+	ACTIVE-LOW	-40°C to +85°C	15 WLP

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
15 WLP	W151E2+1	21-1031	Refer to Application Note 1891

www.maximintegrated.com Maxim Integrated | 9

MAX14714

Compact 6A Smart Power Path Selector

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	9/14	Initial release	_

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.