Revision History 8Mb - 512k x 16bit SUPER LOW POWERCMOS SRAM | Revision | Details | Date | |----------|-----------------|----------| | Rev 1.0 | Initial Release | Nov 2020 | Confidential -1/13- Rev.1.0 Nov.2020 #### **FEATURES** ■ Fast access time : 45/55ns■ Low power consumption: Operating current : 12mA /10mA(TYP.) Standby current : 2.5μA (TYP.) ■ Single 2.7V ~ 3.6V power supply ■ All inputs and outputs TTL compatible ■ Fully static operation ■ Tri-state output ■ Data byte control : LB# (DQ0 ~ DQ7) UB# (DQ8 ~ DQ15) Data retention voltage : 1.5V (MIN.)Package : 48-ball 6mm x 8mm TFBGA #### **GENERAL DESCRIPTION** The AS6C8016B is a 8,388,608-bit low power CMOS static random access memory organized as 524,288 words by 16 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature. The AS6C8016B is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application. The AS6C8016B operates from a single power supply of $2.7V \sim 3.6V$ and all inputs and outputs are fully TTL compatible #### **PRODUCT FAMILY** | Product | Operating | V _{cc} Range | Spood | Power Di | ssipation | | | |-----------------|-------------|-----------------------|-------|---------------------------------|---------------------|--|--| | Family | Temperature | Vcc Kange | Speed | Standby(I _{SB1} ,TYP.) | Operating(Icc,TYP.) | | | | AS6C8016B-45BIN | -40 ~ 85℃ | 2.7 ~ 3.6V | 45ns | 2.5µA | 12mA | | | | AS6C8016B-55BIN | -40 ~ 85℃ | 2.7 ~ 3.6V | 55ns | 2.5µA | 10mA | | | ### **FUNCTIONAL BLOCK DIAGRAM** ### **PIN DESCRIPTION** | -> | | |------------|---------------------| | SYMBOL | DESCRIPTION | | A0 - A18 | Address Inputs | | DQ0 – DQ15 | Data Inputs/Outputs | | CE#, CE2 | Chip Enable Input | | WE# | Write Enable Input | | OE# | Output Enable Input | | LB# | Lower Byte Control | | UB# | Upper Byte Control | | Vcc | Power Supply | | Vss | Ground | ### **PIN CONFIGURATION** TFBGA (Top View) #### **ABSOLUTE MAXIMUM RATINGS*** | PARAMETER | SYMBOL | RATING | UNIT | |--|------------------|------------------------------|------------| | Voltage on Vcc relative to Vss | V_{T1} | -0.5 to 4.6 | V | | Voltage on any other pin relative to Vss | V_{T2} | -0.5 to V _{CC} +0.5 | V | | Operating Temperature | T _A | -40 to 85 | $^{\circ}$ | | Storage Temperature | T _{STG} | -65 to 150 | °C | | Power Dissipation | PD | 1 | W | | DC Output Current | I _{OUT} | 50 | mA | ^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability. #### **TRUTH TABLE** | MODE | MODE CE# CE2 OE# WE# LB# UB# I/O OPERATION | | SUPPLY CURRENT | | | | | | | |----------------|--|-----|----------------|-----|-----|-----|------------------|------------------|------------------| | WIODE | OL# | OLZ | OL# | *** | LD# | 00# | DQ0-DQ7 | DQ8-DQ15 | OOI I ET OOKKENT | | | Н | Х | Х | Х | Х | X | High – Z | High – Z | | | Standby | Х | L | Х | Х | X | Х | High – Z | High – Z | I_{SB1} | | | X | Χ | Х | Х | Н | Н | High – Z | High – Z | | | Output Disable | L | Н | Н | Н | L | Χ | High – Z | High – Z | 1 1 | | Output Disable | L | Н | Н | Н | Χ | L | High – Z | High – Z | I_{CC},I_{CC1} | | | L | Н | L | Н | L | Н | D _{OUT} | High – Z | | | Read | L | Н | L | Н | Н | L | High – Z | D _{out} | I_{CC},I_{CC1} | | | L | Н | L | Н | L | L | \bar{D}_OUT | D _{OUT} | | | | L | Н | Х | L | L | Н | D _{IN} | High – Z | | | Write | L | Н | Х | L | Н | L | High – Z | D_IN | I_{CC},I_{CC1} | | | L | Ι | X | L | L | L | D_IN | D _{IN} | | Note: H = V_{IH}, L = V_{IL}, X = Don't care. ### **DC ELECTRICAL CHARACTERISTICS** | PARAMETER | SYMBOL | TEST CONDITION | | MIN. | TYP. *4 | MAX. | UNIT | |--|--------------------|---|-----|-------|---------|---------|------| | Supply Voltage | V_{cc} | | | 2.7 | 3.0 | 3.6 | V | | Input High Voltage | V _{IH} *1 | | | 2.2 | - | Vcc+0.5 | V | | Input Low Voltage | V _{IL} *2 | | | - 0.2 | - | 0.6 | V | | Input Leakage Current | ILI | $V_{CC} \ge V_{IN} \ge V_{SS}$ | - 1 | - | 1 | μΑ | | | Output Leakage
Current | I _{LO} | V _{CC} ≧ V _{OUT} ≧ V _{SS} ,
Output Disabled | - 1 | - | 1 | μΑ | | | Output High Voltage | V_{OH} | I _{OH} = -1mA | 2.4 | 2.7 | - | V | | | Output Low Voltage | V_{OL} | I _{OL} = 2mA | - | 1 | 0.4 | V | | | | | Cycle time = Min.
CE#≦0.2V | -45 | - | 12 | 20 | mA | | Average Operating Power supply Current | | and CE2≧V _{CC} -0.2V
I _{I/O} = 0mA
Others at 0.2V or V _{CC} -0.2V | -55 | - | 10 | 18 | mA | | 11.7 | I _{CC1} | Cycle time = 1µs
CE#≦0.2V and CE2≧Vcc-0.2V
I _{I/O} = 0mA
Other pins at 0.2V or Vcc-0.2V | | - | 3 | 5 | mA | | Standby Power | I _{SB1} | CE# ≧Vcc-0.2V
or CE2≦0.2V | 40℃ | - | 2.5 | 5 | μΑ | | Supply Current | | Other pins at 0.2V
or V _{CC} -0.2V | | - | 2.5 | 20 | μΑ | #### Notes: - $1. V_{IH}(max) = V_{CC} + 3.0V$ for pulse width less than 6ns. $2. V_{IL}(min) = V_{SS} 3.0V$ for pulse width less than 6ns. - 3. Over/Undershootspecifications are characterized, not 100% tested. - 4. Typical values are included for reference only and are not guaranteed or tested. ### CAPACITANCE (TA = 25°C, f = 1.0MHz) | PARAMETER | SYMBOL | MIN. | MAX | UNIT | |--------------------------|------------------|------|-----|------| | Input Capacitance | C _{IN} | - | 6 | pF | | Input/Output Capacitance | C _{I/O} | - | 8 | pF | Note: These parameters are guaranteed by device characterization, but not production tested. #### **AC TEST CONDITIONS** | Input Pulse Levels | 0.2V to V _{CC} - 0.2V | |--|--| | Input Rise and Fall Times | 3ns | | Input and Output Timing Reference Levels | 1.5V | | Output Load | $C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -1mA/2mA$ | Confidential Rev.1.0 Nov.2020 -5/13- Typical values are measured at $V_{CC} = V_{CC}(TYP.)$ and $T_A = 25^{\circ}C$ ### **AC ELECTRICAL CHARACTERISTICS** ### (1) READ CYCLE | PARAMETER | SYM. | AS6C8016B-45 | | AS6C80 | UNIT | | |------------------------------------|--------------------|--------------|------|--------|------|----| | | | MIN. | MAX. | MIN. | MAX. | | | Read Cycle Time | t _{RC} | 45 | - | 55 | - | ns | | Address Access Time | t _{AA} | - | 45 | - | 55 | ns | | Chip Enable Access Time | t _{ACE} | - | 45 | - | 55 | ns | | Output Enable Access Time | t _{OE} | - | 25 | - | 30 | ns | | Chip Enable to Output in Low-Z | t _{CLZ} * | 10 | - | 10 | - | ns | | Output Enable to Output in Low-Z | t _{OLZ} * | 5 | - | 5 | - | ns | | Chip Disable to Output in High-Z | t _{CHZ} * | - | 15 | - | 20 | ns | | Output Disable to Output in High-Z | t _{OHZ} * | - | 15 | - | 20 | ns | | Output Hold from Address Change | t _{OH} | 10 | - | 10 | - | ns | | LB#, UB# Access Time | t _{BA} | - | 45 | - | 55 | ns | | LB#, UB# to High-Z Output | t _{BHZ} * | - | 20 | - | 25 | ns | | LB#, UB# to Low-Z Output | t _{BLZ} * | 10 | - | 10 | - | ns | #### (2) WRITE CYCLE | PARAMETER | SYM. | AS6C8 | 016B-45 | AS6C8 | UNIT | | |----------------------------------|--------------------|-------|---------|-------|------|----| | | | MIN. | MAX. | MIN. | MAX. | | | Write Cycle Time | t _{wc} | 45 | - | 55 | - | ns | | Address Valid to End of Write | t _{AW} | 40 | - | 50 | - | ns | | Chip Enable to End of Write | t _{CW} | 40 | - | 50 | - | ns | | Address Set-up Time | t _{AS} | 0 | - | 0 | - | ns | | Write Pulse Width | t _{WP} | 35 | - | 45 | - | ns | | Write Recovery Time | t _{WR} | 0 | - | 0 | - | ns | | Data to Write Time Overlap | t_{DW} | 20 | - | 25 | - | ns | | Data Hold from End of Write Time | t _{DH} | 0 | - | 0 | - | ns | | Output Active from End of Write | t _{OW} * | 5 | - | 5 | - | ns | | Write to Output in High-Z | t _{whz} * | - | 15 | - | 20 | ns | | LB#, UB# Valid to End of Write | t_{BW} | 35 | - | 45 | - | ns | ^{*}These parameters are guaranteed by device characterization, but not production tested. #### **TIMING WAVEFORMS** #### **READ CYCLE 1** (Address Controlled) (1,2) #### READ CYCLE 2 (CE# and CE2 and OE# Controlled) (1,3,4,5) #### Notes : - WE# is high for read cycle. - 2. Device is continuously selected OE# = low, CE# = low, CE2 = high, LB# or UB# = low. - 3. Address must be valid prior to or coincident with CE# = low, CE2 = high, LB# or UB# = low transition; otherwise t_{AA} is the limiting parameter. - $4.t_{CLZ}$, t_{BLZ} , t_{OLZ} , t_{CHZ} , t_{BHZ} and t_{OHZ} are specified with $C_L = 5pF$. Transition is measured ± 500 mV from steady state. - 5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{BHZ} is less than t_{BLZ} , t_{OHZ} is less than t_{CLZ} . #### WRITE CYCLE 1 (WE# Controlled) (1,2,4,5) ### WRITE CYCLE 2 (CE# and CE2 Controlled) (1,4,5) #### WRITE CYCLE 3 (LB#,UB# Controlled) (1,4,5) #### Notes - 1.A write occurs during the overlap of a low CE#, high CE2, low WE#, LB# or UB# = low. - 2. During a WE# controlled write cycle with OE# low, twp must be greater than twHz + tpw to allow the drivers to turn off and data to be placed on the bus. - 3. During this period, I/O pins are in the output state, and input signals must not be applied. - 4. If the ČE#, LB#, UB# low transition and ČE2 high transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state. - 5. t_{OW} and t_{WHZ} are specified with C_L = 5pF. Transition is measured ±500mV from steady state. #### **DATA RETENTION CHARACTERISTICS** | PARAMETER | SYMBOL | TEST CONDITION | | MIN. | TYP. | MAX. | UNIT | |--|------------------|--|-----|------------------|------|------|------| | Vcc for Data Retention | V_{DR} | CE# $\geq V_{CC}$ - 0.2V or CE2 \leq 0.2V | | 1.5 | ı | 3.6 | V | | Data Retention Current | | V _{CC} = 1.5V
CE# ≧V _{CC} -0.2V or CE2≦0.2V | 40℃ | - | 2 | 5 | μΑ | | Data Netermon Current | IDR | Other pins at 0.2V or Vcc-0.2V | | - | 2 | 20 | μΑ | | Chip Disable to Data
Retention Time | t _{CDR} | See Data Retention
Waveforms (below) | | 0 | - | - | ns | | Recovery Time | t _R | | | t _{RC*} | - | - | ns | t_{RC*} = Read Cycle Time ### **DATA RETENTION WAVEFORM** Low Vcc Data Retention Waveform (1) (CE# controlled) Low Vcc Data Retention Waveform (2) (CE2 controlled) Low Vcc Data Retention Waveform (3) (LB#, UB# controlled) Confidential -10 / 13- Rev.1.0 Nov.2020 ### **PACKAGE OUTLINE DIMENSION** #### 48-ball 6mm × 8mm TFBGA Package Outline Dimension | DETAIL | Е | |--------|---| | Α | _ | _ | 1.40 | _ | _ | 0.055 | |----|-----------|------|------|-----------|-------|-------| | A1 | 0.20 | 0.25 | 0.30 | 0.008 | 0.010 | 0.012 | | A2 | _ | _ | 1.05 | _ | _ | 0.041 | | b | 0.30 | 0.35 | 0.40 | 0.012 | 0.014 | 0.016 | | D | 7.95 | 8.00 | 8.05 | 0.313 | 0.315 | 0.317 | | D1 | 5.25 BSC | | | 0.207 BSC | | | | Ε | 5.95 | 6.00 | 6.05 | 0.234 | 0.236 | 0.238 | | E1 | 3.75 BSC | | | 0.148 BSC | | | | SE | 0.375 TYP | | | 0.015 TYP | | | | SD | 0.375 TYP | | | 0.015 TYP | | | | е | 0.75 BSC | | | 0.030 BSC | | | | | | | | • | | | #### NOTE: - 1. CONTROLLING DIMENSION : MILLIMETER. - 2. REFERENCE DOCUMENT : JEDEC MO-207. ### **ORDERING INFORMATION** | Part Number | Organization VCC Range | | Package | Operating Temp | Speed
(ns) | |-----------------|------------------------|------------|---------------------|-------------------------|---------------| | AS6C8016B-45BIN | 512K x 16 | 2.7 ~ 3.6V | 48ball 6mmx8mm FBGA | Industrial -40°C ~ 85°C | 45 | | AS6C8016B-55BIN | 512K x 16 | 2.7 ~ 3.6V | 48ball 6mmx8mm FBGA | Industrial -40°C ~ 85°C | 55 | #### PART NUMBERING SYSTEM | AS6C | 8016B | -45/55 | В | _ | N | xx | |----------------------|---|----------------|--------|----------------------------------|-------------------------------------|---------------------------------------| | Low
Power
SRAM | Device Number
80 = x8Mb
16 = x16Mb
B = B die version | Access
Time | B=FBGA | I=Industrial temp
-40°C∼ 85°C | Indicates Pb
and Halogen
Free | Packing Type
None:Tray
TR: Reel | Confidential -12 / 13- Rev.1.0 Nov.2020 Alliance Memory, Inc. 12815 NE 124th Street Suite D Kirkland, WA 98034 USA Tel: 425-898-4456 Tel: 425-898-4456 Fax: 425-896-8628 www.alliancememory.com Copyright © Alliance Memory All Rights Reserved © Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrant to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.